Federated Matrix Factorization: Algorithm Design and Application to Data Clustering

Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks. Although many FL algorithms have been proposed, few of them have considered the matrix factorization (MF) model, which is known to have a vast number o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 70; s. 1625 - 1640
Hlavní autoři: Wang, Shuai, Chang, Tsung-Hui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks. Although many FL algorithms have been proposed, few of them have considered the matrix factorization (MF) model, which is known to have a vast number of signal processing and machine learning applications. Since the MF problem involves two blocks of variables and the variables are usually subject to constraints related to specific solution structure, it requires new FL algorithm designs to achieve communication-efficient MF in heterogeneous data networks. In this paper, we address the challenge by proposing two new federated MF (FedMF) algorithms, namely, FedMAvg and FedMGS, based on the model averaging and gradient sharing principles, respectively. Both FedMAvg and FedMGS adopt multiple steps of local updates per communication round to speed up convergence, and allow only a randomly sampled subset of clients to communicate with the server for reducing the communication cost. Convergence properties for the two algorithms are thoroughly analyzed, which delineate the impacts of heterogeneous data distribution, local update number, and partial client communication on the algorithm performance, and guide the design of proposed algorithms. By focusing on a data clustering task, extensive experiment results are presented to examine the practical performance of proposed algorithms, as well as demonstrating their efficacy over the existing distributed clustering algorithms.
AbstractList Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks. Although many FL algorithms have been proposed, few of them have considered the matrix factorization (MF) model, which is known to have a vast number of signal processing and machine learning applications. Since the MF problem involves two blocks of variables and the variables are usually subject to constraints related to specific solution structure, it requires new FL algorithm designs to achieve communication-efficient MF in heterogeneous data networks. In this paper, we address the challenge by proposing two new federated MF (FedMF) algorithms, namely, FedMAvg and FedMGS, based on the model averaging and gradient sharing principles, respectively. Both FedMAvg and FedMGS adopt multiple steps of local updates per communication round to speed up convergence, and allow only a randomly sampled subset of clients to communicate with the server for reducing the communication cost. Convergence properties for the two algorithms are thoroughly analyzed, which delineate the impacts of heterogeneous data distribution, local update number, and partial client communication on the algorithm performance, and guide the design of proposed algorithms. By focusing on a data clustering task, extensive experiment results are presented to examine the practical performance of proposed algorithms, as well as demonstrating their efficacy over the existing distributed clustering algorithms.
Author Wang, Shuai
Chang, Tsung-Hui
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0001-6457-9478
  surname: Wang
  fullname: Wang, Shuai
  email: shuaiwang@link.cuhk.edu.cn
  organization: Shenzhen Research Institute of Big Data and School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
– sequence: 2
  givenname: Tsung-Hui
  orcidid: 0000-0003-1349-2764
  surname: Chang
  fullname: Chang, Tsung-Hui
  email: tsunghui.chang@ieee.org
  organization: School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
BookMark eNp9kE1LAzEQhoNUsK3eBS8Bz1vzvRtvpbUqVBRawVtIdyc1Zbtbsymov97tBx48eJoZeJ-Z4emhTlVXgNAlJQNKib6Zz14GjDA24FRSSeQJ6lItaEJEqjptTyRPZJa-naFe06wIoUJo1UWzCRQQbIQCP9kY_Cee2DzWwX_b6OvqFg_LZTvF9zUeQ-OXFbZVgYebTenzfQLHGo9ttHhUbpsIwVfLc3TqbNnAxbH20evkbj56SKbP94-j4TTJmaYxoYwLAgUtKCc2k1mheOo0AxCpVpLlUjiunEwXi4xz0JQ55qRVAI6nheWO99H1Ye8m1B9baKJZ1dtQtScNUyIVTEqt2pQ6pPJQN00AZ3If96_HYH1pKDE7gaYVaHYCzVFgC5I_4Cb4tQ1f_yFXB8QDwG9cp5RrwfkPkZJ9HA
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_iot_2025_101687
crossref_primary_10_1145_3698875
crossref_primary_10_1109_TMC_2025_3551759
crossref_primary_10_1109_TWC_2023_3286990
crossref_primary_10_1109_JIOT_2023_3312852
crossref_primary_10_1016_j_ipm_2023_103470
crossref_primary_10_1016_j_ins_2024_121203
crossref_primary_10_3390_s23167235
crossref_primary_10_1109_JSTSP_2024_3461311
crossref_primary_10_1109_TAI_2024_3446759
Cites_doi 10.1016/j.neucom.2014.02.018
10.1109/MNET.001.1900506
10.1162/NECO_a_00168
10.1145/3394138
10.1109/MSP.2020.2970170
10.1007/978-3-319-65482-9_14
10.1109/MC.2009.263
10.1007/978-3-030-63076-8_2
10.1109/MIS.2020.3014880
10.1109/ICASSP39728.2021.9413927
10.1609/aaai.v33i01.33015693
10.1371/journal.pcbi.1000029
10.1007/3-540-46502-2_13
10.1145/3298981
10.1561/2200000055
10.1109/ICASSP.2015.7178631
10.1145/1772690.1772760
10.13140/RG.2.2.25204.14729
10.1109/MLSP49062.2020.9231531
10.1109/TSP.2016.2614491
10.1109/TSP.2021.3102106
10.5555/3001460.3001507
10.1145/2020408.2020426
10.14778/2180912.2180915
10.1109/TKDE.2010.165
10.1609/aaai.v32i1.11244
10.1145/2507157.2507195
10.1109/TKDE.2017.2785326
10.1038/nature07385
10.4236/jcc.2014.211002
10.1109/ICASSP.2019.8683466
10.1007/s10107-013-0701-9
10.1007/978-3-030-10925-7_24
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2022.3151505
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1640
ExternalDocumentID 10_1109_TSP_2022_3151505
9713943
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Fundamental Research and Discipline Layout project; Shenzhen Fundamental Research Fund
  grantid: JCYJ20190813171003723
  funderid: 10.13039/501100012271
– fundername: Guangdong Provincial Key Laboratory of Big Data Computing
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61731018
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-12340ed1d130a858d637f92ee479652c54f36f57bb833e912f2f5a6eef37da3f3
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778899300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:15:20 EDT 2025
Tue Nov 18 20:58:10 EST 2025
Sat Nov 29 04:10:55 EST 2025
Wed Aug 27 02:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-12340ed1d130a858d637f92ee479652c54f36f57bb833e912f2f5a6eef37da3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1349-2764
0000-0001-6457-9478
PQID 2647425596
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_2647425596
crossref_citationtrail_10_1109_TSP_2022_3151505
ieee_primary_9713943
crossref_primary_10_1109_TSP_2022_3151505
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
Mackey (ref57) 2015; 16
ref52
Li (ref14) 2020
ref10
ref54
Chen (ref32) 2018
ref16
Stich (ref19) 2019
Ding (ref39) 2016
ref51
ref50
Geyer (ref47)
McMahan (ref13) 2017
ref46
Kǒnecn (ref11) 2016
ref45
ref41
ref44
Bauckhage (ref34) 2015
ref49
ref8
ref9
ref4
Arthur (ref55) 2007
ref3
ref6
ref5
ref35
Wang (ref43)
ref37
ref36
Ivkin (ref18) 2019
ref30
ref2
ref1
Schelter (ref23) 2019
ref38
Li (ref22) 2014
Kǒnecn (ref33) 2015
Balcan (ref31) 2013
Guo (ref40) 2018
Lian (ref42) 2017
ref24
ref26
Hegeds (ref7) 2019
ref25
ref20
ref21
Maaten (ref56) 2008; 9
ref27
Zhu (ref28) 2019
ref29
Bonawitz (ref48) 2016
Li (ref17) 2020
LeCun (ref53)
References_xml – start-page: 317
  volume-title: Proc. Eur. Conf. Mach. Learn. Princ. Pract. Knowl. Discov. Databases
  year: 2019
  ident: ref7
  article-title: Decentralized recommendation based on matrix factorization: A comparison of gossip and federated learning
– ident: ref2
  doi: 10.1016/j.neucom.2014.02.018
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref56
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref46
  doi: 10.1109/MNET.001.1900506
– ident: ref44
  doi: 10.1162/NECO_a_00168
– ident: ref10
  doi: 10.1145/3394138
– start-page: 7849
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2018
  ident: ref40
  article-title: Distributed K-clustering for data with heavy noise
– ident: ref12
  doi: 10.1109/MSP.2020.2970170
– start-page: 1027
  volume-title: Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms
  year: 2007
  ident: ref55
  article-title: K-means++: The advantages of careful seeding
– ident: ref25
  doi: 10.1007/978-3-319-65482-9_14
– ident: ref3
  doi: 10.1109/MC.2009.263
– start-page: 77
  volume-title: Proc. 3rd Int. Workshop Big Data, Streams Heterogeneous Source Mining: Algorithms, Syst., Program. Models Appl.
  year: 2014
  ident: ref22
  article-title: A fast distributed stochastic gradient descent algorithm for matrix factorization
– start-page: 1
  volume-title: Proc. 34th Int. Conf. Mach. Learn. Held Int. Conv. Centre
  year: 2017
  ident: ref13
  article-title: Communication-efficient learning of deep networks from decentralized data
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2020
  ident: ref17
  article-title: On the convergence of FedAvg on non-IID data
– year: 2016
  ident: ref11
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
– ident: ref45
  doi: 10.1007/978-3-030-63076-8_2
– ident: ref8
  doi: 10.1109/MIS.2020.3014880
– ident: ref1
  doi: 10.1109/ICASSP39728.2021.9413927
– ident: ref53
  article-title: The MNIST database
– ident: ref16
  doi: 10.1609/aaai.v33i01.33015693
– start-page: 1
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst. Private Multi-Party Mach. Learn.
  year: 2016
  ident: ref48
  article-title: Practical secure aggregation for federated learning on user-held data
– start-page: 1339
  volume-title: Proc. 33rd Int. Conf. Mach. Learn.
  year: 2016
  ident: ref39
  article-title: K-means clustering with distributed dimensions
– ident: ref4
  doi: 10.1371/journal.pcbi.1000029
– year: 2015
  ident: ref34
  article-title: K-means clustering is matrix factorization
– ident: ref36
  doi: 10.1007/3-540-46502-2_13
– ident: ref6
  doi: 10.1145/3298981
– start-page: 1
  volume-title: Proc. Conf. Mach. Learn. Syst.
  year: 2020
  ident: ref14
  article-title: Federated optimization in heterogeneous networks
– ident: ref29
  doi: 10.1561/2200000055
– start-page: 5336
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2017
  ident: ref42
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
– ident: ref26
  doi: 10.1109/ICASSP.2015.7178631
– start-page: 1
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2019
  ident: ref28
  article-title: Distributed low-rank matrix factorization with exact consensus
– start-page: 1
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2019
  ident: ref18
  article-title: Communication-efficient distributed SGD with sketching
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref19
  article-title: Local SGD converges fast and communicates little
– ident: ref24
  doi: 10.1145/1772690.1772760
– ident: ref27
  doi: 10.13140/RG.2.2.25204.14729
– ident: ref49
  doi: 10.1109/MLSP49062.2020.9231531
– ident: ref54
  doi: 10.1109/TSP.2016.2614491
– start-page: 1995
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2013
  ident: ref31
  article-title: Distributed K-means and K-median clustering on general topologies
– ident: ref50
  doi: 10.1109/TSP.2021.3102106
– ident: ref38
  doi: 10.5555/3001460.3001507
– ident: ref20
  doi: 10.1145/2020408.2020426
– ident: ref30
  doi: 10.14778/2180912.2180915
– volume: 16
  start-page: 913
  issue: 28
  year: 2015
  ident: ref57
  article-title: Distributed matrix completion and robust factorization
  publication-title: J. Mach. Learn. Res.
– ident: ref43
  article-title: Supplementary material of federated matrix factorization: Algorithm design and application to data clustering
– ident: ref52
  doi: 10.1109/TKDE.2010.165
– year: 2019
  ident: ref23
  article-title: Factorbird-A parameter server approach to distributed matrix factorization
– ident: ref9
  doi: 10.1609/aaai.v32i1.11244
– ident: ref47
  article-title: Differentially private federated learning: A client level perspective
– ident: ref21
  doi: 10.1145/2507157.2507195
– start-page: 2248
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2018
  ident: ref32
  article-title: A practical algorithm for distributed clustering and outlier detection
– ident: ref5
  doi: 10.1109/TKDE.2017.2785326
– ident: ref51
  doi: 10.1038/nature07385
– ident: ref37
  doi: 10.4236/jcc.2014.211002
– ident: ref35
  doi: 10.1109/ICASSP.2019.8683466
– ident: ref41
  doi: 10.1007/s10107-013-0701-9
– ident: ref15
  doi: 10.1007/978-3-030-10925-7_24
– start-page: 1
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst. Optim. Mach. Learn.
  year: 2015
  ident: ref33
  article-title: Federated optimization: Distributed optimization beyond the datacenter
SSID ssj0014496
Score 2.5111735
Snippet Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks. Although...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1625
SubjectTerms Algorithms
Clustering
Clustering algorithms
Communication
Convergence
Cost analysis
Data models
Distributed databases
Factorization
Federated learning
gradient sharing
Machine learning
matrix factorization
model averaging
Partitioning algorithms
Servers
Signal processing
Signal processing algorithms
Title Federated Matrix Factorization: Algorithm Design and Application to Data Clustering
URI https://ieeexplore.ieee.org/document/9713943
https://www.proquest.com/docview/2647425596
Volume 70
WOSCitedRecordID wos000778899300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1RtIflAOwWRPmSD3tZabNN_BHH3CpKxWUREqzUW-TGY0AqLYIU8fMZu2mpBELilki2Fc0kmXkez3sAv3zmTYZKJKi0SKT3MrHK86QajYoRlz71WESxCX1xUQyH5nIN_ix7YRAxHj7Dv-Ey1vLdtJqFrbKuIURlpGhBS2s979VaVgykjFpclC6IRBV6uChJpqZ7fXVJQJBzwqcUvYNQ3UoIipoq737EMboMtr72XNuw2WSRrDd3-w9Yw8lP2FjhFmzD1SDQRFAm6di_QMP_wgZRWqfpuzxhvfEN3dW396wfT3EwO3Gs91bPZvWU9W1t2el4FtgUaNUd-D84uz49TxoFhaTiJqsTCksyRZc5ilS2UIXLhfaGI0ptcsUrJb3IvdLkGCHQZNxzr2yO6IV2VnixC-uT6QT3gKVYFKoiPEuISlKOOMpDgdIKtLkRzmUd6C6MWlYNvXhQuRiXEWakpiQ3lMENZeOGDvxezniYU2t8MrYdzL4c11i8A4cLv5XNt_dUUopHeJ-QUr7_8awD-B7Wnm-kHMJ6_TjDI_hWPdd3T4_H8bV6Bcp6ydY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-NAEB48PTh90LvzxJ6_9uFehMs12R9J9t6KWhRrEazQt7DNznpCbUVT8c93dpvWgofgWwK7SZgvycy3szMfwC-XOJ2gEhGqTETSORkZ5XhUDgb5gEsXO8yD2ETW7eb9vr5cgt_zWhhEDJvP8I8_DLl8Oy4nfqmsqYlRaSk-wYqSkifTaq15zkDKoMZFAYOIVJ71Z0nJWDd7V5dEBTknhkr-20vVLTihoKry5lcc_Et742NP9hXW6ziStabAf4MlHH2HtYXugptw1faNIiiWtOzCN-J_Zu0grlNXXv5lreENnVX_7thx2MfBzMiy1mtGm1Vjdmwqw46GE99Pga76A67bJ72j06jWUIhKrpMqIsckY7SJJV9lcpXbVGROc0SZ6VTxUkknUqcygkYI1Al33CmTIjqRWSOc2ILl0XiE28BizHNVEqMlTiUpShykPkVpBJpUC2uTBjRnRi3KusG417kYFoFoxLogGAoPQ1HD0IDD-Yz7aXONd8ZuerPPx9UWb8DuDLei_voeCwryiPETV0p__n_WAXw57V10is5Z93wHVv19pssqu7BcPUxwDz6XT9Xt48N-eMVeAHZ4zR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Matrix+Factorization%3A+Algorithm+Design+and+Application+to+Data+Clustering&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Shuai&rft.au=Chang%2C+Tsung-Hui&rft.date=2022&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=70&rft.spage=1625&rft.epage=1640&rft_id=info:doi/10.1109%2FTSP.2022.3151505&rft.externalDocID=9713943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon