Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review
High-precision cylindrical parts are critical components across various industries including aerospace, automotive, and manufacturing. Since these parts play a pivotal role in the performance and safety of the systems they are integrated into, they are often subject to stringent quality control meas...
Uložené v:
| Vydané v: | Operations Research Forum Ročník 5; číslo 3; s. 58 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.09.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2662-2556, 2662-2556 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | High-precision cylindrical parts are critical components across various industries including aerospace, automotive, and manufacturing. Since these parts play a pivotal role in the performance and safety of the systems they are integrated into, they are often subject to stringent quality control measures. Defects on the interior and exterior wall surfaces of these cylindrical parts can severely undermine their function, leading to degraded performance, increased wear, and even catastrophic failures in extreme cases. This article aims to comprehensively summarize the task definition, challenges, mainstream methods, public datasets, evaluation metrics, and other aspects of surface defect detection for high-precision cylindrical parts, in order to help researchers quickly grasp this field. Specifically, the background and characteristics of industrial defect detection are first introduced. Owing to the unique geometric features of cylindrical part surfaces, algorithms and equipment for image data acquisition used in surface defect detection are elaborated in detail. This article presents an extensive overview of state-of-the-art surface defect detection techniques designed for high-precision cylindrical components, all rooted in deep learning. The methods are systematically classified into three main categories: fully supervised, unsupervised, and alternative approaches, based on their data labeling strategies. Additionally, the paper conducts a comprehensive analysis within each category, shedding light on their unique strengths, limitations, and practical use cases. Concluding the discussion, the paper provides insights into future development trends and potential research directions in this field that will lead to manufacturing innovation. |
|---|---|
| AbstractList | High-precision cylindrical parts are critical components across various industries including aerospace, automotive, and manufacturing. Since these parts play a pivotal role in the performance and safety of the systems they are integrated into, they are often subject to stringent quality control measures. Defects on the interior and exterior wall surfaces of these cylindrical parts can severely undermine their function, leading to degraded performance, increased wear, and even catastrophic failures in extreme cases. This article aims to comprehensively summarize the task definition, challenges, mainstream methods, public datasets, evaluation metrics, and other aspects of surface defect detection for high-precision cylindrical parts, in order to help researchers quickly grasp this field. Specifically, the background and characteristics of industrial defect detection are first introduced. Owing to the unique geometric features of cylindrical part surfaces, algorithms and equipment for image data acquisition used in surface defect detection are elaborated in detail. This article presents an extensive overview of state-of-the-art surface defect detection techniques designed for high-precision cylindrical components, all rooted in deep learning. The methods are systematically classified into three main categories: fully supervised, unsupervised, and alternative approaches, based on their data labeling strategies. Additionally, the paper conducts a comprehensive analysis within each category, shedding light on their unique strengths, limitations, and practical use cases. Concluding the discussion, the paper provides insights into future development trends and potential research directions in this field that will lead to manufacturing innovation. |
| ArticleNumber | 58 |
| Author | Kit, Ang Chun Astuti, Winda Saruchi, Sarah ‘Atifah Solihin, Mahmud Iwan Hong, Lim Wei Wei, Li |
| Author_xml | – sequence: 1 givenname: Li surname: Wei fullname: Wei, Li organization: School of Computer Science and Technology (School of Software), Guangxi University of Science and Technology, Faculty of Engineering, Technology and Built Environment, UCSI University – sequence: 2 givenname: Mahmud Iwan surname: Solihin fullname: Solihin, Mahmud Iwan email: mahmudis@ucsiuniversity.edu.my organization: Faculty of Engineering, Technology and Built Environment, UCSI University – sequence: 3 givenname: Sarah ‘Atifah surname: Saruchi fullname: Saruchi, Sarah ‘Atifah organization: Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah – sequence: 4 givenname: Winda surname: Astuti fullname: Astuti, Winda organization: Computer Engineering Department, Automotive and Robotics Engineering Program, BINUS ASO School of Engineering, Bina Nusantara University – sequence: 5 givenname: Lim Wei surname: Hong fullname: Hong, Lim Wei organization: Faculty of Engineering, Technology and Built Environment, UCSI University – sequence: 6 givenname: Ang Chun surname: Kit fullname: Kit, Ang Chun organization: Faculty of Engineering, Technology and Built Environment, UCSI University |
| BookMark | eNp9kEtLAzEYRYNUUGv_gKuA69FMHpPRXW19FAqKj3XIJN_UyJipyYzSf2_qCIoLVzdw70nCOUAj33pA6CgnJzkh8jRyRoqzjFCeEcKYzMQO2qdFQTMqRDH6dd5DkxhfSFpRJjlj-6h76EOtDeA51GC6mLJL6VqP2xrPNo3zNjijG3zjVs_ZXQDj4rZdeNvHLrjU3OmQwAsdweLUzAHWeAk6eOdXeNqs2uC659d4jqf4Ht4dfByi3Vo3ESbfOUZPV5ePs5tseXu9mE2XmaFnuciEAIBaal0ayTmvCC0lBV5VlNkcSGVJLWpKjc15XllLueRFUXJDS2FlCZyN0fFw7zq0bz3ETr20ffDpScWI5JSXKdKqHFYmtDEGqJVxnd4q6IJ2jcqJ2mpWg2aVNKsvzUoklP5B18G96rD5H2IDFNPYryD8_Oof6hOY_ZFj |
| CitedBy_id | crossref_primary_10_1051_meca_2025019 crossref_primary_10_1080_10589759_2025_2499031 crossref_primary_10_1016_j_knosys_2024_112343 crossref_primary_10_3390_s25133859 |
| Cites_doi | 10.3390/s20061562 10.3390/su12020492 10.1109/JSEN.2022.3159743 10.1177/0278364914550133 10.1007/BF03355500 10.1109/TPAMI.2016.2644615 10.3390/s19122833 10.1007/s11263-009-0275-4 10.3390/machines10050327 10.1007/s10851-021-01055-x 10.1109/JSEN.2008.2006701 10.1006/jcss.1997.1504 10.1007/s11263-022-01578-9 10.1109/ACCESS.2021.3119631 10.1016/j.eswa.2015.09.046 10.3390/app12136633 10.1109/TASE.2019.2900170 10.1016/j.optlastec.2021.107338 10.1109/ACCESS.2020.3001349 10.1016/j.compind.2021.103459 10.1145/1541880.1541882 10.1109/JAS.2019.1911393 10.1016/j.solener.2019.02.067 10.1109/TCPMT.2018.2873744 10.1109/IJCNN.2016.7727606 10.1007/s10489-022-03800-0 10.1007/s42243-023-00920-w 10.3390/app8091678 10.1109/ICCV.1999.790410 10.1109/TII.2016.2641472 10.1016/j.neucom.2014.08.003 10.3390/app9204222 10.1109/TPAMI.2009.167 10.1016/j.infrared.2010.12.003 10.1109/TII.2019.2958826 10.1109/TII.2019.2959069 10.1016/j.optlaseng.2019.01.011 10.1109/TPAMI.2015.2389824 10.1007/s00170-011-3793-5 10.1007/s12206-022-0602-z 10.1016/j.media.2019.01.010 10.1007/s11263-020-01358-3 10.1063/1.105039 10.1007/s10921-015-0315-7 10.1049/trit.2019.0019 10.1145/3439950 10.1016/j.measurement.2023.112614 10.1155/2020/8189403 10.1109/WACV.2018.00097 10.1007/s12555-020-0118-1 10.1016/j.mejo.2010.01.015 10.1016/j.measurement.2018.11.085 10.3390/bios10110159 10.1145/3065386 10.1016/j.conbuildmat.2018.11.129 10.1007/s10845-020-01670-2 10.3390/s18092993 10.1016/j.eswa.2010.11.030 10.1023/B:VISI.0000013087.49260.fb 10.1016/j.apsusc.2013.09.002 10.1016/j.cviu.2007.09.014 10.1016/j.engfailanal.2013.06.010 10.1016/j.jmsy.2020.03.009 10.1609/aaai.v34i07.7000 10.1016/j.ijmecsci.2019.105308 10.1088/1361-6501/abd579 10.1016/j.engappai.2023.105835 10.3390/s21155137 10.1109/IST.2012.6295527 10.1007/s00371-018-1588-5 10.1007/s10845-019-01476-x 10.1109/TSMC.1979.4310076 10.1145/3543848 10.1109/ACCESS.2020.2978506 10.1016/j.solmat.2011.12.007 10.3390/photonics10040404 10.1007/s00170-021-06592-8 10.3390/app12020834 10.1016/j.jmsy.2019.03.002 10.1016/j.biosystemseng.2009.11.004 10.1371/journal.pone.0002146 10.1016/j.measurement.2022.111138 10.3389/fenrg.2022.928162 10.1080/08839514.2021.1975391 10.1108/02602280810882535 10.3390/a16020095 10.1016/j.measurement.2022.111836 10.3390/s20051459 10.1109/ICMA.2019.8816454 10.3390/ma15217543 10.1038/s41598-022-14971-8 10.1016/j.rcim.2022.102470 10.3390/app11198945 10.1364/AO.45.002265 10.1007/s10489-021-02556-3 10.1007/s12541-021-00566-2 10.1109/TPAMI.2017.2699184 10.1007/s42979-022-01545-8 10.1016/j.jmatprotec.2004.10.019 10.1109/TSMC.2018.2871750 10.1109/ICCVW60793.2023.00106 10.1007/978-981-19-8703-8_6 10.1109/ICCV.2015.169 10.1109/CVPR.2014.81 10.3390/s22249646 10.1109/CVPR.2005.177 10.1007/978-3-642-33783-3_16 10.1109/ISIE45552.2021.9576231 10.1109/MVA.2015.7153209 10.1109/CVPR.2016.90 10.1007/978-3-031-20056-4_23 10.1007/978-3-319-46448-0_2 10.1109/ICCV.2019.00467 10.1109/CVPR.2018.00745 10.1109/ICCV.2017.74 10.1007/s13369-023-08483-4 10.1109/ICCV.2019.00667 10.1007/978-3-030-01234-2_49 10.1109/ICCV.2019.00612 10.1007/978-3-030-58452-8_13 10.1007/978-3-319-59050-9_12 10.1109/ICTEmSys.2019.8695928 10.1109/CVPR52729.2023.00721 10.1109/TII.2023.3234030 10.1109/CVPR.2017.549 10.1007/s10479-024-06012-6 10.1109/CVPR.2017.660 10.1007/978-3-030-58520-4_29 10.1109/CVPRW.2017.156 10.1109/ICCV.2017.324 10.1109/TSM.2023.3278036 10.1109/ICCV.2017.244 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00913 10.1109/CVPR46437.2021.00681 10.1109/COASE.2019.8843204 10.1007/978-981-16-8690-0_99 10.1109/IAEAC.2018.8577881 10.1145/3394486.3406704 10.1109/CVPR.2019.00982 10.1117/12.2622550 10.1007/978-3-030-01424-7_58 10.1016/j.compind.2023.103990 10.1007/978-981-15-3250-4_2 10.1109/CVPR.2016.319 10.1109/CVPR.2001.990517 10.1109/CVPR.2017.241 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.106 10.1109/ACCESS.2020.3010274 10.1007/s10845-020-01710-x 10.1109/CVPR.2016.91 10.1109/ICCV48922.2021.00986 10.1109/ICCV.2017.322 10.1109/ICASSP.2018.8462364 10.23919/ICACT.2018.8323641 10.1109/CVPR.2017.243 10.21203/rs.3.rs-598050/v1 10.1109/TSM.2023.3265987 10.24251/HICSS.2022.146 10.1109/CVPR.2018.00716 10.1007/978-3-030-01264-9_45 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s43069-024-00337-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Business (Alumni) ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2662-2556 |
| ExternalDocumentID | 10_1007_s43069_024_00337_5 |
| GroupedDBID | 0R~ 2JN 406 AACDK AAJBT AASML AATNV AAUYE ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACPIV ACZOJ AEFQL AEMSY AESKC AFBBN AGMZJ AGQEE AGRTI AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW EBLON FIGPU GGCAI IKXTQ IWAJR JZLTJ LLZTM NPVJJ PT4 ROL RSV SJYHP SNE SOJ AAYXX ABAKF ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- KOV PHGZM PHGZT PQBIZ PQBZA PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2915-55eeef7aa8c7444b02872e4bb23d1e0bd0f5f22cd141bdd24746684c285d78e43 |
| IEDL.DBID | RSV |
| ISSN | 2662-2556 |
| IngestDate | Wed Nov 05 06:51:39 EST 2025 Sat Nov 29 04:00:21 EST 2025 Tue Nov 18 22:08:48 EST 2025 Fri Feb 21 02:37:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Deep learning Computer vision High-precision cylindrical parts Image processing Optical illumination Anomaly detection Defect detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2915-55eeef7aa8c7444b02872e4bb23d1e0bd0f5f22cd141bdd24746684c285d78e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3074248307 |
| PQPubID | 6623304 |
| ParticipantIDs | proquest_journals_3074248307 crossref_citationtrail_10_1007_s43069_024_00337_5 crossref_primary_10_1007_s43069_024_00337_5 springer_journals_10_1007_s43069_024_00337_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Aachen |
| PublicationTitle | Operations Research Forum |
| PublicationTitleAbbrev | Oper. Res. Forum |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Albeanu, Soucy, Sato, Meister, Murthy (CR58) 2008; 3 CR163 CR160 Luan, Cui, Sun, Lin (CR143) 2020; 2020 CR161 Steger, Ulrich (CR72) 2022; 64 Yuting, Hongxing (CR134) 2023; 53 CR159 CR157 CR155 CR156 CR154 Rasheed, Zafar, Rasheed, Ali, Sajid, Dar, Habib, Shehryar, Mahmood (CR5) 2020; 2020 Rogalski (CR62) 2011; 54 Carrera, Manganini, Boracchi, Lanzarone (CR194) 2016; 13 Krizhevsky, Sutskever, Hinton (CR11) 2017; 60 Nagata, Tokuno, Nakashima, Otsuka, Ikeda, Ochi, Watanabe, Habib (CR110) 2019; 2019 Li, Zhang, Wang, Xiong, Zhao, Li, Li (CR209) 2023; 80 Deitsch, Christlein, Berger, Buerhop-Lutz, Maier, Gallwitz, Riess (CR105) 2019; 185 CR172 CR170 Jiang, Li, Zhang, Wang, Liu (CR6) 2021; 14 CR168 CR169 Song, Yan (CR182) 2013; 285 CR166 Shamkhalichenar, Bueche, Choi (CR57) 2020; 10 CR165 Liu, Huang, Shao, Hao (CR201) 2022; 12 Huang, Qiu, Yuan (CR191) 2020; 36 Freund, Schapire (CR34) 1997; 55 Felzenszwalb, Girshick, McAllester, Ramanan (CR93) 2009; 32 Malisiewicz, Gupta, Efros (CR95) 2011; 2011 CR140 CR138 CR135 Xu, Zhong, Luo, Weng, Zhou (CR141) 2022; 10 Xu, Arai, Tokuda, Kosuge (CR190) 2020; 8 Moreno, Avendaño-Alejo, Tzonchev (CR55) 2006; 45 Lowe (CR107) 1999; 2 CR151 CR152 CR150 Zhong, Zheng, Kang, Li, Yang (CR206) 2020; 34 CR149 CR147 CR144 Braun, Heeger (CR60) 1991; 58 Bertinetto, Valmadre, Henriques, Vedaldi, Torr (CR142) 2016; 14 Fuoco, Moreira (CR80) 2010; 4 Hao, Lu, Cheng, Li, Huang (CR23) 2021; 32 Yu, Wu, Gu (CR24) 2017; 11 CR115 CR116 CR113 Viola, Jones (CR92) 2004; 57 He, Zhang, Ren, Sun (CR122) 2015; 37 Xue-Wu, Yan-Qiong, Yan-Yun, Ai-Ye, Rui-Yu (CR33) 2011; 38 Ma, Qi, Wu, Yang, Li, Zhong (CR66) 2023; 10 Dworkin, Nye (CR68) 2006; 174 CR118 Tsai, Wu, Li (CR83) 2012; 99 Wu, Zhou (CR103) 2021; 2021 Chandola, Banerjee, Kumar (CR18) 2009; 41 Mehta, Patel, Mehta (CR67) 2015; 2015 Liu, Zhou, Kuang, Cao, Gao (CR85) 2010; 41 CR126 CR127 CR124 CR125 Xu, Wang, Duan, Yu, Liu (CR59) 2021; 11 CR123 CR120 CR121 Dong, Song, He, Xu, Yan, Meng (CR44) 2019; 16 Principi, Rossetti, Squartini, Piazza (CR164) 2019; 6 Liu, Xu, Xu (CR54) 2019; 9 CR128 Li, Wang, Ji (CR130) 2019; 2019 Otsu (CR117) 1979; 9 Yang, Wu, Feng (CR174) 2023; 119 Lee, Kim, Kim (CR3) 2021; 19 CR19 CR17 CR16 Yuan, Yan, Zhu, Hu, Li, Liu, Zhang (CR26) 2022; 195 Zhang, Zhang, Hu, Ju (CR129) 2020; 2020 CR14 Tabernik, Šela, Skvarč, Skočaj (CR183) 2020; 31 CR13 Tao, Zhu, Jiang, Liu, Liu (CR133) 2022; 22 CR214 Connolly (CR64) 2008; 28 CR212 CR213 CR210 CR211 Xiangdong, Yilong, Ziqin, Deyong (CR86) 2017; 38 Zhong, Zhang, Chen (CR56) 2014; 7 CR218 CR219 CR216 CR217 Wang, Xu, Yan, Wang, Wang (CR40) 2023; 211 Saberironaghi, Ren, El-Gindy (CR48) 2023; 16 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (CR181) 2014; 13 CR27 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR148) 2017; 40 Bergmann, Batzner, Fauser, Sattlegger, Steger (CR185) 2022; 130 Czimmermann, Ciuti, Milazzo, Chiurazzi, Roccella, Oddo, Dario (CR15) 2020; 20 CR22 Ding, Dai, Li, Liu (CR197) 2019; 4 CR20 CR102 Li, Huang, Xie, Yao, Chen (CR137) 2018; 8 Chaurasia, Culurciello (CR153) 2017; 2017 Li, Quan, Wang (CR88) 2020; 56 CR100 Pang, Shen, Cao, Hengel (CR21) 2022; 54 CR101 CR109 Yan, Qi, Zhao, Cheng, Qi (CR79) 2014; 448 CR106 Badrinarayanan, Kendall, Cipolla (CR145) 2017; 39 He, Shi, Malik, Li (CR167) 2022; 52 Chattopadhay, Sarkar, Howlader, Balasubramanian (CR175) 2018; 2018 CR39 Wang, Qu, Zhao (CR51) 2009; 24 CR38 CR37 CR36 CR35 CR32 CR31 Di, Ke, Peng, Dongdong (CR173) 2019; 117 Konovalenko, Maruschak, Brezinová, Prentkovskis, Brezina (CR114) 2022; 10 Tao, Zhang, Wang, Liu, Zhang, Xu (CR193) 2018; 50 Steger, Ulrich (CR71) 2021; 129 Lv, Duan, Jiang, Fu, Gan (CR189) 2020; 20 CR49 Sun, Yuan, Zhao (CR70) 2019; 16 Dong, Li, Ren, Fan, Zhao (CR29) 2020; 168 CR46 Felzenszwalb, McAllester, Ramanan (CR94) 2008; 2008 CR203 CR204 CR41 Eslami, Yun (CR112) 2021; 21 CR200 Rocha, Peretta, Lima, Marques, Yamanaka (CR65) 2016; 45 Mery, Riffo, Zscherpel, Mondragón, Lillo, Zuccar, Lobel, Carrasco (CR195) 2015; 34 Li, Wang, Tian, Ding (CR52) 2015; 149 CR207 CR208 CR205 Zhang, Yang, Song, Li, Liu (CR73) 2019; 51 Qiu, Gao, Xia, Lo, Grundy, Wang (CR47) 2021; 48 Shafi, Mazahir, Fatima, Ashraf (CR136) 2022; 202 Al-Mallahi, Kataoka, Okamoto, Shibata (CR63) 2010; 105 Bay, Ess, Tuytelaars, Van Gool (CR108) 2008; 110 Yun, Shin, Koo, Kim, Lee, Lee (CR45) 2020; 55 CR61 Perez-Cortes, Perez, Saez-Barona, Guardiola, Salvador (CR75) 2018; 18 Chertov, Gorbunova, Korotaev, Peretyagin (CR53) 2014; 9190 Ren, Tian, Hong, Dong, Xing, Qin (CR87) 2019; 196 Hansen, Alismail, Rander, Browning (CR78) 2015; 34 Cioffi, Travaglioni, Piscitelli, Petrillo, De Felice (CR1) 2020; 12 Xie, Liu, Na, Luo, Wang, Leng (CR202) 2021; 9 Li, Tian, Liu, Liu, Shi (CR50) 2022; 12 CR76 CR74 Zhao, Xu, Qi, Liu, Zhang (CR119) 2016; 2016 CR199 CR198 Bao, Wu, Dai, Zhao, Wei (CR77) 2022; 36 Zhu, Wang, Fan (CR158) 2022; 12 Yang, Cui, Yu, Yuan (CR192) 2021; 35 CR2 Mohammadi, Mahmoud, Elbestawi (CR162) 2021; 143 Tong, Yu, Tian, Ge, Wang (CR4) 2022; 16 Behrendt, Buchta, Adolph, Lutz, Scherer, Blättermann (CR84) 2023; 12618 Xie, Li, Xu, Yu, Wang (CR111) 2019; 16 CR7 CR9 Wang, Fu, Gao (CR90) 2019; 51 Nehir, Frank, Aßmann, Achterberg (CR69) 2019; 19 CR89 Ye, Ma, Zhou, Arola, Zhang (CR131) 2019; 135 Schlegl, Seeböck, Waldstein, Langs, Schmidt-Erfurth (CR171) 2019; 54 Chow, Tang, Solihin, Gowdh, Ramli, Rahmat (CR12) 2023; 4 Hong, Zhang, Katz, Agapiou (CR82) 2012; 62 Hu, Wang (CR132) 2020; 8 Ronneberger, Fischer, Brox (CR146) 2015; 18 CR99 CR98 CR97 CR96 CR177 CR178 CR176 Tsai, Huang (CR91) 2018; 9 Zhang, Yan, Hong, Xie, Zhou, Ran (CR139) 2023; 30 Peiner, Balke, Doering (CR28) 2008; 8 Zuo, Wang (CR30) 2016; 52 Benmoussat, Spinnler, Guillaume (CR42) 2012; 2012 Deng, Dong, Socher, Li, Li, Fei-Fei (CR179) 2009; 2009 Qi, Xu, Zhang, Liu, Dai (CR8) 2022; 15 CR196 Ortiz, Rodriguez, Coronado (CR81) 2013; 35 Byun, Baek (CR104) 2021; 22 CR188 Božič, Tabernik, Skočaj (CR184) 2021; 129 CR186 CR187 Khatyreva, Kuntz, Schmid-Schirling, Brox, Carl (CR43) 2023; 12623 Zheng, Zheng, Kong, Chen (CR10) 2021; 113 Everingham, Van Gool, Williams, Winn, Zisserman (CR180) 2010; 88 Sleeman, Kapoor, Ghosh (CR215) 2022; 55 Zhou, Ai, Qu, Shao (CR25) 2021; 32 A Rogalski (337_CR62) 2011; 54 337_CR118 X Lv (337_CR189) 2020; 20 Z Yu (337_CR24) 2017; 11 I Konovalenko (337_CR114) 2022; 10 F Qiu (337_CR47) 2021; 48 B Sun (337_CR70) 2019; 16 F Nagata (337_CR110) 2019; 2019 337_CR76 337_CR127 B Hu (337_CR132) 2020; 8 R Fuoco (337_CR80) 2010; 4 337_CR126 337_CR74 337_CR125 337_CR124 337_CR123 337_CR121 337_CR120 R Ding (337_CR197) 2019; 4 337_CR109 337_CR106 H Shamkhalichenar (337_CR57) 2020; 10 337_CR116 337_CR115 337_CR113 I Shafi (337_CR136) 2022; 202 337_CR61 C Luan (337_CR143) 2020; 2020 M Yang (337_CR174) 2023; 119 Y Jiang (337_CR6) 2021; 14 337_CR219 337_CR218 337_CR217 337_CR216 D Tabernik (337_CR183) 2020; 31 H Di (337_CR173) 2019; 117 B Zuo (337_CR30) 2016; 52 AN Chertov (337_CR53) 2014; 9190 P Hansen (337_CR78) 2015; 34 Z Xue-Wu (337_CR33) 2011; 38 Y Huang (337_CR191) 2020; 36 S Yuan (337_CR26) 2022; 195 337_CR102 337_CR101 337_CR100 K Li (337_CR130) 2019; 2019 T Schlegl (337_CR171) 2019; 54 337_CR208 JL Wang (337_CR51) 2009; 24 337_CR207 337_CR205 L-C Chen (337_CR148) 2017; 40 M Benmoussat (337_CR42) 2012; 2012 Q Xie (337_CR111) 2019; 16 Y Xu (337_CR59) 2021; 11 337_CR49 C Steger (337_CR71) 2021; 129 H Bay (337_CR108) 2008; 110 J Wang (337_CR90) 2019; 51 A Zhou (337_CR25) 2021; 32 337_CR46 S Deitsch (337_CR105) 2019; 185 Y Dong (337_CR29) 2020; 168 337_CR214 337_CR41 337_CR213 337_CR212 337_CR211 337_CR210 D Yang (337_CR192) 2021; 35 Z Zhong (337_CR206) 2020; 34 V Behrendt (337_CR84) 2023; 12618 Z Zhao (337_CR119) 2016; 2016 A Saberironaghi (337_CR48) 2023; 16 L He (337_CR167) 2022; 52 337_CR38 337_CR39 X Zhang (337_CR129) 2020; 2020 J Tao (337_CR133) 2022; 22 337_CR36 337_CR37 337_CR35 337_CR32 337_CR204 337_CR203 337_CR31 J-C Perez-Cortes (337_CR75) 2018; 18 337_CR200 AF Ortiz (337_CR81) 2013; 35 Y Li (337_CR52) 2015; 149 H Ren (337_CR87) 2019; 196 O Ronneberger (337_CR146) 2015; 18 337_CR27 337_CR22 I Moreno (337_CR55) 2006; 45 337_CR20 C Steger (337_CR72) 2022; 64 J Božič (337_CR184) 2021; 129 J Li (337_CR88) 2020; 56 SB Dworkin (337_CR68) 2006; 174 DG Lowe (337_CR107) 1999; 2 M Everingham (337_CR180) 2010; 88 337_CR19 337_CR16 337_CR17 Y Li (337_CR137) 2018; 8 337_CR14 K Song (337_CR182) 2013; 285 337_CR13 A Rasheed (337_CR5) 2020; 2020 LS Chow (337_CR12) 2023; 4 G Pang (337_CR21) 2022; 54 JH Lee (337_CR3) 2021; 19 M Nehir (337_CR69) 2019; 19 H Dong (337_CR44) 2019; 16 Y Liu (337_CR54) 2019; 9 R Hao (337_CR23) 2021; 32 X Xie (337_CR202) 2021; 9 S Mehta (337_CR67) 2015; 2015 DF Albeanu (337_CR58) 2008; 3 Y Xu (337_CR190) 2020; 8 K He (337_CR122) 2015; 37 S Yuting (337_CR134) 2023; 53 D Braun (337_CR60) 1991; 58 D-M Tsai (337_CR83) 2012; 99 Z Li (337_CR50) 2022; 12 Y Byun (337_CR104) 2021; 22 337_CR2 E Hong (337_CR82) 2012; 62 E Principi (337_CR164) 2019; 6 337_CR196 H Rocha (337_CR65) 2016; 45 D-M Tsai (337_CR91) 2018; 9 337_CR199 337_CR198 Q Zhong (337_CR56) 2014; 7 W Xu (337_CR141) 2022; 10 B Zhang (337_CR73) 2019; 51 R Cioffi (337_CR1) 2020; 12 Y Freund (337_CR34) 1997; 55 T-Y Lin (337_CR181) 2014; 13 MG Mohammadi (337_CR162) 2021; 143 337_CR7 337_CR9 J Wang (337_CR40) 2023; 211 D Carrera (337_CR194) 2016; 13 337_CR188 337_CR187 P Bergmann (337_CR185) 2022; 130 337_CR186 WC Sleeman IV (337_CR215) 2022; 55 H Liu (337_CR85) 2010; 41 J Deng (337_CR179) 2009; 2009 PF Felzenszwalb (337_CR93) 2009; 32 N Otsu (337_CR117) 1979; 9 337_CR172 P Felzenszwalb (337_CR94) 2008; 2008 337_CR170 C Connolly (337_CR64) 2008; 28 Y Ye (337_CR131) 2019; 135 337_CR178 A Chaurasia (337_CR153) 2017; 2017 337_CR177 337_CR176 X Zheng (337_CR10) 2021; 113 JP Yun (337_CR45) 2020; 55 A Chattopadhay (337_CR175) 2018; 2018 V Chandola (337_CR18) 2009; 41 V Badrinarayanan (337_CR145) 2017; 39 J Qi (337_CR8) 2022; 15 X Ma (337_CR66) 2023; 10 D Mery (337_CR195) 2015; 34 P Viola (337_CR92) 2004; 57 L Bertinetto (337_CR142) 2016; 14 337_CR163 X Tao (337_CR193) 2018; 50 337_CR161 337_CR160 337_CR169 337_CR168 L Zhang (337_CR139) 2023; 30 337_CR166 337_CR165 H Zhu (337_CR158) 2022; 12 E Peiner (337_CR28) 2008; 8 A Krizhevsky (337_CR11) 2017; 60 Q Liu (337_CR201) 2022; 12 337_CR152 337_CR151 337_CR150 A Al-Mallahi (337_CR63) 2010; 105 H Wu (337_CR103) 2021; 2021 337_CR159 E Eslami (337_CR112) 2021; 21 337_CR157 337_CR156 337_CR155 337_CR154 T Czimmermann (337_CR15) 2020; 20 X Tong (337_CR4) 2022; 16 T Malisiewicz (337_CR95) 2011; 2011 337_CR140 337_CR98 337_CR149 337_CR99 337_CR96 337_CR147 Y Bao (337_CR77) 2022; 36 337_CR97 337_CR144 S Yan (337_CR79) 2014; 448 337_CR128 A Khatyreva (337_CR43) 2023; 12623 GAO Xiangdong (337_CR86) 2017; 38 337_CR89 337_CR138 337_CR135 W Li (337_CR209) 2023; 80 |
| References_xml | – ident: CR150 – volume: 20 start-page: 1562 issue: 6 year: 2020 ident: CR189 article-title: Deep metallic surface defect detection: the new benchmark and detection network publication-title: Sensors doi: 10.3390/s20061562 – ident: CR22 – ident: CR97 – ident: CR196 – ident: CR74 – volume: 14 start-page: 810 year: 2021 end-page: 820 ident: CR6 article-title: Surface defect detection of high precision cylindrical metal parts based on machine vision. Intelligent Robotics and Applications: 14th International Conference, ICIRA 2021, Yantai, China, October 22–25, 2021 publication-title: Proceedings, Part II – volume: 12 start-page: 492 issue: 2 year: 2020 ident: CR1 article-title: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions publication-title: Sustainability doi: 10.3390/su12020492 – ident: CR39 – ident: CR16 – ident: CR115 – volume: 22 start-page: 8693 issue: 9 year: 2022 end-page: 8700 ident: CR133 article-title: Rolling surface defect inspection for drum-shaped rollers based on deep learning publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3159743 – ident: CR138 – volume: 34 start-page: 532 issue: 4–5 year: 2015 end-page: 558 ident: CR78 article-title: Visual mapping for natural gas pipe inspection publication-title: Int J Robot Res doi: 10.1177/0278364914550133 – volume: 4 start-page: 19 year: 2010 end-page: 32 ident: CR80 article-title: Fatigue cracks in aluminum cylinder heads for diesel engines publication-title: Int J Metalcast doi: 10.1007/BF03355500 – volume: 48 start-page: 5068 issue: 12 year: 2021 end-page: 5086 ident: CR47 article-title: Deep just-in-time defect localization publication-title: IEEE Trans Software Eng – volume: 39 start-page: 2481 issue: 12 year: 2017 end-page: 2495 ident: CR145 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2644615 – volume: 19 start-page: 2833 issue: 12 year: 2019 ident: CR69 article-title: Improving optical measurements: non-linearity compensation of compact charge-coupled device (CCD) spectrometers publication-title: Sensors doi: 10.3390/s19122833 – ident: CR121 – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: CR180 article-title: The Pascal visual object classes (VOC) challenge publication-title: Int J Comput Vision doi: 10.1007/s11263-009-0275-4 – volume: 10 start-page: 327 issue: 5 year: 2022 ident: CR114 article-title: Research of U-Net-based CNN architectures for metal surface defect detection publication-title: Machines doi: 10.3390/machines10050327 – volume: 64 start-page: 105 issue: 2 year: 2022 end-page: 130 ident: CR72 article-title: A multi-view camera model for line-scan cameras with telecentric lenses publication-title: J Math Imaging Vis doi: 10.1007/s10851-021-01055-x – ident: CR144 – volume: 8 start-page: 1960 issue: 12 year: 2008 end-page: 1967 ident: CR28 article-title: Slender tactile sensor for contour and roughness measurements within deep and narrow holes publication-title: IEEE Sens J doi: 10.1109/JSEN.2008.2006701 – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 ident: CR34 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: CR178 – volume: 130 start-page: 947 issue: 4 year: 2022 end-page: 969 ident: CR185 article-title: Beyond dents and scratches: logical constraints in unsupervised anomaly detection and localization publication-title: Int J Comput Vision doi: 10.1007/s11263-022-01578-9 – volume: 9 start-page: 154292 year: 2021 end-page: 154303 ident: CR202 article-title: DPiT: detecting defects of photovoltaic solar cells with image transformers publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3119631 – volume: 45 start-page: 208 year: 2016 end-page: 222 ident: CR65 article-title: Exterior lighting computer-automated design based on multi-criteria parallel evolutionary algorithm: optimized designs for illumination quality and energy efficiency publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.09.046 – ident: CR218 – volume: 38 start-page: 1 issue: 7 year: 2017 end-page: 4 ident: CR86 article-title: Fractal feature detection of high-strength steel weld defects by magneto optical imaging publication-title: China Weld – volume: 12 start-page: 6633 issue: 13 year: 2022 ident: CR158 article-title: IA-Mask R-CNN: improved anchor design mask R-CNN for surface defect detection of automotive engine parts publication-title: Appl Sci doi: 10.3390/app12136633 – volume: 16 start-page: 1836 issue: 4 year: 2019 end-page: 1847 ident: CR111 article-title: Automatic detection and classification of sewer defects via hierarchical deep learning publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2019.2900170 – ident: CR109 – volume: 143 year: 2021 ident: CR162 article-title: On the application of machine learning for defect detection in L-PBF additive manufacturing publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2021.107338 – ident: CR126 – volume: 8 start-page: 108335 year: 2020 end-page: 108345 ident: CR132 article-title: Detection of PCB surface defects with improved faster-RCNN and feature pyramid network publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3001349 – volume: 129 year: 2021 ident: CR184 article-title: Mixed supervision for surface-defect detection: from weakly to fully supervised learning publication-title: Comput Ind doi: 10.1016/j.compind.2021.103459 – ident: CR207 – volume: 41 start-page: 1 issue: 3 year: 2009 end-page: 58 ident: CR18 article-title: Anomaly detection: a survey publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1541880.1541882 – ident: CR213 – ident: CR156 – volume: 6 start-page: 441 issue: 2 year: 2019 end-page: 451 ident: CR164 article-title: Unsupervised electric motor fault detection by using deep autoencoders publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2019.1911393 – volume: 185 start-page: 455 year: 2019 end-page: 468 ident: CR105 article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images publication-title: Sol Energy doi: 10.1016/j.solener.2019.02.067 – volume: 9 start-page: 163 issue: 1 year: 2018 end-page: 172 ident: CR91 article-title: Defect detection in electronic surfaces using template-based Fourier image reconstruction publication-title: IEEE Transactions on Components, Packaging and Manufacturing Technology doi: 10.1109/TCPMT.2018.2873744 – volume: 2017 start-page: 1 year: 2017 end-page: 4 ident: CR153 article-title: LinkNet: exploiting encoder representations for efficient semantic segmentation publication-title: IEEE Visual Communications and Image Processing (VCIP) – ident: CR27 – volume: 2011 start-page: 89 year: 2011 end-page: 96 ident: CR95 article-title: Ensemble of exemplar-SVMS for object detection and beyond publication-title: International Conference on Computer Vision – volume: 2016 start-page: 3187 year: 2016 end-page: 3194 ident: CR119 article-title: Multi-patch deep features for power line insulator status classification from aerial images publication-title: International Joint Conference on Neural Networks (IJCNN) doi: 10.1109/IJCNN.2016.7727606 – volume: 53 start-page: 9188 issue: 8 year: 2023 end-page: 9203 ident: CR134 article-title: A deep learning based dislocation detection method for cylindrical silicon growth process publication-title: Appl Intell doi: 10.1007/s10489-022-03800-0 – ident: CR38 – volume: 30 start-page: 949 issue: 5 year: 2023 end-page: 959 ident: CR139 article-title: An improved defect recognition framework for casting based on DETR algorithm publication-title: J Iron Steel Res Int doi: 10.1007/s42243-023-00920-w – volume: 8 start-page: 1678 issue: 9 year: 2018 ident: CR137 article-title: Research on a surface defect detection algorithm based on MobileNet-SSD publication-title: Appl Sci doi: 10.3390/app8091678 – volume: 2020 start-page: 778 year: 2020 end-page: 782 ident: CR143 article-title: A Siamese network utilizing image structural differences for cross-category defect detection publication-title: IEEE International Conference on Image Processing (ICIP) – ident: CR151 – volume: 13 start-page: 740 year: 2014 end-page: 755 ident: CR181 article-title: Microsoft COCO: common objects in context. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014 publication-title: Proceedings, Part V – volume: 2 start-page: 1150 year: 1999 end-page: 1157 ident: CR107 article-title: Object recognition from local scale-invariant features publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision doi: 10.1109/ICCV.1999.790410 – volume: 13 start-page: 551 issue: 2 year: 2016 end-page: 561 ident: CR194 article-title: Defect detection in SEM images of nanofibrous materials publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2016.2641472 – volume: 149 start-page: 736 year: 2015 end-page: 751 ident: CR52 article-title: A survey of recent advances in visual feature detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.003 – volume: 9 start-page: 4222 issue: 20 year: 2019 ident: CR54 article-title: An improved MB-LBP defect recognition approach for the surface of steel plates publication-title: Appl Sci doi: 10.3390/app9204222 – ident: CR120 – volume: 32 start-page: 1627 issue: 9 year: 2009 end-page: 1645 ident: CR93 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.167 – ident: CR177 – ident: CR49 – volume: 54 start-page: 136 issue: 3 year: 2011 end-page: 154 ident: CR62 article-title: Recent progress in infrared detector technologies publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2010.12.003 – volume: 2021 start-page: 1 year: 2021 end-page: 8 ident: CR103 article-title: Using convolution neural network for defective image classification of industrial components publication-title: Mob Inf Syst – volume: 16 start-page: 7448 issue: 12 year: 2019 end-page: 7458 ident: CR44 article-title: PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2958826 – volume: 16 start-page: 4038 issue: 6 year: 2019 end-page: 4048 ident: CR70 article-title: A hybrid demosaicking algorithm for area scan industrial camera based on fuzzy edge strength and residual interpolation publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2959069 – volume: 12618 start-page: 414 year: 2023 end-page: 421 ident: CR84 article-title: In-line fluorescence detector for production control in robot-driven environments publication-title: Optical Measurement Systems for Industrial Inspection XIII – volume: 52 start-page: 256 issue: 3 year: 2016 end-page: 260 ident: CR30 article-title: Surface cutting defect detection of magnet using Fourier image reconstruction publication-title: Comput Eng Appl – ident: CR154 – volume: 117 start-page: 40 year: 2019 end-page: 48 ident: CR173 article-title: Surface defect classification of steels with a new semi-supervised learning method publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.01.011 – ident: CR219 – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 ident: CR122 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – volume: 62 start-page: 221 year: 2012 end-page: 229 ident: CR82 article-title: Non-contact inspection of internal threads of machined parts publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-011-3793-5 – volume: 36 start-page: 4353 issue: 9 year: 2022 end-page: 4361 ident: CR77 article-title: Research on surface image acquisition system of train bearing cylindrical roller publication-title: J Mech Sci Technol doi: 10.1007/s12206-022-0602-z – volume: 54 start-page: 30 year: 2019 end-page: 44 ident: CR171 article-title: F-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks publication-title: Med Image Anal doi: 10.1016/j.media.2019.01.010 – volume: 129 start-page: 80 issue: 1 year: 2021 end-page: 99 ident: CR71 article-title: A camera model for line-scan cameras with telecentric lenses publication-title: Int J Comput Vision doi: 10.1007/s11263-020-01358-3 – ident: CR208 – volume: 58 start-page: 1982 issue: 18 year: 1991 end-page: 1984 ident: CR60 article-title: Visible light emission from semiconducting polymer diodes publication-title: Appl Phys Lett doi: 10.1063/1.105039 – ident: CR116 – volume: 34 start-page: 42 issue: 4 year: 2015 ident: CR195 article-title: GDXray: the database of X-ray images for nondestructive testing publication-title: J Nondestr Eval doi: 10.1007/s10921-015-0315-7 – ident: CR32 – volume: 4 start-page: 110 issue: 2 year: 2019 end-page: 116 ident: CR197 article-title: TDD-Net: a tiny defect detection network for printed circuit boards publication-title: CAAI Transactions on Intelligence Technology doi: 10.1049/trit.2019.0019 – volume: 54 start-page: 1 issue: 2 year: 2022 end-page: 38 ident: CR21 article-title: Deep learning for anomaly detection: a review publication-title: ACM Comput Surv doi: 10.1145/3439950 – volume: 211 year: 2023 ident: CR40 article-title: Defect transformer: an efficient hybrid transformer architecture for surface defect detection publication-title: Measurement doi: 10.1016/j.measurement.2023.112614 – volume: 2020 start-page: 1 year: 2020 end-page: 24 ident: CR5 article-title: Fabric defect detection using computer vision techniques: a comprehensive review publication-title: Math Probl Eng doi: 10.1155/2020/8189403 – ident: CR214 – ident: CR99 – ident: CR160 – volume: 18 start-page: 234 year: 2015 end-page: 241 ident: CR146 article-title: U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015 publication-title: Proceedings, Part III – volume: 2018 start-page: 839 year: 2018 end-page: 847 ident: CR175 article-title: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV) doi: 10.1109/WACV.2018.00097 – ident: CR203 – ident: CR14 – ident: CR2 – ident: CR37 – volume: 19 start-page: 3503 year: 2021 end-page: 3510 ident: CR3 article-title: Machine learning-based automatic optical inspection system with multimodal optical image fusion network publication-title: Int J Control Autom Syst doi: 10.1007/s12555-020-0118-1 – ident: CR188 – ident: CR98 – ident: CR127 – ident: CR161 – ident: CR149 – volume: 56 start-page: 191 year: 2020 end-page: 198 ident: CR88 article-title: Research on defect detection algorithm of ceramic tile surface with multi-feature fusion publication-title: Comput Eng Appl – volume: 41 start-page: 171 issue: 2–3 year: 2010 end-page: 177 ident: CR85 article-title: Defect detection of IC wafer based on two-dimension wavelet transform publication-title: Microelectron J doi: 10.1016/j.mejo.2010.01.015 – volume: 135 start-page: 400 year: 2019 end-page: 405 ident: CR131 article-title: An automated shearography system for cylindrical surface inspection publication-title: Measurement doi: 10.1016/j.measurement.2018.11.085 – volume: 2019 start-page: 656 year: 2019 end-page: 661 ident: CR130 article-title: Application of multi-scale feature fusion and deep learning in detection of steel strip surface defect publication-title: International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM) – ident: CR155 – volume: 12623 start-page: 101 year: 2023 end-page: 114 ident: CR43 article-title: Unsupervised anomaly detection for industrial manufacturing using multiple perspectives of free falling parts publication-title: Automated Visual Inspection and Machine Vision V – ident: CR31 – ident: CR172 – ident: CR7 – ident: CR76 – ident: CR166 – ident: CR20 – volume: 10 start-page: 159 issue: 11 year: 2020 ident: CR57 article-title: Printed circuit board (PCB) technology for electrochemical sensors and sensing platforms publication-title: Biosensors doi: 10.3390/bios10110159 – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR11 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun ACM doi: 10.1145/3065386 – volume: 196 start-page: 428 year: 2019 end-page: 436 ident: CR87 article-title: Visualized investigation of defect in cementitious materials with electrical resistance tomography publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.11.129 – volume: 9190 start-page: 204 year: 2014 end-page: 212 ident: CR53 article-title: Solution of multi-element LED light sources development automation problem publication-title: Thirteenth International Conference on Solid State Lighting – volume: 32 start-page: 1833 year: 2021 end-page: 1843 ident: CR23 article-title: A steel surface defect inspection approach towards smart industrial monitoring publication-title: J Intell Manuf doi: 10.1007/s10845-020-01670-2 – volume: 18 start-page: 2993 issue: 9 year: 2018 ident: CR75 article-title: A system for in-line 3D inspection without hidden surfaces publication-title: Sensors doi: 10.3390/s18092993 – ident: CR135 – volume: 448 start-page: 3702 year: 2014 end-page: 3708 ident: CR79 article-title: Multiple crack detection of pipes using PZT-based guided waves publication-title: Appl Mech Mater – ident: CR106 – volume: 2008 start-page: 1 year: 2008 end-page: 8 ident: CR94 article-title: A discriminatively trained, multiscale, deformable part model publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 38 start-page: 5930 issue: 5 year: 2011 end-page: 5939 ident: CR33 article-title: A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.11.030 – volume: 57 start-page: 137 year: 2004 end-page: 154 ident: CR92 article-title: Robust real-time face detection publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000013087.49260.fb – ident: CR101 – ident: CR19 – ident: CR199 – ident: CR204 – ident: CR210 – volume: 2020 start-page: 403 year: 2020 end-page: 407 ident: CR129 article-title: Insulator defect detection based on YOLO and SPP-Net publication-title: International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE) – ident: CR170 – ident: CR36 – volume: 285 start-page: 858 year: 2013 end-page: 864 ident: CR182 article-title: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2013.09.002 – volume: 51 start-page: 11 issue: 4 year: 2019 end-page: 15 ident: CR73 article-title: Detection of tiny cylindrical end face defects based on double structure light publication-title: J Zhengzhou Univ(Nat Sci Ed) – volume: 16 start-page: 1 year: 2022 end-page: 12 ident: CR4 article-title: Improving accuracy of automatic optical inspection with machine learning publication-title: Front Comp Sci – volume: 110 start-page: 346 issue: 3 year: 2008 end-page: 359 ident: CR108 article-title: Speeded-up robust features (SURF) publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.09.014 – volume: 35 start-page: 686 year: 2013 end-page: 691 ident: CR81 article-title: Failure analysis of the engine cylinder of a training aircraft publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2013.06.010 – volume: 55 start-page: 317 year: 2020 end-page: 324 ident: CR45 article-title: Automated defect inspection system for metal surfaces based on deep learning and data augmentation publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.03.009 – volume: 34 start-page: 13001 issue: 07 year: 2020 end-page: 13008 ident: CR206 article-title: Random erasing data augmentation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v34i07.7000 – ident: CR147 – ident: CR198 – ident: CR100 – volume: 168 year: 2020 ident: CR29 article-title: Laser-assisted cyclic chipless splitting for hard-to-cut thick wall tubes and fatigue fracture mechanism analysis publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105308 – volume: 32 issue: 6 year: 2021 ident: CR25 article-title: Defect detection for highly reflective rotary surfaces: an overview publication-title: Meas Sci Technol doi: 10.1088/1361-6501/abd579 – ident: CR89 – volume: 119 year: 2023 ident: CR174 article-title: MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105835 – volume: 21 start-page: 5137 issue: 15 year: 2021 ident: CR112 article-title: Attention-based multi-scale convolutional neural network (A+ MCNN) for multi-class classification in road images publication-title: Sensors doi: 10.3390/s21155137 – volume: 2012 start-page: 228 year: 2012 end-page: 233 ident: CR42 article-title: Surface defect detection of metal parts: use of multimodal illuminations and hyperspectral imaging algorithms publication-title: IEEE International Conference on Imaging Systems and Techniques Proceedings doi: 10.1109/IST.2012.6295527 – volume: 36 start-page: 85 year: 2020 end-page: 96 ident: CR191 article-title: Surface defect saliency of magnetic tile publication-title: Vis Comput doi: 10.1007/s00371-018-1588-5 – volume: 31 start-page: 759 issue: 3 year: 2020 end-page: 776 ident: CR183 article-title: Segmentation-based deep-learning approach for surface-defect detection publication-title: J Intell Manuf doi: 10.1007/s10845-019-01476-x – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 ident: CR117 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – volume: 14 start-page: 850 year: 2016 end-page: 865 ident: CR142 article-title: Fully-convolutional Siamese networks for object tracking. Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8–10 and 15–16, 2016 publication-title: Proceedings, Part II – ident: CR165 – ident: CR123 – volume: 55 start-page: 1 issue: 7 year: 2022 end-page: 31 ident: CR215 article-title: Multimodal classification: current landscape, taxonomy and future directions publication-title: ACM Comput Surv doi: 10.1145/3543848 – volume: 8 start-page: 70262 year: 2020 end-page: 70269 ident: CR190 article-title: A convolutional neural network for point cloud instance segmentation in cluttered scene trained by synthetic data without color publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978506 – ident: CR176 – ident: CR13 – volume: 99 start-page: 250 year: 2012 end-page: 262 ident: CR83 article-title: Defect detection of solar cells in electroluminescence images using Fourier image reconstruction publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2011.12.007 – ident: CR187 – ident: CR159 – ident: CR41 – ident: CR216 – ident: CR128 – ident: CR125 – ident: CR102 – volume: 10 start-page: 404 issue: 4 year: 2023 ident: CR66 article-title: Image contrast enhancement by using LED annular oblique illumination in bright-field microscopy publication-title: Photonics doi: 10.3390/photonics10040404 – ident: CR205 – volume: 113 start-page: 35 year: 2021 end-page: 58 ident: CR10 article-title: Recent advances in surface defect inspection of industrial products using deep learning techniques publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-021-06592-8 – ident: CR211 – volume: 12 start-page: 834 issue: 2 year: 2022 ident: CR50 article-title: A two-stage industrial defect detection framework based on improved-yolov5 and optimized-inception-resnetv2 models publication-title: Appl Sci doi: 10.3390/app12020834 – volume: 24 start-page: 1 issue: 4 year: 2009 end-page: 5 ident: CR51 article-title: Design of lighting system in multi vision detection publication-title: Electro-Optic Technology Application – volume: 51 start-page: 52 year: 2019 end-page: 60 ident: CR90 article-title: Machine vision intelligence for product defect inspection based on deep learning and Hough transform publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.03.002 – ident: CR186 – volume: 105 start-page: 257 issue: 2 year: 2010 end-page: 265 ident: CR63 article-title: Detection of potato tubers using an ultraviolet imaging-based machine vision system publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2009.11.004 – ident: CR35 – volume: 3 issue: 5 year: 2008 ident: CR58 article-title: LED arrays as cost effective and efficient light sources for widefield microscopy publication-title: PLoS ONE doi: 10.1371/journal.pone.0002146 – volume: 195 year: 2022 ident: CR26 article-title: High dynamic online detection method for surface defects of small diameter reflective inner wall publication-title: Measurement doi: 10.1016/j.measurement.2022.111138 – ident: CR61 – volume: 11 start-page: 417 year: 2017 end-page: 426 ident: CR24 article-title: Fully convolutional networks for surface defect inspection in industrial environment. Computer Vision Systems: 11th International Conference, ICVS 2017, Shenzhen, China, July 10–13, 2017 publication-title: Revised Selected Papers – ident: CR140 – ident: CR163 – volume: 10 start-page: 928162 year: 2022 ident: CR141 article-title: End-to-end insulator string defect detection in a complex background based on a deep learning model publication-title: Front Energy Res doi: 10.3389/fenrg.2022.928162 – ident: CR46 – volume: 2015 start-page: 0291 year: 2015 end-page: 0294 ident: CR67 article-title: CCD or CMOS image sensor for photography publication-title: International Conference on Communications and Signal Processing (ICCSP) – volume: 35 start-page: 1237 issue: 15 year: 2021 end-page: 1249 ident: CR192 article-title: Deep learning based steel pipe weld defect detection publication-title: Appl Artif Intell doi: 10.1080/08839514.2021.1975391 – volume: 28 start-page: 194 issue: 3 year: 2008 end-page: 198 ident: CR64 article-title: X-ray systems for security and industrial inspection publication-title: Sens Rev doi: 10.1108/02602280810882535 – ident: CR96 – ident: CR157 – ident: CR9 – ident: CR200 – volume: 16 start-page: 95 issue: 2 year: 2023 ident: CR48 article-title: Defect detection methods for industrial products using deep learning techniques: a review publication-title: Algorithms doi: 10.3390/a16020095 – volume: 202 year: 2022 ident: CR136 article-title: Internal defects detection and classification in hollow cylindrical surfaces using single shot detection and MobileNet publication-title: Measurement doi: 10.1016/j.measurement.2022.111836 – volume: 20 start-page: 1459 issue: 5 year: 2020 ident: CR15 article-title: Visual-based defect detection and classification approaches for industrial applications—a survey publication-title: Sensors doi: 10.3390/s20051459 – ident: CR168 – volume: 2019 start-page: 970 year: 2019 end-page: 975 ident: CR110 article-title: Fusion method of convolutional neural network and support vector machine for high accuracy anomaly detection publication-title: IEEE International Conference on Mechatronics and Automation (ICMA) doi: 10.1109/ICMA.2019.8816454 – volume: 15 start-page: 7543 issue: 21 year: 2022 ident: CR8 article-title: Defect detection of pipeline inner surface based on coaxial digital image correlation with hypercentric lens publication-title: Materials doi: 10.3390/ma15217543 – volume: 12 start-page: 10689 issue: 1 year: 2022 ident: CR201 article-title: Industrial cylinder liner defect detection using a transformer with a block division and mask mechanism publication-title: Sci Rep doi: 10.1038/s41598-022-14971-8 – ident: CR152 – ident: CR113 – volume: 80 start-page: 102470 year: 2023 ident: CR209 article-title: Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2022.102470 – ident: CR217 – volume: 2009 start-page: 248 year: 2009 end-page: 255 ident: CR179 article-title: ImageNet: a large-scale hierarchical image database publication-title: IEEE Conference on Computer Vision and Pattern Recognition – ident: CR169 – volume: 11 start-page: 8945 issue: 19 year: 2021 ident: CR59 article-title: Copper strip surface defect detection model based on deep convolutional neural network publication-title: Appl Sci doi: 10.3390/app11198945 – volume: 45 start-page: 2265 issue: 10 year: 2006 end-page: 2272 ident: CR55 article-title: Designing light-emitting diode arrays for uniform near-field irradiance publication-title: Appl Opt doi: 10.1364/AO.45.002265 – ident: CR124 – volume: 52 start-page: 2051 issue: 2 year: 2022 end-page: 2069 ident: CR167 article-title: Unsupervised defect inspection algorithm based on cascaded GAN with edge repair feature fusion publication-title: Appl Intell doi: 10.1007/s10489-021-02556-3 – volume: 22 start-page: 1681 year: 2021 end-page: 1691 ident: CR104 article-title: Pattern classification for small-sized defects using multi-head CNN in semiconductor manufacturing publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-021-00566-2 – volume: 40 start-page: 834 issue: 4 year: 2017 end-page: 848 ident: CR148 article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – ident: CR212 – volume: 4 start-page: 141 issue: 2 year: 2023 ident: CR12 article-title: Quantitative and qualitative analysis of 18 deep convolutional neural network (CNN) models with transfer learning to diagnose COVID-19 on Chest X-ray (CXR) Images publication-title: SN Comput Sci doi: 10.1007/s42979-022-01545-8 – ident: CR17 – ident: CR118 – volume: 7 start-page: 216 year: 2014 end-page: 225 ident: CR56 article-title: A fast coplanarity inspection system for double-sides IC leads using single viewpoint. Intelligent Robotics and Applications: 7th International Conference, ICIRA 2014, Guangzhou, China, December 17–20, 2014 publication-title: Proceedings, Part II – volume: 174 start-page: 1 issue: 1–3 year: 2006 end-page: 6 ident: CR68 article-title: Image processing for machine vision measurement of hot formed parts publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.10.019 – volume: 50 start-page: 1486 issue: 4 year: 2018 end-page: 1498 ident: CR193 article-title: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2018.2871750 – ident: 337_CR76 doi: 10.1109/ICCVW60793.2023.00106 – volume: 22 start-page: 1681 year: 2021 ident: 337_CR104 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-021-00566-2 – volume: 149 start-page: 736 year: 2015 ident: 337_CR52 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.003 – volume: 9 start-page: 154292 year: 2021 ident: 337_CR202 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3119631 – volume: 88 start-page: 303 year: 2010 ident: 337_CR180 publication-title: Int J Comput Vision doi: 10.1007/s11263-009-0275-4 – volume: 2020 start-page: 778 year: 2020 ident: 337_CR143 publication-title: IEEE International Conference on Image Processing (ICIP) – volume: 105 start-page: 257 issue: 2 year: 2010 ident: 337_CR63 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2009.11.004 – volume: 3 issue: 5 year: 2008 ident: 337_CR58 publication-title: PLoS ONE doi: 10.1371/journal.pone.0002146 – ident: 337_CR14 doi: 10.1007/978-981-19-8703-8_6 – volume: 448 start-page: 3702 year: 2014 ident: 337_CR79 publication-title: Appl Mech Mater – ident: 337_CR123 doi: 10.1109/ICCV.2015.169 – ident: 337_CR138 – volume: 36 start-page: 4353 issue: 9 year: 2022 ident: 337_CR77 publication-title: J Mech Sci Technol doi: 10.1007/s12206-022-0602-z – ident: 337_CR149 – volume: 51 start-page: 11 issue: 4 year: 2019 ident: 337_CR73 publication-title: J Zhengzhou Univ(Nat Sci Ed) – volume: 41 start-page: 171 issue: 2–3 year: 2010 ident: 337_CR85 publication-title: Microelectron J doi: 10.1016/j.mejo.2010.01.015 – volume: 2020 start-page: 403 year: 2020 ident: 337_CR129 publication-title: International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE) – volume: 10 start-page: 159 issue: 11 year: 2020 ident: 337_CR57 publication-title: Biosensors doi: 10.3390/bios10110159 – ident: 337_CR121 doi: 10.1109/CVPR.2014.81 – volume: 2019 start-page: 970 year: 2019 ident: 337_CR110 publication-title: IEEE International Conference on Mechatronics and Automation (ICMA) doi: 10.1109/ICMA.2019.8816454 – volume: 36 start-page: 85 year: 2020 ident: 337_CR191 publication-title: Vis Comput doi: 10.1007/s00371-018-1588-5 – ident: 337_CR200 – ident: 337_CR217 – ident: 337_CR74 doi: 10.3390/s22249646 – ident: 337_CR32 doi: 10.1109/CVPR.2005.177 – volume: 11 start-page: 417 year: 2017 ident: 337_CR24 publication-title: Revised Selected Papers – ident: 337_CR106 doi: 10.1007/978-3-642-33783-3_16 – ident: 337_CR186 doi: 10.1109/ISIE45552.2021.9576231 – volume: 4 start-page: 110 issue: 2 year: 2019 ident: 337_CR197 publication-title: CAAI Transactions on Intelligence Technology doi: 10.1049/trit.2019.0019 – volume: 2016 start-page: 3187 year: 2016 ident: 337_CR119 publication-title: International Joint Conference on Neural Networks (IJCNN) doi: 10.1109/IJCNN.2016.7727606 – ident: 337_CR196 doi: 10.1109/MVA.2015.7153209 – volume: 50 start-page: 1486 issue: 4 year: 2018 ident: 337_CR193 publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2018.2871750 – volume: 117 start-page: 40 year: 2019 ident: 337_CR173 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.01.011 – volume: 11 start-page: 8945 issue: 19 year: 2021 ident: 337_CR59 publication-title: Appl Sci doi: 10.3390/app11198945 – volume: 12 start-page: 834 issue: 2 year: 2022 ident: 337_CR50 publication-title: Appl Sci doi: 10.3390/app12020834 – ident: 337_CR61 – ident: 337_CR98 doi: 10.1109/CVPR.2016.90 – ident: 337_CR38 – volume: 38 start-page: 1 issue: 7 year: 2017 ident: 337_CR86 publication-title: China Weld – volume: 2009 start-page: 248 year: 2009 ident: 337_CR179 publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 52 start-page: 2051 issue: 2 year: 2022 ident: 337_CR167 publication-title: Appl Intell doi: 10.1007/s10489-021-02556-3 – ident: 337_CR187 doi: 10.1007/978-3-031-20056-4_23 – volume: 168 year: 2020 ident: 337_CR29 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105308 – volume: 32 issue: 6 year: 2021 ident: 337_CR25 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/abd579 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 337_CR34 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: 337_CR41 doi: 10.1007/978-3-319-46448-0_2 – volume: 48 start-page: 5068 issue: 12 year: 2021 ident: 337_CR47 publication-title: IEEE Trans Software Eng – ident: 337_CR49 – volume: 22 start-page: 8693 issue: 9 year: 2022 ident: 337_CR133 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3159743 – ident: 337_CR168 – ident: 337_CR213 doi: 10.1109/ICCV.2019.00467 – volume: 56 start-page: 191 year: 2020 ident: 337_CR88 publication-title: Comput Eng Appl – volume: 2021 start-page: 1 year: 2021 ident: 337_CR103 publication-title: Mob Inf Syst – ident: 337_CR160 – volume: 34 start-page: 532 issue: 4–5 year: 2015 ident: 337_CR78 publication-title: Int J Robot Res doi: 10.1177/0278364914550133 – ident: 337_CR219 – volume: 8 start-page: 1960 issue: 12 year: 2008 ident: 337_CR28 publication-title: IEEE Sens J doi: 10.1109/JSEN.2008.2006701 – ident: 337_CR100 doi: 10.1109/CVPR.2018.00745 – volume: 58 start-page: 1982 issue: 18 year: 1991 ident: 337_CR60 publication-title: Appl Phys Lett doi: 10.1063/1.105039 – volume: 31 start-page: 759 issue: 3 year: 2020 ident: 337_CR183 publication-title: J Intell Manuf doi: 10.1007/s10845-019-01476-x – ident: 337_CR115 doi: 10.1109/ICCV.2017.74 – ident: 337_CR102 – volume: 55 start-page: 317 year: 2020 ident: 337_CR45 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.03.009 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 337_CR145 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2644615 – ident: 337_CR27 doi: 10.1007/s13369-023-08483-4 – volume: 10 start-page: 327 issue: 5 year: 2022 ident: 337_CR114 publication-title: Machines doi: 10.3390/machines10050327 – volume: 62 start-page: 221 year: 2012 ident: 337_CR82 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-011-3793-5 – ident: 337_CR127 doi: 10.1109/ICCV.2019.00667 – ident: 337_CR150 doi: 10.1007/978-3-030-01234-2_49 – ident: 337_CR207 doi: 10.1109/ICCV.2019.00612 – ident: 337_CR163 – ident: 337_CR120 doi: 10.1007/978-3-030-58452-8_13 – ident: 337_CR169 doi: 10.1007/978-3-319-59050-9_12 – volume: 99 start-page: 250 year: 2012 ident: 337_CR83 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2011.12.007 – ident: 337_CR165 doi: 10.1109/ICTEmSys.2019.8695928 – volume: 32 start-page: 1627 issue: 9 year: 2009 ident: 337_CR93 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.167 – volume: 24 start-page: 1 issue: 4 year: 2009 ident: 337_CR51 publication-title: Electro-Optic Technology Application – volume: 12618 start-page: 414 year: 2023 ident: 337_CR84 publication-title: Optical Measurement Systems for Industrial Inspection XIII – volume: 15 start-page: 7543 issue: 21 year: 2022 ident: 337_CR8 publication-title: Materials doi: 10.3390/ma15217543 – volume: 16 start-page: 4038 issue: 6 year: 2019 ident: 337_CR70 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2959069 – volume: 21 start-page: 5137 issue: 15 year: 2021 ident: 337_CR112 publication-title: Sensors doi: 10.3390/s21155137 – ident: 337_CR39 doi: 10.1109/CVPR52729.2023.00721 – volume: 185 start-page: 455 year: 2019 ident: 337_CR105 publication-title: Sol Energy doi: 10.1016/j.solener.2019.02.067 – ident: 337_CR118 doi: 10.1109/TII.2023.3234030 – ident: 337_CR154 doi: 10.1109/CVPR.2017.549 – ident: 337_CR2 doi: 10.1007/s10479-024-06012-6 – volume: 57 start-page: 137 year: 2004 ident: 337_CR92 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000013087.49260.fb – ident: 337_CR155 doi: 10.1109/CVPR.2017.660 – volume: 54 start-page: 136 issue: 3 year: 2011 ident: 337_CR62 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2010.12.003 – volume: 8 start-page: 1678 issue: 9 year: 2018 ident: 337_CR137 publication-title: Appl Sci doi: 10.3390/app8091678 – ident: 337_CR178 doi: 10.1007/978-3-030-58520-4_29 – volume: 80 start-page: 102470 year: 2023 ident: 337_CR209 publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2022.102470 – volume: 16 start-page: 7448 issue: 12 year: 2019 ident: 337_CR44 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2958826 – ident: 337_CR151 doi: 10.1109/CVPRW.2017.156 – ident: 337_CR198 – ident: 337_CR96 – volume: 174 start-page: 1 issue: 1–3 year: 2006 ident: 337_CR68 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.10.019 – ident: 337_CR125 doi: 10.1109/ICCV.2017.324 – volume: 64 start-page: 105 issue: 2 year: 2022 ident: 337_CR72 publication-title: J Math Imaging Vis doi: 10.1007/s10851-021-01055-x – ident: 337_CR46 doi: 10.1109/TSM.2023.3278036 – volume: 211 year: 2023 ident: 337_CR40 publication-title: Measurement doi: 10.1016/j.measurement.2023.112614 – volume: 2018 start-page: 839 year: 2018 ident: 337_CR175 publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV) doi: 10.1109/WACV.2018.00097 – ident: 337_CR218 – volume: 10 start-page: 404 issue: 4 year: 2023 ident: 337_CR66 publication-title: Photonics doi: 10.3390/photonics10040404 – volume: 28 start-page: 194 issue: 3 year: 2008 ident: 337_CR64 publication-title: Sens Rev doi: 10.1108/02602280810882535 – volume: 119 year: 2023 ident: 337_CR174 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105835 – ident: 337_CR177 doi: 10.1109/ICCV.2017.244 – volume: 12 start-page: 10689 issue: 1 year: 2022 ident: 337_CR201 publication-title: Sci Rep doi: 10.1038/s41598-022-14971-8 – volume: 2011 start-page: 89 year: 2011 ident: 337_CR95 publication-title: International Conference on Computer Vision – ident: 337_CR144 doi: 10.1109/CVPR.2015.7298965 – volume: 8 start-page: 70262 year: 2020 ident: 337_CR190 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978506 – ident: 337_CR147 – ident: 337_CR135 doi: 10.1109/CVPR.2018.00913 – ident: 337_CR9 doi: 10.1109/CVPR46437.2021.00681 – ident: 337_CR170 – volume: 16 start-page: 95 issue: 2 year: 2023 ident: 337_CR48 publication-title: Algorithms doi: 10.3390/a16020095 – volume: 285 start-page: 858 year: 2013 ident: 337_CR182 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2013.09.002 – volume: 30 start-page: 949 issue: 5 year: 2023 ident: 337_CR139 publication-title: J Iron Steel Res Int doi: 10.1007/s42243-023-00920-w – volume: 18 start-page: 234 year: 2015 ident: 337_CR146 publication-title: Proceedings, Part III – volume: 51 start-page: 52 year: 2019 ident: 337_CR90 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.03.002 – ident: 337_CR176 doi: 10.1109/COASE.2019.8843204 – volume: 2012 start-page: 228 year: 2012 ident: 337_CR42 publication-title: IEEE International Conference on Imaging Systems and Techniques Proceedings doi: 10.1109/IST.2012.6295527 – volume: 20 start-page: 1562 issue: 6 year: 2020 ident: 337_CR189 publication-title: Sensors doi: 10.3390/s20061562 – volume: 2019 start-page: 656 year: 2019 ident: 337_CR130 publication-title: International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM) – volume: 54 start-page: 30 year: 2019 ident: 337_CR171 publication-title: Med Image Anal doi: 10.1016/j.media.2019.01.010 – volume: 12 start-page: 6633 issue: 13 year: 2022 ident: 337_CR158 publication-title: Appl Sci doi: 10.3390/app12136633 – ident: 337_CR36 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 337_CR18 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1541880.1541882 – volume: 9190 start-page: 204 year: 2014 ident: 337_CR53 publication-title: Thirteenth International Conference on Solid State Lighting – ident: 337_CR13 doi: 10.1007/978-981-16-8690-0_99 – volume: 12 start-page: 492 issue: 2 year: 2020 ident: 337_CR1 publication-title: Sustainability doi: 10.3390/su12020492 – volume: 135 start-page: 400 year: 2019 ident: 337_CR131 publication-title: Measurement doi: 10.1016/j.measurement.2018.11.085 – ident: 337_CR89 doi: 10.1109/IAEAC.2018.8577881 – ident: 337_CR35 – ident: 337_CR17 doi: 10.1145/3394486.3406704 – volume: 129 year: 2021 ident: 337_CR184 publication-title: Comput Ind doi: 10.1016/j.compind.2021.103459 – ident: 337_CR22 doi: 10.1109/CVPR.2019.00982 – volume: 129 start-page: 80 issue: 1 year: 2021 ident: 337_CR71 publication-title: Int J Comput Vision doi: 10.1007/s11263-020-01358-3 – volume: 10 start-page: 928162 year: 2022 ident: 337_CR141 publication-title: Front Energy Res doi: 10.3389/fenrg.2022.928162 – ident: 337_CR152 – volume: 34 start-page: 42 issue: 4 year: 2015 ident: 337_CR195 publication-title: J Nondestr Eval doi: 10.1007/s10921-015-0315-7 – ident: 337_CR159 doi: 10.1117/12.2622550 – ident: 337_CR211 doi: 10.1007/978-3-030-01424-7_58 – volume: 19 start-page: 2833 issue: 12 year: 2019 ident: 337_CR69 publication-title: Sensors doi: 10.3390/s19122833 – ident: 337_CR140 doi: 10.1016/j.compind.2023.103990 – volume: 202 year: 2022 ident: 337_CR136 publication-title: Measurement doi: 10.1016/j.measurement.2022.111836 – volume: 34 start-page: 13001 issue: 07 year: 2020 ident: 337_CR206 publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v34i07.7000 – ident: 337_CR113 doi: 10.1007/978-981-15-3250-4_2 – ident: 337_CR116 doi: 10.1109/CVPR.2016.319 – ident: 337_CR203 – ident: 337_CR31 doi: 10.1109/CVPR.2001.990517 – volume: 45 start-page: 208 year: 2016 ident: 337_CR65 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.09.046 – ident: 337_CR188 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 337_CR11 publication-title: Commun ACM doi: 10.1145/3065386 – ident: 337_CR212 doi: 10.1109/CVPR.2017.241 – ident: 337_CR97 doi: 10.1109/CVPR.2015.7298594 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 337_CR117 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – volume: 4 start-page: 141 issue: 2 year: 2023 ident: 337_CR12 publication-title: SN Comput Sci doi: 10.1007/s42979-022-01545-8 – ident: 337_CR124 doi: 10.1109/CVPR.2017.106 – volume: 130 start-page: 947 issue: 4 year: 2022 ident: 337_CR185 publication-title: Int J Comput Vision doi: 10.1007/s11263-022-01578-9 – ident: 337_CR208 – ident: 337_CR199 – volume: 19 start-page: 3503 year: 2021 ident: 337_CR3 publication-title: Int J Control Autom Syst doi: 10.1007/s12555-020-0118-1 – volume: 14 start-page: 810 year: 2021 ident: 337_CR6 publication-title: Proceedings, Part II – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 337_CR122 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: 337_CR16 doi: 10.1109/ACCESS.2020.3010274 – volume: 13 start-page: 551 issue: 2 year: 2016 ident: 337_CR194 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2016.2641472 – volume: 4 start-page: 19 year: 2010 ident: 337_CR80 publication-title: Int J Metalcast doi: 10.1007/BF03355500 – ident: 337_CR205 – volume: 13 start-page: 740 year: 2014 ident: 337_CR181 publication-title: Proceedings, Part V – volume: 45 start-page: 2265 issue: 10 year: 2006 ident: 337_CR55 publication-title: Appl Opt doi: 10.1364/AO.45.002265 – volume: 9 start-page: 4222 issue: 20 year: 2019 ident: 337_CR54 publication-title: Appl Sci doi: 10.3390/app9204222 – ident: 337_CR216 – volume: 110 start-page: 346 issue: 3 year: 2008 ident: 337_CR108 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.09.014 – ident: 337_CR214 doi: 10.1007/s10845-020-01710-x – volume: 55 start-page: 1 issue: 7 year: 2022 ident: 337_CR215 publication-title: ACM Comput Surv doi: 10.1145/3543848 – volume: 2017 start-page: 1 year: 2017 ident: 337_CR153 publication-title: IEEE Visual Communications and Image Processing (VCIP) – volume: 143 year: 2021 ident: 337_CR162 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2021.107338 – volume: 6 start-page: 441 issue: 2 year: 2019 ident: 337_CR164 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2019.1911393 – volume: 195 year: 2022 ident: 337_CR26 publication-title: Measurement doi: 10.1016/j.measurement.2022.111138 – ident: 337_CR19 – volume: 7 start-page: 216 year: 2014 ident: 337_CR56 publication-title: Proceedings, Part II – volume: 18 start-page: 2993 issue: 9 year: 2018 ident: 337_CR75 publication-title: Sensors doi: 10.3390/s18092993 – volume: 54 start-page: 1 issue: 2 year: 2022 ident: 337_CR21 publication-title: ACM Comput Surv doi: 10.1145/3439950 – ident: 337_CR37 doi: 10.1109/CVPR.2016.91 – ident: 337_CR128 doi: 10.1109/ICCV48922.2021.00986 – volume: 113 start-page: 35 year: 2021 ident: 337_CR10 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-021-06592-8 – volume: 14 start-page: 850 year: 2016 ident: 337_CR142 publication-title: Proceedings, Part II – volume: 32 start-page: 1833 year: 2021 ident: 337_CR23 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01670-2 – volume: 52 start-page: 256 issue: 3 year: 2016 ident: 337_CR30 publication-title: Comput Eng Appl – ident: 337_CR157 doi: 10.1109/ICCV.2017.322 – ident: 337_CR172 – ident: 337_CR166 doi: 10.1109/ICASSP.2018.8462364 – volume: 35 start-page: 1237 issue: 15 year: 2021 ident: 337_CR192 publication-title: Appl Artif Intell doi: 10.1080/08839514.2021.1975391 – ident: 337_CR109 doi: 10.23919/ICACT.2018.8323641 – volume: 20 start-page: 1459 issue: 5 year: 2020 ident: 337_CR15 publication-title: Sensors doi: 10.3390/s20051459 – ident: 337_CR99 doi: 10.1109/CVPR.2017.243 – volume: 12623 start-page: 101 year: 2023 ident: 337_CR43 publication-title: Automated Visual Inspection and Machine Vision V – ident: 337_CR161 – volume: 9 start-page: 163 issue: 1 year: 2018 ident: 337_CR91 publication-title: IEEE Transactions on Components, Packaging and Manufacturing Technology doi: 10.1109/TCPMT.2018.2873744 – volume: 2 start-page: 1150 year: 1999 ident: 337_CR107 publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision doi: 10.1109/ICCV.1999.790410 – ident: 337_CR7 doi: 10.21203/rs.3.rs-598050/v1 – volume: 35 start-page: 686 year: 2013 ident: 337_CR81 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2013.06.010 – volume: 196 start-page: 428 year: 2019 ident: 337_CR87 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.11.129 – volume: 53 start-page: 9188 issue: 8 year: 2023 ident: 337_CR134 publication-title: Appl Intell doi: 10.1007/s10489-022-03800-0 – ident: 337_CR20 doi: 10.1109/TSM.2023.3265987 – volume: 38 start-page: 5930 issue: 5 year: 2011 ident: 337_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.11.030 – ident: 337_CR156 doi: 10.24251/HICSS.2022.146 – volume: 16 start-page: 1 year: 2022 ident: 337_CR4 publication-title: Front Comp Sci – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 337_CR148 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – volume: 2008 start-page: 1 year: 2008 ident: 337_CR94 publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 8 start-page: 108335 year: 2020 ident: 337_CR132 publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3001349 – ident: 337_CR210 – ident: 337_CR101 doi: 10.1109/CVPR.2018.00716 – ident: 337_CR204 – volume: 2015 start-page: 0291 year: 2015 ident: 337_CR67 publication-title: International Conference on Communications and Signal Processing (ICCSP) – volume: 16 start-page: 1836 issue: 4 year: 2019 ident: 337_CR111 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2019.2900170 – ident: 337_CR126 doi: 10.1007/978-3-030-01264-9_45 – volume: 2020 start-page: 1 year: 2020 ident: 337_CR5 publication-title: Math Probl Eng doi: 10.1155/2020/8189403 |
| SSID | ssj0003237433 |
| Score | 2.3247294 |
| SecondaryResourceType | review_article |
| Snippet | High-precision cylindrical parts are critical components across various industries including aerospace, automotive, and manufacturing. Since these parts play a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Aerospace industry Algorithms Applications of Mathematics Automation Business and Management Cameras Catastrophic wear Computer vision Corrosion Critical components Data acquisition Deep learning Defects Design Image acquisition Innovation and Infrastructure Machine learning Manufacturing Math Applications in Computer Science Mathematical and Computational Engineering Neural networks Operations Research/Decision Theory Optimization Performance degradation Quality control Review State-of-the-art reviews Surface defects Topical Collection on Math for SDG 9 - Industry Uniqueness |
| SummonAdditionalLinks | – databaseName: Computer Science Database (ProQuest) dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86PXjxAxWnU3LwpsE1SZfWi8zNIQhjoMJupflSYXaz7QT_e5M0W1FwF085pHmEvpe8l7yX3w-A87aSqVlIKWI64ojKQKFYhgxhS3ckOyYEiCqyCTYcRuNxPPIXboUvq1zsiW6jllNh78iviD3E0cg0N7MPZFmjbHbVU2isg40A48Da-QNDyzsWgolxkMS_lXEv5qgJkWNkHBOyLGYMhT_9UR1k_sqLOncz2PnvRHfBtg80YbeyjD2wprJ9UD7Oc50KBfvKlXGYtnS1WBmcatj7MjGndJgh0NZ_oFHuGXhgzfABR8bYCnhrvJ-Epqev1Ax6lNYX2J28mLmUr-_FNezCKvFwAJ4Hd0-9e-R5F5DAcRCiMFRKaZamkWCUUm5CEIYV5RwTo8s2l20daoyFDGjApcSU0U4nogJHoWSRouQQNLJppo4AJBxbEDWLIcOpToOYE6KEOdSIGEuhSRMEi7-fCA9KbrkxJskSTtlpLDFSEqexJGyCi-WYWQXJsfLr1kJNiV-eRVLrqAkuF4quu_-Wdrxa2gnYws62bA1aCzTKfK5Owab4LN-K_MwZ5zebSOmj priority: 102 providerName: ProQuest |
| Title | Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review |
| URI | https://link.springer.com/article/10.1007/s43069-024-00337-5 https://www.proquest.com/docview/3074248307 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2662-2556 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003237433 issn: 2662-2556 databaseCode: K7- dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2662-2556 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003237433 issn: 2662-2556 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2662-2556 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003237433 issn: 2662-2556 databaseCode: RSV dateStart: 20200301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7UevDiAxXro-TgTQPdJNtkvdVHEYRSWhVvy-axtVDbsrsK_nuTdLdFUUFPOeSxy0xmZ7Iz-T6A06bRiTWkBPNUSMx0YHCkQ46JozvSLRsCiDnZBO92xdNT1CsvheVVtXuVkvRf6sVlN2aj2whbn4IdARnH4SrUrLsTzhz7g8fFnxVKqHWLtLwh8_3Uz15oGVp-yYZ6J9PZ-t_rbcNmGVSi9nwX7MCKmexCMXjN0kQZdG18yYZtC193NUHTFF2924dojw-CXK0H7mUl2w5asnmgnt1YObq0nk4j23NtzAyViKxD1B4Pp9moeH7JL1AbzZMMe_DQubm_usUlxwJWJApCHIbGmJQniVCcMSZtuMGJYVISavXWlLqZhikhSgcskFoTxlmrJZgiItRcGEb3YW0ynZgDQFQSB5jm8GIkS5MgkpQaZQ8wKiJapbQOQSXzWJUA5I4HYxwvoJO9DGO7SuxlGId1OFvMmc3hN34dfVypMi5NMY-pO_0zYZs6nFeqW3b_vNrh34YfwQbx2nf1Z8ewVmSv5gTW1VsxyrMG1C5vur1-A1bvOG74DfsBha3iZw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqFQuFEQrFmjrA5yo1Y3trBMkhBYWBAJWq5ZK3NL4I4AEu8smgPhT_EbGTrKrIsGNAycfnIzi-I1n7BnPA1hrWpOiIqVUZpGiwgSWxiaUlDm6I9NCFyAqySZktxudncW9KXis78K4tMp6TfQLtRlod0b-i7tNnIiw2R7eUMca5aKrNYVGCYsj-3CPW7Z867CD87vO2P7e6e4BrVgFqGZxENIwtNZmMk0jLYUQCg2sZFYoxTh-aVOZZhZmjGkTiEAZw4QUrVYkNItCIyMrOMr9ADOCC4l6NbOz1-39Hp_qcMbRJPPqdo6_oyfQKY8pmkLqeNMkDf-3gBO39lkk1hu4_c_v7dfMw1zlSpN2if0FmLL9RSj-3I6yVFvSsT5RBdvCZ5v1ySAjuw_oVRtfFYW4DBfaG1UcQ2TCYUJ6qE452UH7bgj2dKwdkqoO7TlpX53j2IuL63yTtEkZWvkCf99koF9huj_o2yUgXDFXJs5VyVEiS4NYcW41btt0zIzOeAOCerYTXZVdd-wfV8m4YLRHSIJSEo-QJGzAxvidYVl05NWnV2tYJNUClCcTTDTgZw2sSffL0pZfl_YDPh2cnhwnx4fdoxWYZR7XLuNuFaaL0a39Bh_1XXGZj75XqkHg31tD7gnCEkev |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRbz4QMVq1Ry8abCbZJtdb7W1KEopVKW3ZfOqhbot263gvzfJblsVFcRTDnnsMjNhJsnM9wFwWlUyNhspRkwHHFHpKRRKnyFs6Y5kzYQAQU42wdrtoNcLOx-q-F22--xJMq9psChNSXYxlvpiXvhGTaQbIuNfkCUjY8hfBivUkgbZ83r3aX7LQjAxLpIU1TLfT_3skRZh5peXUedwWpv__9UtsFEEm7CeW8c2WFLJDsi601THQsGmcqkcps1cPlYCRxo23swHpcMNgTYHBHXSgoUHLlg-YMcY3AReGQ8ooelpKjWGBVJrH9aH_VE6yJ5fJpewDvPHh13w2Lp-aNyggnsBCRx6PvJ9pZRmcRwIRinlJgxhWFHOMTH6rHJZ1b7GWEiPelxKTBmt1QIqcOBLFihK9kApGSVqH0DCsQVSszgynOrYCzkhSpiDjQixFJqUgTeTfyQKYHLLjzGM5pDKToaRWSVyMoz8MjibzxnnsBy_jq7M1BoVW3QSEXsrQAPTlMH5TI2L7p9XO_jb8BOw1mm2ovvb9t0hWMfOEGyKWgWUsnSqjsCqeM0Gk_TYWe47gELrxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Defects+Detection+of+Cylindrical+High-Precision+Industrial+Parts+Based+on+Deep+Learning+Algorithms%3A+A+Review&rft.jtitle=Operations+Research+Forum&rft.au=Wei%2C+Li&rft.au=Solihin%2C+Mahmud+Iwan&rft.au=Saruchi%2C+Sarah+%E2%80%98Atifah&rft.au=Astuti%2C+Winda&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.eissn=2662-2556&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1007%2Fs43069-024-00337-5&rft.externalDocID=10_1007_s43069_024_00337_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon |