Bidirectional Denoising Autoencoders Based Robust Representation Learning for Underwater Acoustic Target Signal Denoising
The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the rec...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 71; p. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this paper for underwater acoustic target signal denoising robust representation learning. The proposed bidirectional denoising autoencoder is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed bidirectional denoising autoencoder can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods. |
|---|---|
| AbstractList | The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this paper for underwater acoustic target signal denoising robust representation learning. The proposed bidirectional denoising autoencoder is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed bidirectional denoising autoencoder can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods. The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this article for underwater acoustic target signal denoising robust representation learning. The proposed BDAE is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine (SVM) classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed BDAE can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods. |
| Author | Shen, Xiaohong Dong, Yafen Wang, Haiyan |
| Author_xml | – sequence: 1 givenname: Yafen orcidid: 0000-0001-7330-8039 surname: Dong fullname: Dong, Yafen organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 2 givenname: Xiaohong orcidid: 0000-0002-2361-8327 surname: Shen fullname: Shen, Xiaohong organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 3 givenname: Haiyan orcidid: 0000-0002-4906-8845 surname: Wang fullname: Wang, Haiyan organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China |
| BookMark | eNp9kE1LAzEQQIMoWKt3wUvA89Yku0k2x_otVARtz0s2mS0pNalJivjv3bJF0IOnIfBeZngn6NAHDwidUzKhlKir-dPzhBHGJiXrn1IdoBHlXBZKCHaIRoTQulAVF8foJKUVIUSKSo7Q17WzLoLJLni9xrfgg0vOL_F0mwN4EyzEhK91AotfQ7tNGb_CJkICn_VOwjPQ0e-MLkS88D3_qTNEPDWhp53Bcx2XkPGbW_7acIqOOr1OcLafY7S4v5vfPBazl4enm-msMEzRXFBqbcsE7ayQYGhNKOvqUlEmNNSWciGJUIK3ikNJaEssZ8pWnCtRCWkqU47R5fDvJoaPLaTcrMI29qekhklWybKHWU-RgTIxpBShazbRvev41VDS7AI3feBmF7jZB-4V8UcxbmiSo3br_8SLQXQA8LNHKSKYqstv9UWLAQ |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3493104 crossref_primary_10_1109_TASLP_2023_3275030 crossref_primary_10_1109_TIM_2025_3551006 crossref_primary_10_1109_TIM_2025_3574904 crossref_primary_10_1016_j_chaos_2025_116098 crossref_primary_10_1109_ACCESS_2024_3480788 crossref_primary_10_1109_TIM_2025_3580900 crossref_primary_10_1111_ane_13716 crossref_primary_10_1109_JSEN_2025_3532117 crossref_primary_10_1109_TIM_2023_3341134 crossref_primary_10_1109_TGRS_2023_3333971 crossref_primary_10_1109_TIM_2025_3545169 crossref_primary_10_1109_LSENS_2025_3541593 crossref_primary_10_1109_TSUSC_2024_3390003 |
| Cites_doi | 10.3390/sym9110256 10.1016/j.apacoust.2020.107631 10.1109/JSEN.2018.2886368 10.1109/ICASSP.2013.6638947 10.1121/10.0003329 10.1016/j.apacoust.2016.06.008 10.1016/j.apacoust.2020.107740 10.1121/10.0001020 10.1109/ACCESS.2020.3035403 10.1145/3065386 10.4236/jemaa.2015.73006 10.1109/TASLP.2020.3025638 10.1098/rspa.1998.0193 10.3390/e20080563 10.1142/s1793536910000367 10.3788/aos201838.0201001 10.23919/EUSIPCO54536.2021.9616166 10.1109/ICASSP.2011.5947265 10.3390/s18010048 10.1145/1390156.1390294 10.1109/ICASSP.2014.6853900 10.1109/COA.2016.7535736 10.1142/s1793536909000047 10.1109/ICASSP.2015.7177943 10.1016/j.apacoust.2021.108626 10.1109/TIM.2017.2698738 10.1109/TIT.2016.2556683 10.21236/ada164453 10.1109/ICRTIT.2011.5972413 10.1109/TIM.2022.3147887 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2022.3210979 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIM_2022_3210979 9906298 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62031021 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-11ddb261fd67ec18012f839126ae8d156706965b95e301b0d529d45596467c4c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868326500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:14:27 EDT 2025 Sat Nov 29 04:38:27 EST 2025 Tue Nov 18 22:21:56 EST 2025 Wed Aug 27 02:29:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-11ddb261fd67ec18012f839126ae8d156706965b95e301b0d529d45596467c4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7330-8039 0000-0002-4906-8845 0000-0002-2361-8327 |
| PQID | 2724734552 |
| PQPubID | 85462 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9906298 crossref_primary_10_1109_TIM_2022_3210979 proquest_journals_2724734552 crossref_citationtrail_10_1109_TIM_2022_3210979 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Li (ref10) 2018 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref2 ref1 ref17 ref16 Maas (ref37) ref19 ref18 ref24 ref23 Vincent (ref20) 2010; 11 ref26 ref25 ref22 ref21 ref28 Zheng (ref8) 2011; 29 Michelucci (ref27) 2022 ref29 ref7 ref9 He (ref13) 2021 ref4 ref3 ref6 ref5 Lehtinen (ref32); 80 |
| References_xml | – ident: ref1 doi: 10.3390/sym9110256 – volume-title: Research on denoising method of underwater target’s acoustic signal based on compressed sensing year: 2018 ident: ref10 – ident: ref33 doi: 10.1016/j.apacoust.2020.107631 – start-page: 1 volume-title: Proc. ICML Workshop Deep Learn. Audio, Speech, Lang. Process. (WDLASL) ident: ref37 article-title: Rectifier nonlinearities improve neural network acoustic models – ident: ref15 doi: 10.1109/JSEN.2018.2886368 – ident: ref12 doi: 10.1109/ICASSP.2013.6638947 – ident: ref17 doi: 10.1121/10.0003329 – ident: ref35 doi: 10.1016/j.apacoust.2016.06.008 – year: 2021 ident: ref13 article-title: Masked autoencoders are scalable vision learners publication-title: arXiv:2111.06377 – volume: 29 start-page: 569 issue: 4 year: 2011 ident: ref8 article-title: Noise reduction of ship signals based on the local projective algorithm publication-title: J. Northwestern Polytech. Univ. – volume: 80 start-page: 2965 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref32 article-title: Noise2noise: Learning image restoration without clean data – ident: ref16 doi: 10.1016/j.apacoust.2020.107740 – ident: ref18 doi: 10.1121/10.0001020 – ident: ref4 doi: 10.1109/ACCESS.2020.3035403 – ident: ref11 doi: 10.1145/3065386 – ident: ref7 doi: 10.4236/jemaa.2015.73006 – ident: ref24 doi: 10.1109/TASLP.2020.3025638 – ident: ref28 doi: 10.1098/rspa.1998.0193 – volume: 11 start-page: 3371 year: 2010 ident: ref20 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – year: 2022 ident: ref27 article-title: An introduction to autoencoders publication-title: arXiv:2201.03898 – ident: ref2 doi: 10.3390/e20080563 – ident: ref31 doi: 10.1142/s1793536910000367 – ident: ref6 doi: 10.3788/aos201838.0201001 – ident: ref34 doi: 10.23919/EUSIPCO54536.2021.9616166 – ident: ref30 doi: 10.1109/ICASSP.2011.5947265 – ident: ref3 doi: 10.3390/s18010048 – ident: ref19 doi: 10.1145/1390156.1390294 – ident: ref23 doi: 10.1109/ICASSP.2014.6853900 – ident: ref36 doi: 10.1109/COA.2016.7535736 – ident: ref29 doi: 10.1142/s1793536909000047 – ident: ref25 doi: 10.1109/ICASSP.2015.7177943 – ident: ref14 doi: 10.1016/j.apacoust.2021.108626 – ident: ref22 doi: 10.1109/TIM.2017.2698738 – ident: ref9 doi: 10.1109/TIT.2016.2556683 – ident: ref26 doi: 10.21236/ada164453 – ident: ref5 doi: 10.1109/ICRTIT.2011.5972413 – ident: ref21 doi: 10.1109/TIM.2022.3147887 |
| SSID | ssj0007647 |
| Score | 2.4728215 |
| Snippet | The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Background noise bidirectional denoising autoencoder Correlation Interference Learning Noise measurement Noise reduction pseudo clean label representation learning Representations Robustness Signal denoising Support vector machines Surface waves Target recognition Training Underwater acoustic target signal denoising Underwater acoustics |
| Title | Bidirectional Denoising Autoencoders Based Robust Representation Learning for Underwater Acoustic Target Signal Denoising |
| URI | https://ieeexplore.ieee.org/document/9906298 https://www.proquest.com/docview/2724734552 |
| Volume | 71 |
| WOSCitedRecordID | wos000868326500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60KOjBt1itsgcvgrHJJs1mj60PFFREK_QWurvTUpBE2lTx3zu7SYuiCN5y2M2DLzvfzO7MNwDHSicDwfvCU8R_FKCEyktUyL0QiWujKBRonM7srbi_T3o9-bAAp_NaGER0yWd4Zi_dWb7J9dRulTWlFdWVySIsCiHKWq251RVxVOpjBrSAySuYHUn6stm9uaNAkPMzW68ibdLWFwpyPVV-GGLHLlfr_3uvDVirvEjWLmHfhAXMtmD1i7bgFiy73E492YaPzqgkLrfrxy4wy0d2h4C1p0VudSxtLjPrEJ0Z9pir6aRgjy4_tipLylglwjpk5OEy1ynpnVzUMWvr3DUDY12XT86eRsNvT9iB56vL7vm1V3Vc8DSXQeEFgTGKYqqBiQXqwLLXgDyogMd9TAyFesKPZdxSsoVkGJRvWlyaiIKSmOytjnS4C7Usz3APGHLsR5gkWtmmf2bQ90Ptc-NHgY4xFLoOzRkIqa7kyG1XjJfUhSW-TAm21MKWVrDV4WQ-47WU4vhj7LaFaT6uQqgOjRnOabVWJykXPBIhfQXf_33WAazYe5cbLw2oFeMpHsKSfitGk_GR-w0_ATvH2tI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6xbhPsYTB-iPLTD7wgLW3iuHH8WNgqEKWaoJN4i2r7iiqhBLUpiP-es5NWTEyT9pYHW070xffd2XffAZxok44lH8lAE_9RgBLrINUxD2IkrhUilmi9zmxfDgbp3Z36tQLfl7UwiOiTz7DlHv1dvi3M3B2VtZUT1VXpB_jYEYJHVbXW0u7KRFQKmRFtYfILFpeSoWoPL68pFOS85SpWlEvbekNCvqvKO1Ps-aW3_n9vtgFfaz-SdSvgv8EK5pvw5Y264CZ89tmdZrYFL2eTirr8uR_7gXkxcWcErDsvC6dk6bKZ2RkRmmU3hZ7PSnbjM2TrwqSc1TKs94x8XOZ7JT2TkzplXVP4dmBs6DPK2e3k_o8VtuF37-fw_CKoey4EhquoDKLIWk1R1dgmEk3k-GtMPlTEkxGmloI9GSYq6WjVQTINOrQdrqygsCQhi2uEiXegkRc57gJDjiOBaWq0a_tnx6MwNiG3oYhMgrE0TWgvQMhMLUju-mI8ZD4wCVVGsGUOtqyGrQmnyxmPlRjHP8ZuOZiW42qEmnCwwDmrd-ss45ILGdNX8L2_zzqG1YvhdT_rXw6u9mHNrVMdwxxAo5zO8RA-madyMpse-V_yFcMX3hk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+Denoising+Autoencoders-Based+Robust+Representation+Learning+for+Underwater+Acoustic+Target+Signal+Denoising&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Dong%2C+Yafen&rft.au=Shen%2C+Xiaohong&rft.au=Wang%2C+Haiyan&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2022.3210979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3210979 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |