IMPROVING CAMERA POSE ESTIMATION USING SWARM PARTICLE ALGORITHMS

Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer vision that provides information about the relative...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International archives of the photogrammetry, remote sensing and spatial information sciences. Ročník XLVIII-M-3-2023; s. 87 - 93
Hlavní autoři: Elashry, A., Toth, C.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Gottingen Copernicus GmbH 05.09.2023
Copernicus Publications
Témata:
ISSN:2194-9034, 1682-1750, 2194-9034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer vision that provides information about the relative orientation between two images, including the rotation and translation, for calibrated cameras with a known camera matrix. To estimate the Essential matrix, the camera calibration matrices, which include focal length and principal point location must be known, and the estimation process typically requires at least five matching points and the use of robust algorithms, such as RANSAC to fit a model to the data as a robust estimator. From the usually large number of matched points, choosing five points, the Essential matrix can be determined based on a simple solution, which could be good or bad. Obtaining a globally optimal and accurate camera pose estimation, however, requires additional steps, such as using evolutionary algorithms (EA) or swarm algorithms (SA), to prevent getting trapped in local optima by searching for solutions within a potentially huge solution space.This paper aims to introduce an improved method for estimating the Essential matrix using swarm particle algorithms that are known to efficiently solve complex problems. Various optimization techniques, including EAs and SAs, such as Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), Improved Gray Wolf Optimization (IGWO), Genetic Algorithm (GA), Salp Swarm Algorithm (SSA) and Whale Optimization Algorithm (WOA), are explored to obtain the global minimum of the reprojection error for the five-point Essential matrix estimation based on using symmetric geometric error cost function. The experimental results on a dataset with known camera orientation demonstrate that the IGWO method has achieved the best score compared to other techniques and significantly speeds up the camera pose estimation for larger number of point pairs in contrast to traditional methods that use the collinearity equations in an iterative adjustment.
AbstractList Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer vision that provides information about the relative orientation between two images, including the rotation and translation, for calibrated cameras with a known camera matrix. To estimate the Essential matrix, the camera calibration matrices, which include focal length and principal point location must be known, and the estimation process typically requires at least five matching points and the use of robust algorithms, such as RANSAC to fit a model to the data as a robust estimator. From the usually large number of matched points, choosing five points, the Essential matrix can be determined based on a simple solution, which could be good or bad. Obtaining a globally optimal and accurate camera pose estimation, however, requires additional steps, such as using evolutionary algorithms (EA) or swarm algorithms (SA), to prevent getting trapped in local optima by searching for solutions within a potentially huge solution space.This paper aims to introduce an improved method for estimating the Essential matrix using swarm particle algorithms that are known to efficiently solve complex problems. Various optimization techniques, including EAs and SAs, such as Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), Improved Gray Wolf Optimization (IGWO), Genetic Algorithm (GA), Salp Swarm Algorithm (SSA) and Whale Optimization Algorithm (WOA), are explored to obtain the global minimum of the reprojection error for the five-point Essential matrix estimation based on using symmetric geometric error cost function. The experimental results on a dataset with known camera orientation demonstrate that the IGWO method has achieved the best score compared to other techniques and significantly speeds up the camera pose estimation for larger number of point pairs in contrast to traditional methods that use the collinearity equations in an iterative adjustment.
Author Elashry, A.
Toth, C.
Author_xml – sequence: 1
  givenname: A.
  surname: Elashry
  fullname: Elashry, A.
– sequence: 2
  givenname: C.
  surname: Toth
  fullname: Toth, C.
BookMark eNpNkd1O4zAQha0VKy2wvEOkvTaMf-Ikd0RVKJYSUiVZ4M5yHHtJBU2xAYm3J20B7dUZjc-c8eg7QUebaWMROidwHpOMX4xh6wPW3jyMbzbg-_JWSokrzDAFynCa7PUHOqazG2fA-NF_9S90FsIaAAgXIob4GF3KatXUt_JmGS3yqmjyaFW3RVS0nazyTtY30d9299je5U0VrfKmk4uyiPJyWTeyu67a3-in04_Bnn3qKequim5xjct6KRd5iQ3NCMMuEcxpw8Gl8x1COEEsNawfmB10n_HEGJdxk4E1Ynb0DEyf2p5nWoATmp0ieYgdJr1WWz8-af-uJj2qfWPy_5T2L6N5tGoeHZJEaBqnwPsY0njgQyKGhDgNlLo5688ha-un51cbXtR6evWb-feKpgIyBoSI2XV1cBk_heCt-95KQO1YqD0L9cVCHVioSjG1Y6DSZK_sA5EQf3E
ContentType Journal Article
Conference Proceeding
Copyright 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-archives-XLVIII-M-3-2023-87-2023
DatabaseName CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9034
EndPage 93
ExternalDocumentID oai_doaj_org_article_30cd776a25804b5085d4d76d71fa022f
10_5194_isprs_archives_XLVIII_M_3_2023_87_2023
GroupedDBID 8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TUS
7TN
ABUWG
AZQEC
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2913-f763fac40f851966f61e2c3bd3edab947ccf94c90ec6851b30cb8eb49a60f6a3
IEDL.DBID PIMPY
ISSN 2194-9034
1682-1750
IngestDate Fri Oct 03 12:52:30 EDT 2025
Fri Jul 25 10:29:24 EDT 2025
Sat Nov 29 04:07:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2913-f763fac40f851966f61e2c3bd3edab947ccf94c90ec6851b30cb8eb49a60f6a3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
OpenAccessLink https://www.proquest.com/publiccontent/docview/2860930116?pq-origsite=%requestingapplication%
PQID 2860930116
PQPubID 2037674
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_30cd776a25804b5085d4d76d71fa022f
proquest_journals_2860930116
crossref_primary_10_5194_isprs_archives_XLVIII_M_3_2023_87_2023
PublicationCentury 2000
PublicationDate 2023-09-05
PublicationDateYYYYMMDD 2023-09-05
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle International archives of the photogrammetry, remote sensing and spatial information sciences.
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001466505
Score 2.2840056
Snippet Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 87
SubjectTerms Algorithms
Cameras
Collinearity
Computer vision
Cost function
Estimation
Evolutionary algorithms
Genetic algorithms
Iterative methods
Navigation
Optimization techniques
Particle swarm optimization
Photogrammetry
Point pairs
Pose estimation
Principal point
Robustness
Solution space
Tracking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajlNEdRvejLGs7dNhVq2zLknVq05CmhjgJSUhzE5IsQS5pidv-_X2SndHSwy47CYSNzff03vueJL6H0G9rwGkk04RzzwlLPcRBGa7tOOdhOjEiKjGtxmIyKdZrOXvV6ivcCWvlgVvgLjJqayG4TvOCMgN0Iq9ZLXgtEq8h__gQfamQr4qpuLvCOFCPcH8x4UAhIUfSjwgq1T9AWNjFpnnYNUR30q5kPV6VZUkqkpHQTBwCRBzfZKoo6P8uXsckdHOMPnfsEffbv_6CPrjtV_RptWme2tnmG7oqq9l8uionIzwIogd9PJsuhni4WJZV3I_CodPGCC_u-vMKz4DPloPxEPfHo-m8XN5Wi-9oeTNcDm5J1yaB2FQmGfEQIry2jHpgTzJgnrjUZqbOXK2NZMJagN1K6iyHJwwgagpnmNSceq6zE3Swvd-6HwhDLaKDD1ObMaa9NCYXzFpKdc58Xhc9dLlHRD20YhgKioiAqYqYqj2mqsVUVSpTAUtViDj20HUA8u_bQdw6ToDJVWdy9S-T99DZ3gyq87hGpQWnMkQr_vN_fOMUHcW1EI6O8jN08Lh7cufo0D4_bprdr7jYXgCnctAO
  priority: 102
  providerName: Directory of Open Access Journals
Title IMPROVING CAMERA POSE ESTIMATION USING SWARM PARTICLE ALGORITHMS
URI https://www.proquest.com/docview/2860930116
https://doaj.org/article/30cd776a25804b5085d4d76d71fa022f
Volume XLVIII-M-3-2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: PCBAR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZbMkZ32a-OZmuDDrtq8Q9Ztk9dGtzUECcmDll2EpJsjUBJUjvd378nxWkYg552Esg22P6k7z09PX0Poa9KwqSJqSCMaUaop4EHY5O2U1Uaul0ZWiWm5SScTqPVKs7b49FNm1Z55ERL1Ae1Z5O3DSQ8KLfKRMwHXsRgKW42Ea53D8TUkDJ7rW1BjZeoa4S3aAd18zTLf55iLpSBQ2KyGl0GjiVYTuc1gvXrN3Bj6GDd7OqGiFbwlawmyzRNSUZ8YkqMA23Y9i_7ZWX-_2Fxa5pu3_7fj3qHzk9nAHH-ZN3eoxfV5gN6s1w3j-IeD-t98xF9h8-ez5bpdIxHRl9hiPNZkeCkWKSZDX1hU9RjjIsfw3mGc3Cd09EkwcPJeDZPF3dZcY4Wt8lidEfaigxEebHrEw1spIWijgZHLTbwupWnfFn6VSlkTEOlAGEVO5VicIf0HSWjStJYMEcz4X9Cnc12U10gDMseYejCUT6lQsdSBiFVynFEQHVQRj10ffzNfHfQ3eCwXjFAcQsUPwLFD0DxjPvcAMSj0LY9dGPQeXra6Gjbjm39i7fTksMLlmHIhBdEDpXgrAYlLUNWhq4W4N3oHro8Asfbyd3wE06fn7_8BZ3ZoWP2n4JL1NnXj9UVeqV-79dN3Ufdm2Saz_s2DNA3SadFvx2xfwC2v_GW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXcTjwmsRhQV8AG5m08RxkgOCbum20SZt1Ebd3izHiVEl1JakC-JH8R8ZZ5OtEBK3PXCy5MSJE3_-ZsYezwC8URlOmoBJyrnmlNkaeTAwbjtFobG6l3l1JKZF5E0m_nIZJAfwqz0LY9wqW06siTrfKLNGfmL7HI1vs23QeFCeFz9_oH1WfQg_42C-te2zYToY0yaFAFV20HOoxumjpWKWRs0iMP3pFbZystwpcpkFzFMKu6QCq1Ac78gcS2V-kbFAcktz6eBj322_UZOkymzmNhk7bsGhz7FxBw6TwWl_tl_UYRw1HuM22eOouaJotu4AGsjv8eXsZFVty4rKJqIsXUaLMAxpTB1qcpgjL9XlHwKyziPwl5ioZd_Zg__srz2Eo_0pRpJcy-dHcFCsH8P9xaq6lF9Jv9xVT-BTGCez6SKcjMjARIjok2Q6H5LhPA3jevGOmLQkIzK_6M9ikqDyHw6iIelHo-ksTMfx_AjSm_i0p9BZb9bFMyBouElDeJZyGJM6yDLXY0pZlnSZdnO_Cx_bcRTbq8ghAi0ugwRRI0G0SBBXSBCxcIRBgPC9uuzCqRn-69YmEnhdsSm_iIZYBHYw9zwubde3WIbqtpuz3OO519MS9TPdheMWGaKhp0rsYfH835dfw91xGkciCifnL-BejVOzm-YeQ2dXXhYv4bb6vltV5atmKhAQN4ys356DQAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=IMPROVING+CAMERA+POSE+ESTIMATION+USING+SWARM+PARTICLE+ALGORITHMS&rft.au=Elashry%2C+A&rft.au=Toth%2C+C&rft.date=2023-09-05&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVIII-M-3-2023&rft.spage=87&rft.epage=93&rft_id=info:doi/10.5194%2Fisprs-archives-XLVIII-M-3-2023-87-2023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon