Sharp threshold for embedding balanced spanning trees in random geometric graphs
A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G(n,r,d) ${\mathscr{G}}(n,r,d)$. In particular, we find the sharp...
Uloženo v:
| Vydáno v: | Journal of graph theory Ročník 107; číslo 1; s. 107 - 125 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.09.2024
Wiley |
| Témata: | |
| ISSN: | 0364-9024, 1097-0118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G(n,r,d) ${\mathscr{G}}(n,r,d)$. In particular, we find the sharp threshold for balanced binary trees. More generally, we show that all sequences of balanced trees with uniformly bounded degrees and height tending to infinity appear above a sharp threshold, and none of these appears below the same value. Our results hold more generally for geometric graphs satisfying a mild condition on the distribution of their vertex set, and we provide a polynomial time algorithm to find such trees. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0364-9024 1097-0118 |
| DOI: | 10.1002/jgt.23106 |