Sharp threshold for embedding balanced spanning trees in random geometric graphs

A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G(n,r,d) ${\mathscr{G}}(n,r,d)$. In particular, we find the sharp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of graph theory Ročník 107; číslo 1; s. 107 - 125
Hlavní autoři: Espuny Díaz, Alberto, Lichev, Lyuben, Mitsche, Dieter, Wesolek, Alexandra
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.09.2024
Wiley
Témata:
ISSN:0364-9024, 1097-0118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G(n,r,d) ${\mathscr{G}}(n,r,d)$. In particular, we find the sharp threshold for balanced binary trees. More generally, we show that all sequences of balanced trees with uniformly bounded degrees and height tending to infinity appear above a sharp threshold, and none of these appears below the same value. Our results hold more generally for geometric graphs satisfying a mild condition on the distribution of their vertex set, and we provide a polynomial time algorithm to find such trees.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.23106