Bidirectional Denoising Autoencoders Based Robust Representation Learning for Underwater Acoustic Target Signal Denoising

The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the rec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 71; p. 1
Main Authors: Dong, Yafen, Shen, Xiaohong, Wang, Haiyan
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this paper for underwater acoustic target signal denoising robust representation learning. The proposed bidirectional denoising autoencoder is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed bidirectional denoising autoencoder can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods.
AbstractList The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this paper for underwater acoustic target signal denoising robust representation learning. The proposed bidirectional denoising autoencoder is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed bidirectional denoising autoencoder can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods.
The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this article for underwater acoustic target signal denoising robust representation learning. The proposed BDAE is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine (SVM) classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed BDAE can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods.
Author Shen, Xiaohong
Dong, Yafen
Wang, Haiyan
Author_xml – sequence: 1
  givenname: Yafen
  orcidid: 0000-0001-7330-8039
  surname: Dong
  fullname: Dong, Yafen
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Xiaohong
  orcidid: 0000-0002-2361-8327
  surname: Shen
  fullname: Shen, Xiaohong
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Haiyan
  orcidid: 0000-0002-4906-8845
  surname: Wang
  fullname: Wang, Haiyan
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
BookMark eNp9kE1LAzEQQIMoWKt3wUvA89Yku0k2x_otVARtz0s2mS0pNalJivjv3bJF0IOnIfBeZngn6NAHDwidUzKhlKir-dPzhBHGJiXrn1IdoBHlXBZKCHaIRoTQulAVF8foJKUVIUSKSo7Q17WzLoLJLni9xrfgg0vOL_F0mwN4EyzEhK91AotfQ7tNGb_CJkICn_VOwjPQ0e-MLkS88D3_qTNEPDWhp53Bcx2XkPGbW_7acIqOOr1OcLafY7S4v5vfPBazl4enm-msMEzRXFBqbcsE7ayQYGhNKOvqUlEmNNSWciGJUIK3ikNJaEssZ8pWnCtRCWkqU47R5fDvJoaPLaTcrMI29qekhklWybKHWU-RgTIxpBShazbRvev41VDS7AI3feBmF7jZB-4V8UcxbmiSo3br_8SLQXQA8LNHKSKYqstv9UWLAQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_JSEN_2024_3493104
crossref_primary_10_1109_TASLP_2023_3275030
crossref_primary_10_1109_TIM_2025_3551006
crossref_primary_10_1109_TIM_2025_3574904
crossref_primary_10_1016_j_chaos_2025_116098
crossref_primary_10_1109_ACCESS_2024_3480788
crossref_primary_10_1109_TIM_2025_3580900
crossref_primary_10_1111_ane_13716
crossref_primary_10_1109_JSEN_2025_3532117
crossref_primary_10_1109_TIM_2023_3341134
crossref_primary_10_1109_TGRS_2023_3333971
crossref_primary_10_1109_TIM_2025_3545169
crossref_primary_10_1109_LSENS_2025_3541593
crossref_primary_10_1109_TSUSC_2024_3390003
Cites_doi 10.3390/sym9110256
10.1016/j.apacoust.2020.107631
10.1109/JSEN.2018.2886368
10.1109/ICASSP.2013.6638947
10.1121/10.0003329
10.1016/j.apacoust.2016.06.008
10.1016/j.apacoust.2020.107740
10.1121/10.0001020
10.1109/ACCESS.2020.3035403
10.1145/3065386
10.4236/jemaa.2015.73006
10.1109/TASLP.2020.3025638
10.1098/rspa.1998.0193
10.3390/e20080563
10.1142/s1793536910000367
10.3788/aos201838.0201001
10.23919/EUSIPCO54536.2021.9616166
10.1109/ICASSP.2011.5947265
10.3390/s18010048
10.1145/1390156.1390294
10.1109/ICASSP.2014.6853900
10.1109/COA.2016.7535736
10.1142/s1793536909000047
10.1109/ICASSP.2015.7177943
10.1016/j.apacoust.2021.108626
10.1109/TIM.2017.2698738
10.1109/TIT.2016.2556683
10.21236/ada164453
10.1109/ICRTIT.2011.5972413
10.1109/TIM.2022.3147887
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3210979
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2022_3210979
9906298
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62031021
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-11ddb261fd67ec18012f839126ae8d156706965b95e301b0d529d45596467c4c3
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868326500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:27 EDT 2025
Sat Nov 29 04:38:27 EST 2025
Tue Nov 18 22:21:56 EST 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-11ddb261fd67ec18012f839126ae8d156706965b95e301b0d529d45596467c4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7330-8039
0000-0002-4906-8845
0000-0002-2361-8327
PQID 2724734552
PQPubID 85462
PageCount 1
ParticipantIDs ieee_primary_9906298
crossref_primary_10_1109_TIM_2022_3210979
proquest_journals_2724734552
crossref_citationtrail_10_1109_TIM_2022_3210979
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Li (ref10) 2018
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref2
ref1
ref17
ref16
Maas (ref37)
ref19
ref18
ref24
ref23
Vincent (ref20) 2010; 11
ref26
ref25
ref22
ref21
ref28
Zheng (ref8) 2011; 29
Michelucci (ref27) 2022
ref29
ref7
ref9
He (ref13) 2021
ref4
ref3
ref6
ref5
Lehtinen (ref32); 80
References_xml – ident: ref1
  doi: 10.3390/sym9110256
– volume-title: Research on denoising method of underwater target’s acoustic signal based on compressed sensing
  year: 2018
  ident: ref10
– ident: ref33
  doi: 10.1016/j.apacoust.2020.107631
– start-page: 1
  volume-title: Proc. ICML Workshop Deep Learn. Audio, Speech, Lang. Process. (WDLASL)
  ident: ref37
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref15
  doi: 10.1109/JSEN.2018.2886368
– ident: ref12
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref17
  doi: 10.1121/10.0003329
– ident: ref35
  doi: 10.1016/j.apacoust.2016.06.008
– year: 2021
  ident: ref13
  article-title: Masked autoencoders are scalable vision learners
  publication-title: arXiv:2111.06377
– volume: 29
  start-page: 569
  issue: 4
  year: 2011
  ident: ref8
  article-title: Noise reduction of ship signals based on the local projective algorithm
  publication-title: J. Northwestern Polytech. Univ.
– volume: 80
  start-page: 2965
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Noise2noise: Learning image restoration without clean data
– ident: ref16
  doi: 10.1016/j.apacoust.2020.107740
– ident: ref18
  doi: 10.1121/10.0001020
– ident: ref4
  doi: 10.1109/ACCESS.2020.3035403
– ident: ref11
  doi: 10.1145/3065386
– ident: ref7
  doi: 10.4236/jemaa.2015.73006
– ident: ref24
  doi: 10.1109/TASLP.2020.3025638
– ident: ref28
  doi: 10.1098/rspa.1998.0193
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref20
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: ref27
  article-title: An introduction to autoencoders
  publication-title: arXiv:2201.03898
– ident: ref2
  doi: 10.3390/e20080563
– ident: ref31
  doi: 10.1142/s1793536910000367
– ident: ref6
  doi: 10.3788/aos201838.0201001
– ident: ref34
  doi: 10.23919/EUSIPCO54536.2021.9616166
– ident: ref30
  doi: 10.1109/ICASSP.2011.5947265
– ident: ref3
  doi: 10.3390/s18010048
– ident: ref19
  doi: 10.1145/1390156.1390294
– ident: ref23
  doi: 10.1109/ICASSP.2014.6853900
– ident: ref36
  doi: 10.1109/COA.2016.7535736
– ident: ref29
  doi: 10.1142/s1793536909000047
– ident: ref25
  doi: 10.1109/ICASSP.2015.7177943
– ident: ref14
  doi: 10.1016/j.apacoust.2021.108626
– ident: ref22
  doi: 10.1109/TIM.2017.2698738
– ident: ref9
  doi: 10.1109/TIT.2016.2556683
– ident: ref26
  doi: 10.21236/ada164453
– ident: ref5
  doi: 10.1109/ICRTIT.2011.5972413
– ident: ref21
  doi: 10.1109/TIM.2022.3147887
SSID ssj0007647
Score 2.4728215
Snippet The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Background noise
bidirectional denoising autoencoder
Correlation
Interference
Learning
Noise measurement
Noise reduction
pseudo clean label
representation learning
Representations
Robustness
Signal denoising
Support vector machines
Surface waves
Target recognition
Training
Underwater acoustic target signal denoising
Underwater acoustics
Title Bidirectional Denoising Autoencoders Based Robust Representation Learning for Underwater Acoustic Target Signal Denoising
URI https://ieeexplore.ieee.org/document/9906298
https://www.proquest.com/docview/2724734552
Volume 71
WOSCitedRecordID wos000868326500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60KOjBt1itsgcvgrHJJs1mj60PFFREK_QWurvTUpBE2lTx3zu7SYuiCN5y2M2DLzvfzO7MNwDHSicDwfvCU8R_FKCEyktUyL0QiWujKBRonM7srbi_T3o9-bAAp_NaGER0yWd4Zi_dWb7J9dRulTWlFdWVySIsCiHKWq251RVxVOpjBrSAySuYHUn6stm9uaNAkPMzW68ibdLWFwpyPVV-GGLHLlfr_3uvDVirvEjWLmHfhAXMtmD1i7bgFiy73E492YaPzqgkLrfrxy4wy0d2h4C1p0VudSxtLjPrEJ0Z9pir6aRgjy4_tipLylglwjpk5OEy1ynpnVzUMWvr3DUDY12XT86eRsNvT9iB56vL7vm1V3Vc8DSXQeEFgTGKYqqBiQXqwLLXgDyogMd9TAyFesKPZdxSsoVkGJRvWlyaiIKSmOytjnS4C7Usz3APGHLsR5gkWtmmf2bQ90Ptc-NHgY4xFLoOzRkIqa7kyG1XjJfUhSW-TAm21MKWVrDV4WQ-47WU4vhj7LaFaT6uQqgOjRnOabVWJykXPBIhfQXf_33WAazYe5cbLw2oFeMpHsKSfitGk_GR-w0_ATvH2tI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6xbhPsYTB-iPLTD7wgLW3iuHH8WNgqEKWaoJN4i2r7iiqhBLUpiP-es5NWTEyT9pYHW070xffd2XffAZxok44lH8lAE_9RgBLrINUxD2IkrhUilmi9zmxfDgbp3Z36tQLfl7UwiOiTz7DlHv1dvi3M3B2VtZUT1VXpB_jYEYJHVbXW0u7KRFQKmRFtYfILFpeSoWoPL68pFOS85SpWlEvbekNCvqvKO1Ps-aW3_n9vtgFfaz-SdSvgv8EK5pvw5Y264CZ89tmdZrYFL2eTirr8uR_7gXkxcWcErDsvC6dk6bKZ2RkRmmU3hZ7PSnbjM2TrwqSc1TKs94x8XOZ7JT2TkzplXVP4dmBs6DPK2e3k_o8VtuF37-fw_CKoey4EhquoDKLIWk1R1dgmEk3k-GtMPlTEkxGmloI9GSYq6WjVQTINOrQdrqygsCQhi2uEiXegkRc57gJDjiOBaWq0a_tnx6MwNiG3oYhMgrE0TWgvQMhMLUju-mI8ZD4wCVVGsGUOtqyGrQmnyxmPlRjHP8ZuOZiW42qEmnCwwDmrd-ss45ILGdNX8L2_zzqG1YvhdT_rXw6u9mHNrVMdwxxAo5zO8RA-madyMpse-V_yFcMX3hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+Denoising+Autoencoders-Based+Robust+Representation+Learning+for+Underwater+Acoustic+Target+Signal+Denoising&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Dong%2C+Yafen&rft.au=Shen%2C+Xiaohong&rft.au=Wang%2C+Haiyan&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2022.3210979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3210979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon