Infinite Families of Optimal Linear Codes Constructed From Simplicial Complexes

A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula&g...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 66; no. 11; pp. 6762 - 6773
Main Authors: Hyun, Jong Yoon, Lee, Jungyun, Lee, Yoonjin
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> constructed from simplicial complexes in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> is a simplicial complex in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\Delta ^{c} </tex-math></inline-formula> the complement of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. We first find an explicit computable criterion for <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> to be optimal; this criterion is given in terms of the 2-adic valuation of <inline-formula> <tex-math notation="LaTeX">\sum _{i=1}^{s} 2^{|A_{i}|-1} </tex-math></inline-formula>, where the <inline-formula> <tex-math notation="LaTeX">A_{i} </tex-math></inline-formula>'s are maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Furthermore, we obtain much simpler criteria under various specific conditions on the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. In particular, we find that <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> is a Griesmer code if and only if the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> are pairwise disjoint and their sizes are all distinct. Specially, when <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> has exactly two maximal elements, we explicitly determine the weight distribution of <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula>. We present many optimal linear codes constructed by our method, and we emphasize that we obtain at least 32 new optimal linear codes.
AbstractList A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes [Formula Omitted] constructed from simplicial complexes in [Formula Omitted], where [Formula Omitted] is a simplicial complex in [Formula Omitted] and [Formula Omitted] the complement of [Formula Omitted]. We first find an explicit computable criterion for [Formula Omitted] to be optimal; this criterion is given in terms of the 2-adic valuation of [Formula Omitted], where the [Formula Omitted]’s are maximal elements of [Formula Omitted]. Furthermore, we obtain much simpler criteria under various specific conditions on the maximal elements of [Formula Omitted]. In particular, we find that [Formula Omitted] is a Griesmer code if and only if the maximal elements of [Formula Omitted] are pairwise disjoint and their sizes are all distinct. Specially, when [Formula Omitted] has exactly two maximal elements, we explicitly determine the weight distribution of [Formula Omitted]. We present many optimal linear codes constructed by our method, and we emphasize that we obtain at least 32 new optimal linear codes.
A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> constructed from simplicial complexes in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> is a simplicial complex in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\Delta ^{c} </tex-math></inline-formula> the complement of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. We first find an explicit computable criterion for <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> to be optimal; this criterion is given in terms of the 2-adic valuation of <inline-formula> <tex-math notation="LaTeX">\sum _{i=1}^{s} 2^{|A_{i}|-1} </tex-math></inline-formula>, where the <inline-formula> <tex-math notation="LaTeX">A_{i} </tex-math></inline-formula>'s are maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Furthermore, we obtain much simpler criteria under various specific conditions on the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. In particular, we find that <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> is a Griesmer code if and only if the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> are pairwise disjoint and their sizes are all distinct. Specially, when <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> has exactly two maximal elements, we explicitly determine the weight distribution of <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula>. We present many optimal linear codes constructed by our method, and we emphasize that we obtain at least 32 new optimal linear codes.
Author Lee, Yoonjin
Lee, Jungyun
Hyun, Jong Yoon
Author_xml – sequence: 1
  givenname: Jong Yoon
  orcidid: 0000-0003-2917-5704
  surname: Hyun
  fullname: Hyun, Jong Yoon
  email: hyun33@kku.ac.kr
  organization: Konkuk University, Glocal Campus, Chungju, South Korea
– sequence: 2
  givenname: Jungyun
  orcidid: 0000-0002-9611-8817
  surname: Lee
  fullname: Lee, Jungyun
  email: lee9311@kangwon.ac.kr
  organization: Department of Mathematics Education, Kangwon National University, Chuncheon, South Korea
– sequence: 3
  givenname: Yoonjin
  orcidid: 0000-0001-9510-3691
  surname: Lee
  fullname: Lee, Yoonjin
  email: yoonjinl@ewha.ac.kr
  organization: Department of Mathematics, Ewha Womans University, Seoul, South Korea
BookMark eNp9kM1LwzAYh4NMcJveBS8Fz51JkzbJUYrTwWAH5zmk-YCMtqlJBvrfm7HhwYOn94Pn977wLMBs9KMB4B7BFUKQP-03-1UFK7iqOMeI8iswR3VNS97UZAbmECJWckLYDVjEeMgjqVE1B7vNaN3okinWcnC9M7HwtthNyQ2yL7ZuNDIUrdd53_oxpnBUyehiHfxQvLth6p1yGWx9bs2Xibfg2so-mrtLXYKP9cu-fSu3u9dN-7wtVcVRKhHRGneEWmwpRp1USjccoqrmttOaMqsJZgZrKS0zlipjJW-sopZBArtO4iV4PN-dgv88mpjEwR_DmF-KitSYIQo5yVRzplTwMQZjhXJJJufHFKTrBYLiJE9keeIkT1zk5SD8E5xCNhK-_4s8nCPOGPOLc8gY5zX-AY42fXA
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_disc_2024_114223
crossref_primary_10_1007_s12095_023_00686_8
crossref_primary_10_1016_j_disc_2024_114240
crossref_primary_10_1007_s10623_024_01423_9
crossref_primary_10_1007_s10623_024_01424_8
crossref_primary_10_1109_TIT_2025_3557315
crossref_primary_10_1142_S0219498824502487
crossref_primary_10_1109_TIT_2024_3384067
crossref_primary_10_1007_s10623_020_00793_0
crossref_primary_10_1109_TIT_2024_3406798
crossref_primary_10_1109_TIT_2025_3550182
crossref_primary_10_1007_s12095_022_00617_z
crossref_primary_10_1109_TIT_2025_3538921
crossref_primary_10_3934_amc_2025011
crossref_primary_10_1109_TIT_2024_3374420
crossref_primary_10_1109_TIT_2024_3358332
crossref_primary_10_1007_s10623_024_01470_2
crossref_primary_10_1109_TIT_2022_3163651
crossref_primary_10_1109_TIT_2023_3305609
crossref_primary_10_1007_s12095_023_00677_9
crossref_primary_10_1016_j_ffa_2023_102304
crossref_primary_10_1109_TIT_2024_3519672
crossref_primary_10_3390_math8091495
crossref_primary_10_1016_j_ffa_2025_102589
crossref_primary_10_1016_j_ffa_2022_101994
crossref_primary_10_1016_j_ffa_2025_102586
crossref_primary_10_1109_TIT_2024_3449899
crossref_primary_10_12677_AAM_2024_138388
crossref_primary_10_1007_s12095_025_00780_z
crossref_primary_10_1109_TIT_2025_3559453
crossref_primary_10_1016_j_ipl_2025_106591
crossref_primary_10_1007_s12190_021_01549_2
crossref_primary_10_1109_TIT_2019_2946840
crossref_primary_10_1007_s10623_023_01299_1
crossref_primary_10_1109_TIT_2024_3454959
crossref_primary_10_1007_s10623_022_01040_4
crossref_primary_10_1109_TIT_2022_3142300
Cites_doi 10.1007/s00200-016-0292-9
10.1007/s10623-017-0442-5
10.1007/3-540-45066-1_2
10.1109/18.705584
10.1109/TIT.2005.860412
10.1109/LCOMM.2014.2361516
10.1112/blms/18.2.97
10.1145/359168.359176
10.1109/TIT.2015.2473861
10.1016/j.ffa.2015.12.002
10.1109/LCOMM.2015.2455032
10.1109/TIT.2010.2054512
10.1016/S0019-9958(65)90080-X
10.1109/TIT.1979.1056120
10.4169/amer.math.monthly.122.04.367
10.1016/j.disc.2016.03.029
10.1007/978-3-642-45239-0_6
10.1109/MARK.1979.8817296
10.1017/CBO9780511807077
10.1007/s12095-016-0199-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2020.2993179
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1557-9654
EndPage 6773
ExternalDocumentID 10_1109_TIT_2020_2993179
9088995
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) grant funded by the Korea Government (MEST)
  grantid: NRF-2017R1A2B2004574
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST)
  grantid: NRF- 2017R1A6A3A11030486
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST)
  grantid: NRF-2017R1D1A1B05030707
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea (NRF) through the Basic Science Research Program funded by the Ministry of Education
  grantid: 2019R1A6A1A11051177
  funderid: 10.13039/501100003725
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-14dd3b47f3f731baccd6901259fbdd78fd438e3daaf8ef7cefa96fc7f8040bba3
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583513400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Mon Jun 30 06:28:38 EDT 2025
Tue Nov 18 22:28:51 EST 2025
Sat Nov 29 03:31:43 EST 2025
Wed Aug 27 02:31:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-14dd3b47f3f731baccd6901259fbdd78fd438e3daaf8ef7cefa96fc7f8040bba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2917-5704
0000-0001-9510-3691
0000-0002-9611-8817
PQID 2453817094
PQPubID 36024
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TIT_2020_2993179
crossref_primary_10_1109_TIT_2020_2993179
proquest_journals_2453817094
ieee_primary_9088995
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References grassl (ref13) 2020
ref24
ref12
li (ref18) 2016; 27
ref23
ref15
ref14
ref20
ref11
ref10
ref21
blakley (ref4) 1979; 48
adamaszek (ref1) 2015; 122
ref2
macwilliams (ref19) 1977
ref16
huffman (ref17) 2003
xiang (ref22) 2016
ref8
belov (ref3) 1972; 182
ref9
ref6
ref5
cohen (ref7) 2013; 8308
References_xml – volume: 27
  start-page: 481
  year: 2016
  ident: ref18
  article-title: Three classes of binary linear codes with good parameters
  publication-title: Applicable Algebra Eng Commun Comput
  doi: 10.1007/s00200-016-0292-9
– ident: ref6
  doi: 10.1007/s10623-017-0442-5
– ident: ref12
  doi: 10.1007/3-540-45066-1_2
– ident: ref2
  doi: 10.1109/18.705584
– ident: ref24
  doi: 10.1109/TIT.2005.860412
– ident: ref10
  doi: 10.1109/LCOMM.2014.2361516
– year: 2020
  ident: ref13
  publication-title: Bounds On The Minimum Distance Of Linear Codes And Quantum Codes
– ident: ref5
  doi: 10.1112/blms/18.2.97
– ident: ref20
  doi: 10.1145/359168.359176
– volume: 182
  start-page: 100
  year: 1972
  ident: ref3
  article-title: A conjecture on the Griesmer boundary. (Russian) optimization methods and their applications
  publication-title: All-Union Summer Sem Khakusy Lake Baikal
– year: 2016
  ident: ref22
  article-title: It is indeed a fundamental construction of all linear codes
  publication-title: arXiv 1610 06355
– ident: ref11
  doi: 10.1109/TIT.2015.2473861
– ident: ref16
  doi: 10.1016/j.ffa.2015.12.002
– ident: ref15
  doi: 10.1109/LCOMM.2015.2455032
– ident: ref8
  doi: 10.1109/TIT.2010.2054512
– ident: ref21
  doi: 10.1016/S0019-9958(65)90080-X
– ident: ref14
  doi: 10.1109/TIT.1979.1056120
– volume: 122
  start-page: 367
  year: 2015
  ident: ref1
  article-title: Face numbers of down-sets
  publication-title: Amer Math Monthly
  doi: 10.4169/amer.math.monthly.122.04.367
– ident: ref9
  doi: 10.1016/j.disc.2016.03.029
– volume: 8308
  start-page: 85
  year: 2013
  ident: ref7
  article-title: On minimal and quasi-minimal linear codes
  publication-title: Cryptography and Coding
  doi: 10.1007/978-3-642-45239-0_6
– volume: 48
  start-page: 313
  year: 1979
  ident: ref4
  article-title: Safeguarding cryptographic keys
  publication-title: International Workshop on Managing Requirements Knowledge (MARK
  doi: 10.1109/MARK.1979.8817296
– year: 2003
  ident: ref17
  publication-title: Fundamentals of Error-Correcting Codes
  doi: 10.1017/CBO9780511807077
– year: 1977
  ident: ref19
  publication-title: The Theory of Error-Correcting Codes
– ident: ref23
  doi: 10.1007/s12095-016-0199-0
SSID ssj0014512
Score 2.516324
Snippet A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6762
SubjectTerms 3G mobile communication
94A60
Binary codes
Binary system
Codes
Cost accounting
Criteria
Cryptography
Generators
Griesmer code
Linear codes
Mathematics
Optimal linear code
simplicial complex
weight distribution 2010 AMS Subject Classification 94B05
Title Infinite Families of Optimal Linear Codes Constructed From Simplicial Complexes
URI https://ieeexplore.ieee.org/document/9088995
https://www.proquest.com/docview/2453817094
Volume 66
WOSCitedRecordID wos000583513400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEPzp84nZKDF8G5dk2X5ijicKCb4BRvpUleYDBXcVP8831Ju6Iogre2JGnJy8vL1-R9H8AJBRkuBDlSTyK2eazI52LVI8yjYhvYGK1nvHm8EcNh8vQk72pwVuXCIKI_fIbn7tLv5Ztcv7lfZR1_JkfGK7AihChytaodAx6HBTN4SA5MmGO5JRnIzngwJiDYDc5p6qVwKb-FIK-p8mMi9tGl3_jfd23CRrmKZBeF2beghrNtaCwVGljpsNuw_oVukO5uK47W-Q6MBjM7cStO5sUvCDGz3LIRTSHP1DRhVPIBdpkbeu5UPT3PLBrWf82f2f3EH0SnscvcS6f4gfNdeOhfjS-v26W8Qlt3Zbhoh9yYSHFhIyuiUGVaG6dORXjIKmNEYg2PEoxMltkErdBoM-kyg2xCjq9UFu1BfZbPcB9YYtE44RjUgeLYs0oILXUQKBkoJBTchM6yx1Ndco87CYxp6jFIIFOyUepslJY2asJpVeOl4N34o-yOs0lVrjRHE1pLo6alY87TLo89J6HkB7_XOoQ113aRbtiCOvUuHsGqfl9M5q_Hfsx9AlDE1SI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50CuqD8yfOn3nwRXCuXdOleRRxOJxTcIpvpUkuMNBVnIp_vpe0K4oi-NaWpCm5XC5fk_s-gEMKMlwIcqSORGzyWJHPxapDmEfFNrAxWs94c98Xg0Hy8CBvZuC4yoVBRH_4DE_cpd_LN7l-c7_KWv5MjoxnYS7mvB0W2VrVngGPw4IbPCQXJtQx3ZQMZGvYGxIUbAcnNPlSwJTfgpBXVfkxFfv40q3_78tWYLlcR7LTwvCrMIPjNahPNRpY6bJrsPSFcJDuriqW1sk6XPfGduTWnMzLXxBmZrll1zSJPNGrCaWSF7Cz3NBzp-vpmWbRsO5L_sRuR_4oOo1e5hp9xA-cbMBd93x4dtEsBRaaui3D12bIjYkUFzayIgpVprVx-lSEiKwyRiTW8CjByGSZTdAKjTaTLjfIJuT6SmXRJtTG-Ri3gCUWjZOOQR0ojh2rhNBSB4GSgULCwQ1oTXs81SX7uBPBeEw9CglkSjZKnY3S0kYNOKpqPBfMG3-UXXc2qcqV5mjA7tSoaemak7TNY89KKPn277UOYOFieNVP-73B5Q4sunaK5MNdqFFP4x7M6_fX0eRl34-_T4zf2Gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinite+Families+of+Optimal+Linear+Codes+Constructed+From+Simplicial+Complexes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Hyun%2C+Jong+Yoon&rft.au=Lee%2C+Jungyun&rft.au=Lee%2C+Yoonjin&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=66&rft.issue=11&rft.spage=6762&rft.epage=6773&rft_id=info:doi/10.1109%2FTIT.2020.2993179&rft.externalDocID=9088995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon