Federated Matrix Factorization: Algorithm Design and Application to Data Clustering

Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks. Although many FL algorithms have been proposed, few of them have considered the matrix factorization (MF) model, which is known to have a vast number o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 70; S. 1625 - 1640
Hauptverfasser: Wang, Shuai, Chang, Tsung-Hui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!