Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment

The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve...

Full description

Saved in:
Bibliographic Details
Published in:Technological forecasting & social change Vol. 215; p. 124094
Main Authors: Sun, Weixin, Wang, Yong, Zhang, Li, Chen, Xihui Haviour, Hoang, Yen Hai
Format: Journal Article
Language:English
Published: Elsevier Inc 01.06.2025
Subjects:
ISSN:0040-1625
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve accuracy, stability, and interpretability, particularly during uncertainty shocks. To achieve this, several methodological innovations were implemented. First, news sentiment-based uncertainty indices were incorporated as candidate variables to capture uncertainty dynamics. Second, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO) was employed for efficient variable selection, mitigating the curse of dimensionality in small samples. Third, the multi-objective Lichtenberg algorithm (MOLA) was applied to optimize the prediction window size, ensuring model robustness. Additionally, a MOLA-based extreme gradient boosting (MOLA-XGBoost) model was developed to fine-tune hyperparameters across dimensions of prediction accuracy, stability, and directional consistency. Finally, SHapley Additive exPlanations (SHAP) theory was used to enhance model interpretability. This study forecasts China's economic cycle using multiple indicators, demonstrating that the proposed approach consistently delivers accurate and robust predictions even under uncertainty shocks. The findings highlight the crucial role of uncertainty indices in improving economic forecasts, offering new insights and methodologies for predictive modeling in volatile environments. [Display omitted] •Proposed MOLA-XGBoost model for economic cycle forecasting•Implemented intelligent selection for prediction window size and model parameters•Multiple uncertainty indices are used to improve prediction accuracy.•MOLA-XGBoost shows excellent predictive performance and robustness for economic cycle forecasting and is interpretable.
AbstractList The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve accuracy, stability, and interpretability, particularly during uncertainty shocks. To achieve this, several methodological innovations were implemented. First, news sentiment-based uncertainty indices were incorporated as candidate variables to capture uncertainty dynamics. Second, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO) was employed for efficient variable selection, mitigating the curse of dimensionality in small samples. Third, the multi-objective Lichtenberg algorithm (MOLA) was applied to optimize the prediction window size, ensuring model robustness. Additionally, a MOLA-based extreme gradient boosting (MOLA-XGBoost) model was developed to fine-tune hyperparameters across dimensions of prediction accuracy, stability, and directional consistency. Finally, SHapley Additive exPlanations (SHAP) theory was used to enhance model interpretability. This study forecasts China's economic cycle using multiple indicators, demonstrating that the proposed approach consistently delivers accurate and robust predictions even under uncertainty shocks. The findings highlight the crucial role of uncertainty indices in improving economic forecasts, offering new insights and methodologies for predictive modeling in volatile environments. [Display omitted] •Proposed MOLA-XGBoost model for economic cycle forecasting•Implemented intelligent selection for prediction window size and model parameters•Multiple uncertainty indices are used to improve prediction accuracy.•MOLA-XGBoost shows excellent predictive performance and robustness for economic cycle forecasting and is interpretable.
ArticleNumber 124094
Author Chen, Xihui Haviour
Sun, Weixin
Wang, Yong
Zhang, Li
Hoang, Yen Hai
Author_xml – sequence: 1
  givenname: Weixin
  surname: Sun
  fullname: Sun, Weixin
  email: sunweixin@stumail.dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 2
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: ywang@dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 3
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 4
  givenname: Xihui Haviour
  surname: Chen
  fullname: Chen, Xihui Haviour
  email: X.chen@keele.ac.uk
  organization: Keele Business School, Keele University, UK
– sequence: 5
  givenname: Yen Hai
  surname: Hoang
  fullname: Hoang, Yen Hai
  email: yenhh@ueh.edu.vn
  organization: School of Banking, University of Economics HCM City, Viet Nam
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMF2XrXEAlSVh1SJDawtZzyhrhK7sq2i_j2JChs23XgWvudq5izIzHmHhNxxlnPG6_t9nhB2nQ-YCyaqnIuSyXJG5oyVLOO1qK7JIsY9Y6wpVvWc2I3baQfWfVEE7_xggcIJeqRTCeiYpq9WRzTUO2pdwnAImHQ7RgYNO-uQ9qiDm3LaGerwO1KnQ9DJHpFGdMkO43NDrjrdR7z9nUvy-bz5WL9m2_eXt_XTNgMhWco6rLhYcdGIFipWF-1KNmVhKtAodCW14ViVBTDDa2haU4huTMpWyraUnFVYLMnDuReCjzFgp8CmcRfvUtC2V5ypSZXaqz9ValKlzqpGvP6HH4IddDhdBh_PII7HHS0GFcGiAzR2FJmU8fZSxQ9WQI5c
CitedBy_id crossref_primary_10_3390_info16090733
crossref_primary_10_1016_j_swevo_2025_101977
Cites_doi 10.1016/j.neucom.2023.126500
10.1016/j.frl.2022.103137
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.irfa.2024.103114
10.1016/j.econlet.2020.109072
10.1093/biomet/asp047
10.1257/jep.28.2.3
10.1016/j.jempfin.2017.01.001
10.1016/j.jimonfin.2023.102970
10.1016/j.frl.2023.104116
10.1002/for.2663
10.1016/j.techfore.2024.123723
10.1016/j.techfore.2024.123464
10.1016/j.jeca.2019.e00133
10.1002/for.2753
10.1016/j.ijforecast.2016.02.012
10.1016/j.eswa.2021.115939
10.1016/j.frl.2021.102273
10.1016/j.techfore.2024.123399
10.1016/j.techfore.2024.123344
10.1257/aer.p20151022
10.1016/j.techfore.2024.123740
10.1016/j.techfore.2024.123437
10.1016/j.eneco.2023.107268
10.1093/qje/qjw024
10.1016/j.jeconom.2005.03.003
10.1080/07350015.2012.747847
10.1016/j.techfore.2024.123874
10.1016/j.techfore.2024.123846
10.2307/1914213
10.1016/j.ribaf.2018.06.001
10.1016/S0304-3932(99)00027-6
10.1016/j.eneco.2023.107234
10.1016/j.techfore.2022.121810
10.1002/jae.3030
10.1007/s10479-024-06319-4
10.1016/j.techfore.2024.123701
10.1016/j.techfore.2023.122470
10.1002/for.2769
10.1002/jae.2910
10.1257/aer.20191823
10.1016/j.techfore.2023.122825
10.1016/j.ijforecast.2022.02.006
10.1016/j.jjie.2020.101104
10.1016/j.irfa.2024.103238
10.1257/jep.31.2.87
10.1016/j.econmod.2017.06.005
10.1016/j.jbankfin.2024.107187
10.1016/j.iref.2020.01.006
10.1016/j.jbankfin.2023.106929
10.1016/j.eneco.2023.106817
10.1016/j.frl.2019.01.011
10.1198/016214508000000337
10.1038/s42256-019-0048-x
10.1016/j.ejor.2017.11.054
10.1016/j.ijforecast.2018.10.008
10.1257/jep.28.2.29
10.1016/j.ijforecast.2022.04.008
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.techfore.2025.124094
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_techfore_2025_124094
S0040162525001258
GroupedDBID --K
--M
-~X
.~1
0R~
123
13V
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AADFP
AAEDT
AAEDW
AAFTH
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYOK
ABEFU
ABEHJ
ABFNM
ABJNI
ABKBG
ABMAC
ABMVD
ABOYX
ABPPZ
ABUCO
ABWVN
ABXDB
ACBMB
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACIWK
ACNTT
ACRLP
ACRPL
ACXNI
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFAZI
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGUMN
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
F8P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLX
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG8
LPU
LXL
LXN
LY7
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBM
SDF
SDG
SDP
SES
SET
SEW
SPCBC
SSB
SSD
SSH
SSL
SSS
SSY
SSZ
T5K
TAE
TN5
U5U
UHS
WH7
WUQ
XJT
XPP
XYO
YK3
ZRQ
~02
~G-
~KM
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c290t-fe51281272bc5063b89743d5cae2a59ad1e543c0d16c7bd32f72b9b99b49105e3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001456997700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-1625
IngestDate Sat Nov 29 07:00:30 EST 2025
Tue Nov 18 22:29:09 EST 2025
Sat Apr 26 15:41:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty indices
Interpretable machine learning
News narrative sentiment
Prediction
Economic cycle
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c290t-fe51281272bc5063b89743d5cae2a59ad1e543c0d16c7bd32f72b9b99b49105e3
OpenAccessLink https://dx.doi.org/10.1016/j.techfore.2025.124094
ParticipantIDs crossref_citationtrail_10_1016_j_techfore_2025_124094
crossref_primary_10_1016_j_techfore_2025_124094
elsevier_sciencedirect_doi_10_1016_j_techfore_2025_124094
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Technological forecasting & social change
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bergstra, Bengio (bb0045) 2012; 13
Gupta, Pierdzioch, Salisu (bb0140) 2022; 77
Lu, Ma, Feng (bb0215) 2024; 205
Vo, Tran (bb0320) 2024; 208
Zhang, Zhang, Luo (bb0350) 2024; 93
Belloni, Chernozhukov, Hansen (bb0040) 2014; 28
Wang, Xiao (bb0325) 2023; 139
Luiz Junho Pereira, Antônio Oliver, Brendon Francisco, Simões Cunha, Ferreira Gomes (bb0225) 2022; 187
Goulet Coulombe, Leroux, Stevanovic, Surprenant (bb0130) 2022; 37
Lu, Ma, Hu (bb0220) 2024; 129
Zhang (bb0345) 2024; 204
Griliches (bb0135) 1974; 42
Naveed, HongXing, Memon, Ali, Alhussam, Sohu (bb0265) 2023; 190
Caldara, Iacoviello (bb0050) 2022; 112
Davis, Liu, Sheng (bb0095) 2019
Chernozhukov, Hansen, Spindler (bb0075) 2015; 105
Nakajima, West (bb0260) 2013; 31
Sun, Li, Chen, Wang (bb0305) 2024
He, Ma, Zhang (bb0155) 2020; 67
Inoue, Kilian (bb0160) 2006; 130
Ahir, Bloom, Furceri (bb0005) 2022
Chen, Xie, Zhang, Bai, Hou (bb0070) 2020; 39
Jurado, Ludvigson, Ng (bb0355) 2013
Dai, Zhang, Liang (bb0085) 2024; 129
Li, Zhang, Bao, Liang, Li, Zheng (bb0190) 2020
Lundberg, Lee (bb0230) 2017
McSharry, Mawejje (bb0245) 2024; 203
Cepni, Güney, Swanson (bb0055) 2019; 35
Maehashi, Shintani (bb0240) 2020; 58
Aprigliano, Emiliozzi, Guaitoli, Luciani, Marcucci, Monteforte (bb0015) 2023; 39
Mirza, Rizvi, Naqvi, Umar (bb0250) 2024; 94
Varian (bb0315) 2014; 28
Baker, Bloom, Davis (bb0030) 2016; 131
Gavriilidis (bb0120) 2021
Rudin (bb0285) 2019; 1
Mullainathan, Spiess (bb0255) 2017; 31
Sharpe, Sinha, Hollrah (bb0290) 2023; 39
Wen, Li, Sha, Shao (bb0330) 2021; 41
Goulet Coulombe (bb0125) 2024; 39
Fang, Gozgor, Lau, Lu (bb0110) 2020; 32
Liu, Gao (bb0205) 2022; 49
Nazemi, Fabozzi (bb0270) 2024; 164
Han, Tian, Yu, Gao (bb0145) 2023; 552
Liang, Umar, Ma, Huynh (bb0200) 2022; 182
Döpke, Müller, Tegtmeier (bb0100) 2018; 46
Chen, Guestrin (bb0060) 2016
Yang, Dong, Liang (bb0340) 2024; 202
Ribeiro, Singh, Guestrin (bb0280) 2016
Sun, Zhang, Li, Wang (bb0300) 2023; 196
Asgharian, Christiansen, Hou (bb0020) 2023; 154
Kim, Swanson (bb0180) 2018; 34
Aysan, Batten, Gozgor, Khalfaoui, Nanaeva (bb0025) 2023; 56
Jiang, Guo, Zhang (bb0170) 2017; 66
Li, French, Chen (bb0185) 2017; 42
Al-Thaqeb, Algharabali (bb0010) 2019; 20
Chen, Song, Wainwright, Jordan (bb0065) 2018
Dang, Nguyen, Lee, Nguyen, Le (bb0090) 2023; 124
Stock, Watson (bb0295) 1999; 44
Chishti, Dogan, Binsaeed (bb0080) 2024; 209
Tibshirani (bb0310) 1996; 58
Park, Casella (bb0275) 2008; 103
Hans (bb0150) 2009; 96
Batra, Tiwari, Yadav, Danso (bb0035) 2025; 210
Liu, Swanson (bb0210) 2023
Fischer, Krauss (bb0115) 2018; 270
Duan, Goodell, Li, Li (bb0105) 2022; 46
Jiang (bb0165) 2020; 190
Jiang, Dong, Dong, Wang (bb0175) 2025; 210
Wu, Hu (bb0335) 2024; 208
Liang, Ma, Wang, Zeng (bb0195) 2021; 40
Ma, Lu, Wang, Chevallier (bb0235) 2021; 40
Chen (10.1016/j.techfore.2025.124094_bb0060) 2016
Hans (10.1016/j.techfore.2025.124094_bb0150) 2009; 96
Han (10.1016/j.techfore.2025.124094_bb0145) 2023; 552
Döpke (10.1016/j.techfore.2025.124094_bb0100) 2018; 46
Gupta (10.1016/j.techfore.2025.124094_bb0140) 2022; 77
Chernozhukov (10.1016/j.techfore.2025.124094_bb0075) 2015; 105
Davis (10.1016/j.techfore.2025.124094_bb0095) 2019
Jurado (10.1016/j.techfore.2025.124094_bb0355) 2013
Lundberg (10.1016/j.techfore.2025.124094_bb0230) 2017
Liu (10.1016/j.techfore.2025.124094_bb0205) 2022; 49
Lu (10.1016/j.techfore.2025.124094_bb0215) 2024; 205
Zhang (10.1016/j.techfore.2025.124094_bb0350) 2024; 93
Batra (10.1016/j.techfore.2025.124094_bb0035) 2025; 210
Maehashi (10.1016/j.techfore.2025.124094_bb0240) 2020; 58
Varian (10.1016/j.techfore.2025.124094_bb0315) 2014; 28
Chen (10.1016/j.techfore.2025.124094_bb0070) 2020; 39
He (10.1016/j.techfore.2025.124094_bb0155) 2020; 67
Fischer (10.1016/j.techfore.2025.124094_bb0115) 2018; 270
Dang (10.1016/j.techfore.2025.124094_bb0090) 2023; 124
Mirza (10.1016/j.techfore.2025.124094_bb0250) 2024; 94
Yang (10.1016/j.techfore.2025.124094_bb0340) 2024; 202
Caldara (10.1016/j.techfore.2025.124094_bb0050) 2022; 112
Dai (10.1016/j.techfore.2025.124094_bb0085) 2024; 129
Kim (10.1016/j.techfore.2025.124094_bb0180) 2018; 34
Baker (10.1016/j.techfore.2025.124094_bb0030) 2016; 131
Goulet Coulombe (10.1016/j.techfore.2025.124094_bb0130) 2022; 37
Luiz Junho Pereira (10.1016/j.techfore.2025.124094_bb0225) 2022; 187
Nazemi (10.1016/j.techfore.2025.124094_bb0270) 2024; 164
Wu (10.1016/j.techfore.2025.124094_bb0335) 2024; 208
Chishti (10.1016/j.techfore.2025.124094_bb0080) 2024; 209
Inoue (10.1016/j.techfore.2025.124094_bb0160) 2006; 130
Al-Thaqeb (10.1016/j.techfore.2025.124094_bb0010) 2019; 20
Tibshirani (10.1016/j.techfore.2025.124094_bb0310) 1996; 58
Aprigliano (10.1016/j.techfore.2025.124094_bb0015) 2023; 39
Ma (10.1016/j.techfore.2025.124094_bb0235) 2021; 40
Gavriilidis (10.1016/j.techfore.2025.124094_bb0120) 2021
Rudin (10.1016/j.techfore.2025.124094_bb0285) 2019; 1
Wen (10.1016/j.techfore.2025.124094_bb0330) 2021; 41
Bergstra (10.1016/j.techfore.2025.124094_bb0045) 2012; 13
Park (10.1016/j.techfore.2025.124094_bb0275) 2008; 103
Ahir (10.1016/j.techfore.2025.124094_bb0005) 2022
Liang (10.1016/j.techfore.2025.124094_bb0200) 2022; 182
Griliches (10.1016/j.techfore.2025.124094_bb0135) 1974; 42
Liang (10.1016/j.techfore.2025.124094_bb0195) 2021; 40
Li (10.1016/j.techfore.2025.124094_bb0185) 2017; 42
Ribeiro (10.1016/j.techfore.2025.124094_bb0280) 2016
Jiang (10.1016/j.techfore.2025.124094_bb0165) 2020; 190
Sun (10.1016/j.techfore.2025.124094_bb0300) 2023; 196
Asgharian (10.1016/j.techfore.2025.124094_bb0020) 2023; 154
Aysan (10.1016/j.techfore.2025.124094_bb0025) 2023; 56
Cepni (10.1016/j.techfore.2025.124094_bb0055) 2019; 35
Chen (10.1016/j.techfore.2025.124094_bb0065) 2018
Sun (10.1016/j.techfore.2025.124094_bb0305) 2024
Mullainathan (10.1016/j.techfore.2025.124094_bb0255) 2017; 31
Fang (10.1016/j.techfore.2025.124094_bb0110) 2020; 32
Belloni (10.1016/j.techfore.2025.124094_bb0040) 2014; 28
Wang (10.1016/j.techfore.2025.124094_bb0325) 2023; 139
Jiang (10.1016/j.techfore.2025.124094_bb0175) 2025; 210
Naveed (10.1016/j.techfore.2025.124094_bb0265) 2023; 190
Duan (10.1016/j.techfore.2025.124094_bb0105) 2022; 46
Li (10.1016/j.techfore.2025.124094_bb0190) 2020
Goulet Coulombe (10.1016/j.techfore.2025.124094_bb0125) 2024; 39
Lu (10.1016/j.techfore.2025.124094_bb0220) 2024; 129
Stock (10.1016/j.techfore.2025.124094_bb0295) 1999; 44
McSharry (10.1016/j.techfore.2025.124094_bb0245) 2024; 203
Vo (10.1016/j.techfore.2025.124094_bb0320) 2024; 208
Zhang (10.1016/j.techfore.2025.124094_bb0345) 2024; 204
Sharpe (10.1016/j.techfore.2025.124094_bb0290) 2023; 39
Jiang (10.1016/j.techfore.2025.124094_bb0170) 2017; 66
Nakajima (10.1016/j.techfore.2025.124094_bb0260) 2013; 31
Liu (10.1016/j.techfore.2025.124094_bb0210) 2023
References_xml – volume: 42
  start-page: 971
  year: 1974
  ident: bb0135
  article-title: Errors in variables and other unobservables
  publication-title: Econometrica
– volume: 202
  year: 2024
  ident: bb0340
  article-title: Climate policy uncertainty and the U.S. economic cycle
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 105
  start-page: 486
  year: 2015
  end-page: 490
  ident: bb0075
  article-title: Post-selection and post-regularization inference in linear models with many controls and instruments
  publication-title: Am. Econ. Rev.
– volume: 49
  year: 2022
  ident: bb0205
  article-title: The world uncertainty index and GDP growth rate
  publication-title: Financ. Res. Lett.
– volume: 46
  year: 2022
  ident: bb0105
  article-title: Assessing machine learning for forecasting economic risk: evidence from an expanded Chinese financial information set
  publication-title: Financ. Res. Lett.
– volume: 208
  year: 2024
  ident: bb0320
  article-title: Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: does uncertainty from the Russo-Ukrainian conflict matter?
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 139
  year: 2023
  ident: bb0325
  article-title: The term effect of financial cycle variables on GDP growth
  publication-title: J. Int. Money Financ.
– volume: 190
  year: 2023
  ident: bb0265
  article-title: Artificial neural network (ANN)-based estimation of the influence of COVID-19 pandemic on dynamic and emerging financial markets
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 34
  start-page: 339
  year: 2018
  end-page: 354
  ident: bb0180
  article-title: Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods
  publication-title: Int. J. Forecast.
– volume: 20
  year: 2019
  ident: bb0010
  article-title: Economic policy uncertainty: a literature review
  publication-title: The Journal of Economic Asymmetries
– volume: 39
  start-page: 791
  year: 2023
  end-page: 808
  ident: bb0015
  article-title: The power of text-based indicators in forecasting Italian economic activity
  publication-title: Int. J. Forecast.
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: bb0275
  article-title: The Bayesian lasso
  publication-title: J. Am. Stat. Assoc.
– volume: 37
  start-page: 920
  year: 2022
  end-page: 964
  ident: bb0130
  article-title: How is machine learning useful for macroeconomic forecasting?
  publication-title: J. Appl. Econ.
– volume: 35
  start-page: 555
  year: 2019
  end-page: 572
  ident: bb0055
  article-title: Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes
  publication-title: Int. J. Forecast.
– volume: 39
  start-page: 986
  year: 2020
  end-page: 999
  ident: bb0070
  article-title: A deep residual compensation extreme learning machine and applications
  publication-title: J. Forecast.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bb0045
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 67
  start-page: 225
  year: 2020
  end-page: 239
  ident: bb0155
  article-title: How does economic policy uncertainty affect corporate innovation?–evidence from China listed companies
  publication-title: Int. Rev. Econ. Financ.
– year: 2024
  ident: bb0305
  article-title: Enhancing exchange rate prediction and risk management under uncertainty shocks: an AI-driven ensemble prediction model based on metaheuristic optimization
  publication-title: Ann. Oper. Res.
– volume: 124
  year: 2023
  ident: bb0090
  article-title: Measuring the energy-related uncertainty index
  publication-title: Energy Econ.
– volume: 28
  start-page: 3
  year: 2014
  end-page: 28
  ident: bb0315
  article-title: Big Data: new tricks for econometrics
  publication-title: J. Econ. Perspect.
– volume: 209
  year: 2024
  ident: bb0080
  article-title: Can artificial intelligence and green finance affect economic cycles?
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 187
  year: 2022
  ident: bb0225
  article-title: Multi-objective Lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Syst. Appl.
– volume: 208
  year: 2024
  ident: bb0335
  article-title: Asymmetric spillovers and resilience in physical and financial assets amid climate policy uncertainties: evidence from China
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 112
  start-page: 1194
  year: 2022
  end-page: 1225
  ident: bb0050
  article-title: Measuring geopolitical risk
  publication-title: Am. Econ. Rev.
– start-page: 883
  year: 2018
  end-page: 892
  ident: bb0065
  article-title: Learning to explain: an information-theoretic perspective on model interpretation
  publication-title: Proceedings of the 35th International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR
– volume: 32
  year: 2020
  ident: bb0110
  article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets
  publication-title: Financ. Res. Lett.
– volume: 196
  year: 2023
  ident: bb0300
  article-title: Interpretable high-stakes decision support system for credit default forecasting
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 44
  start-page: 293
  year: 1999
  end-page: 335
  ident: bb0295
  article-title: Forecasting inflation
  publication-title: J. Monet. Econ.
– volume: 203
  year: 2024
  ident: bb0245
  article-title: Estimating urban GDP growth using nighttime lights and machine learning techniques in data poor environments: the case of South Sudan
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 130
  start-page: 273
  year: 2006
  end-page: 306
  ident: bb0160
  article-title: On the selection of forecasting models
  publication-title: J. Econ.
– volume: 205
  year: 2024
  ident: bb0215
  article-title: Carbon dioxide emissions and economic growth: new evidence from GDP forecasting
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 190
  year: 2020
  ident: bb0165
  article-title: Identification of business cycles and the Great Moderation in the post-war U.S. economy
  publication-title: Econ. Lett.
– year: 2013
  ident: bb0355
  article-title: Measuring Uncertainty
– volume: 210
  year: 2025
  ident: bb0175
  article-title: Probabilistic electricity price forecasting by integrating interpretable model
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 40
  start-page: 1310
  year: 2021
  end-page: 1324
  ident: bb0195
  article-title: The information content of uncertainty indices for natural gas futures volatility forecasting
  publication-title: J. Forecast.
– volume: 129
  year: 2024
  ident: bb0220
  article-title: Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting
  publication-title: Energy Econ.
– volume: 270
  start-page: 654
  year: 2018
  end-page: 669
  ident: bb0115
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
– start-page: 794
  year: 2020
  end-page: 802
  ident: bb0190
  article-title: AutoST: efficient neural architecture search for spatio-temporal prediction
  publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '20
– volume: 46
  start-page: 445
  year: 2018
  end-page: 461
  ident: bb0100
  article-title: The economic value of business cycle forecasts for potential investors – evidence from Germany
  publication-title: Res. Int. Bus. Financ.
– volume: 40
  start-page: 1070
  year: 2021
  end-page: 1085
  ident: bb0235
  article-title: Global economic policy uncertainty and gold futures market volatility: evidence from Markov regime-switching GARCH-MIDAS models
  publication-title: J. Forecast.
– volume: 182
  year: 2022
  ident: bb0200
  article-title: Climate policy uncertainty and world renewable energy index volatility forecasting
  publication-title: Technol. Forecast. Soc. Chang.
– year: 2023
  ident: bb0210
  article-title: An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors
  publication-title: Int. J. Forecast.
– volume: 28
  start-page: 29
  year: 2014
  end-page: 50
  ident: bb0040
  article-title: High-dimensional methods and inference on structural and treatment effects
  publication-title: J. Econ. Perspect.
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: bb0285
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intell
– volume: 39
  start-page: 1097
  year: 2023
  end-page: 1121
  ident: bb0290
  article-title: The power of narrative sentiment in economic forecasts
  publication-title: Int. J. Forecast.
– volume: 77
  year: 2022
  ident: bb0140
  article-title: Oil-price uncertainty and the U.K. unemployment rate: a forecasting experiment with random forests using 150 years of data
  publication-title: Res. Policy
– year: 2019
  ident: bb0095
  article-title: Economic policy uncertainty in China since 1949: the view from mainland newspapers
  publication-title: The Macroeconomics of Uncertainty and Volatility
– volume: 31
  start-page: 87
  year: 2017
  end-page: 106
  ident: bb0255
  article-title: Machine learning: an applied econometric approach
  publication-title: J. Econ. Perspect.
– volume: 210
  year: 2025
  ident: bb0035
  article-title: Connectedness among diverse financial assets: evidence from cryptocurrency uncertainty indices
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 66
  start-page: 132
  year: 2017
  end-page: 138
  ident: bb0170
  article-title: Forecasting China’s GDP growth using dynamic factors and mixed-frequency data
  publication-title: Econ. Model.
– volume: 204
  year: 2024
  ident: bb0345
  article-title: Country-level energy-related uncertainties and stock market returns: insights from the U.S. and China
  publication-title: Technol. Forecast. Soc. Chang.
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bb0280
  article-title: Why should I trust you?
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Presented at the KDD ’16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco California USA
– year: 2021
  ident: bb0120
  article-title: Measuring Climate Policy Uncertainty
– start-page: 785
  year: 2016
  end-page: 794
  ident: bb0060
  article-title: XGBoost
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Presented at the KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco California USA
– volume: 94
  year: 2024
  ident: bb0250
  article-title: Inflation prediction in emerging economies: machine learning and FX reserves integration for enhanced forecasting
  publication-title: Int. Rev. Financ. Anal.
– volume: 96
  start-page: 835
  year: 2009
  end-page: 845
  ident: bb0150
  article-title: Bayesian lasso regression
  publication-title: Biometrika
– volume: 154
  year: 2023
  ident: bb0020
  article-title: The effect of uncertainty on stock market volatility and correlation
  publication-title: J. Bank. Financ.
– volume: 42
  start-page: 40
  year: 2017
  end-page: 65
  ident: bb0185
  article-title: Informed trading in S&P index options? Evidence from the 2008 financial crisis
  publication-title: J. Empir. Financ.
– volume: 58
  year: 2020
  ident: bb0240
  article-title: Macroeconomic forecasting using factor models and machine learning: an application to Japan
  publication-title: Journal of the Japanese and International Economies
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: bb0230
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17
– volume: 39
  start-page: 401
  year: 2024
  end-page: 421
  ident: bb0125
  article-title: The macroeconomy as a random forest
  publication-title: J. Appl. Econ.
– volume: 93
  year: 2024
  ident: bb0350
  article-title: Asymmetric and high-order risk transmission across VIX and Chinese futures markets
  publication-title: Int. Rev. Financ. Anal.
– volume: 31
  start-page: 151
  year: 2013
  end-page: 164
  ident: bb0260
  article-title: Bayesian analysis of latent threshold dynamic models
  publication-title: J. Bus. Econ. Stat.
– volume: 41
  year: 2021
  ident: bb0330
  article-title: How does economic policy uncertainty affect corporate risk-taking?
  publication-title: Evidence from China. Finance Research Letters
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0310
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B. Methodol.
– volume: 552
  year: 2023
  ident: bb0145
  article-title: Economic system forecasting based on temporal fusion transformers: multi-dimensional evaluation and cross-model comparative analysis
  publication-title: Neurocomputing
– volume: 164
  year: 2024
  ident: bb0270
  article-title: Interpretable machine learning for creditor recovery rates
  publication-title: J. Bank. Financ.
– year: 2022
  ident: bb0005
  article-title: The world uncertainty index
  publication-title: Working Paper Series
– volume: 129
  year: 2024
  ident: bb0085
  article-title: Efficient predictability of oil price: the role of VIX-based panic index shadow line difference
  publication-title: Energy Econ.
– volume: 131
  start-page: 1593
  year: 2016
  end-page: 1636
  ident: bb0030
  article-title: Measuring economic policy uncertainty*
  publication-title: Q. J. Econ.
– volume: 56
  year: 2023
  ident: bb0025
  article-title: Twitter matters for metaverse stocks amid economic uncertainty
  publication-title: Financ. Res. Lett.
– volume: 552
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0145
  article-title: Economic system forecasting based on temporal fusion transformers: multi-dimensional evaluation and cross-model comparative analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126500
– volume: 49
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0205
  article-title: The world uncertainty index and GDP growth rate
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2022.103137
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.techfore.2025.124094_bb0310
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 93
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0350
  article-title: Asymmetric and high-order risk transmission across VIX and Chinese futures markets
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2024.103114
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.techfore.2025.124094_bb0045
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 190
  year: 2020
  ident: 10.1016/j.techfore.2025.124094_bb0165
  article-title: Identification of business cycles and the Great Moderation in the post-war U.S. economy
  publication-title: Econ. Lett.
  doi: 10.1016/j.econlet.2020.109072
– start-page: 883
  year: 2018
  ident: 10.1016/j.techfore.2025.124094_bb0065
  article-title: Learning to explain: an information-theoretic perspective on model interpretation
– volume: 77
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0140
  article-title: Oil-price uncertainty and the U.K. unemployment rate: a forecasting experiment with random forests using 150 years of data
  publication-title: Res. Policy
– volume: 96
  start-page: 835
  year: 2009
  ident: 10.1016/j.techfore.2025.124094_bb0150
  article-title: Bayesian lasso regression
  publication-title: Biometrika
  doi: 10.1093/biomet/asp047
– year: 2013
  ident: 10.1016/j.techfore.2025.124094_bb0355
– volume: 28
  start-page: 3
  year: 2014
  ident: 10.1016/j.techfore.2025.124094_bb0315
  article-title: Big Data: new tricks for econometrics
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.28.2.3
– year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0005
  article-title: The world uncertainty index
– volume: 42
  start-page: 40
  year: 2017
  ident: 10.1016/j.techfore.2025.124094_bb0185
  article-title: Informed trading in S&P index options? Evidence from the 2008 financial crisis
  publication-title: J. Empir. Financ.
  doi: 10.1016/j.jempfin.2017.01.001
– volume: 139
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0325
  article-title: The term effect of financial cycle variables on GDP growth
  publication-title: J. Int. Money Financ.
  doi: 10.1016/j.jimonfin.2023.102970
– year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0210
  article-title: An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors
  publication-title: Int. J. Forecast.
– volume: 56
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0025
  article-title: Twitter matters for metaverse stocks amid economic uncertainty
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2023.104116
– volume: 39
  start-page: 986
  year: 2020
  ident: 10.1016/j.techfore.2025.124094_bb0070
  article-title: A deep residual compensation extreme learning machine and applications
  publication-title: J. Forecast.
  doi: 10.1002/for.2663
– start-page: 4768
  year: 2017
  ident: 10.1016/j.techfore.2025.124094_bb0230
  article-title: A unified approach to interpreting model predictions
– volume: 208
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0320
  article-title: Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: does uncertainty from the Russo-Ukrainian conflict matter?
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123723
– volume: 205
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0215
  article-title: Carbon dioxide emissions and economic growth: new evidence from GDP forecasting
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123464
– volume: 20
  year: 2019
  ident: 10.1016/j.techfore.2025.124094_bb0010
  article-title: Economic policy uncertainty: a literature review
  publication-title: The Journal of Economic Asymmetries
  doi: 10.1016/j.jeca.2019.e00133
– volume: 40
  start-page: 1070
  year: 2021
  ident: 10.1016/j.techfore.2025.124094_bb0235
  article-title: Global economic policy uncertainty and gold futures market volatility: evidence from Markov regime-switching GARCH-MIDAS models
  publication-title: J. Forecast.
  doi: 10.1002/for.2753
– volume: 34
  start-page: 339
  year: 2018
  ident: 10.1016/j.techfore.2025.124094_bb0180
  article-title: Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.02.012
– start-page: 794
  year: 2020
  ident: 10.1016/j.techfore.2025.124094_bb0190
  article-title: AutoST: efficient neural architecture search for spatio-temporal prediction
– volume: 187
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0225
  article-title: Multi-objective Lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115939
– volume: 46
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0105
  article-title: Assessing machine learning for forecasting economic risk: evidence from an expanded Chinese financial information set
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2021.102273
– volume: 203
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0245
  article-title: Estimating urban GDP growth using nighttime lights and machine learning techniques in data poor environments: the case of South Sudan
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123399
– volume: 202
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0340
  article-title: Climate policy uncertainty and the U.S. economic cycle
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123344
– volume: 105
  start-page: 486
  year: 2015
  ident: 10.1016/j.techfore.2025.124094_bb0075
  article-title: Post-selection and post-regularization inference in linear models with many controls and instruments
  publication-title: Am. Econ. Rev.
  doi: 10.1257/aer.p20151022
– volume: 209
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0080
  article-title: Can artificial intelligence and green finance affect economic cycles?
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123740
– volume: 204
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0345
  article-title: Country-level energy-related uncertainties and stock market returns: insights from the U.S. and China
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123437
– volume: 129
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0220
  article-title: Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2023.107268
– volume: 131
  start-page: 1593
  year: 2016
  ident: 10.1016/j.techfore.2025.124094_bb0030
  article-title: Measuring economic policy uncertainty*
  publication-title: Q. J. Econ.
  doi: 10.1093/qje/qjw024
– volume: 130
  start-page: 273
  year: 2006
  ident: 10.1016/j.techfore.2025.124094_bb0160
  article-title: On the selection of forecasting models
  publication-title: J. Econ.
  doi: 10.1016/j.jeconom.2005.03.003
– volume: 31
  start-page: 151
  year: 2013
  ident: 10.1016/j.techfore.2025.124094_bb0260
  article-title: Bayesian analysis of latent threshold dynamic models
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.2012.747847
– volume: 210
  year: 2025
  ident: 10.1016/j.techfore.2025.124094_bb0035
  article-title: Connectedness among diverse financial assets: evidence from cryptocurrency uncertainty indices
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123874
– volume: 41
  year: 2021
  ident: 10.1016/j.techfore.2025.124094_bb0330
  article-title: How does economic policy uncertainty affect corporate risk-taking?
  publication-title: Evidence from China. Finance Research Letters
– volume: 210
  year: 2025
  ident: 10.1016/j.techfore.2025.124094_bb0175
  article-title: Probabilistic electricity price forecasting by integrating interpretable model
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123846
– year: 2021
  ident: 10.1016/j.techfore.2025.124094_bb0120
– volume: 42
  start-page: 971
  year: 1974
  ident: 10.1016/j.techfore.2025.124094_bb0135
  article-title: Errors in variables and other unobservables
  publication-title: Econometrica
  doi: 10.2307/1914213
– volume: 46
  start-page: 445
  year: 2018
  ident: 10.1016/j.techfore.2025.124094_bb0100
  article-title: The economic value of business cycle forecasts for potential investors – evidence from Germany
  publication-title: Res. Int. Bus. Financ.
  doi: 10.1016/j.ribaf.2018.06.001
– volume: 44
  start-page: 293
  year: 1999
  ident: 10.1016/j.techfore.2025.124094_bb0295
  article-title: Forecasting inflation
  publication-title: J. Monet. Econ.
  doi: 10.1016/S0304-3932(99)00027-6
– start-page: 785
  year: 2016
  ident: 10.1016/j.techfore.2025.124094_bb0060
  article-title: XGBoost
– volume: 129
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0085
  article-title: Efficient predictability of oil price: the role of VIX-based panic index shadow line difference
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2023.107234
– start-page: 1135
  year: 2016
  ident: 10.1016/j.techfore.2025.124094_bb0280
  article-title: Why should I trust you?
– volume: 182
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0200
  article-title: Climate policy uncertainty and world renewable energy index volatility forecasting
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2022.121810
– volume: 39
  start-page: 401
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0125
  article-title: The macroeconomy as a random forest
  publication-title: J. Appl. Econ.
  doi: 10.1002/jae.3030
– year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0305
  article-title: Enhancing exchange rate prediction and risk management under uncertainty shocks: an AI-driven ensemble prediction model based on metaheuristic optimization
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-024-06319-4
– volume: 208
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0335
  article-title: Asymmetric spillovers and resilience in physical and financial assets amid climate policy uncertainties: evidence from China
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2024.123701
– volume: 190
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0265
  article-title: Artificial neural network (ANN)-based estimation of the influence of COVID-19 pandemic on dynamic and emerging financial markets
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2023.122470
– volume: 40
  start-page: 1310
  year: 2021
  ident: 10.1016/j.techfore.2025.124094_bb0195
  article-title: The information content of uncertainty indices for natural gas futures volatility forecasting
  publication-title: J. Forecast.
  doi: 10.1002/for.2769
– volume: 37
  start-page: 920
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0130
  article-title: How is machine learning useful for macroeconomic forecasting?
  publication-title: J. Appl. Econ.
  doi: 10.1002/jae.2910
– volume: 112
  start-page: 1194
  year: 2022
  ident: 10.1016/j.techfore.2025.124094_bb0050
  article-title: Measuring geopolitical risk
  publication-title: Am. Econ. Rev.
  doi: 10.1257/aer.20191823
– volume: 196
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0300
  article-title: Interpretable high-stakes decision support system for credit default forecasting
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2023.122825
– volume: 39
  start-page: 791
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0015
  article-title: The power of text-based indicators in forecasting Italian economic activity
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2022.02.006
– volume: 58
  year: 2020
  ident: 10.1016/j.techfore.2025.124094_bb0240
  article-title: Macroeconomic forecasting using factor models and machine learning: an application to Japan
  publication-title: Journal of the Japanese and International Economies
  doi: 10.1016/j.jjie.2020.101104
– volume: 94
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0250
  article-title: Inflation prediction in emerging economies: machine learning and FX reserves integration for enhanced forecasting
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2024.103238
– volume: 31
  start-page: 87
  year: 2017
  ident: 10.1016/j.techfore.2025.124094_bb0255
  article-title: Machine learning: an applied econometric approach
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.31.2.87
– volume: 66
  start-page: 132
  year: 2017
  ident: 10.1016/j.techfore.2025.124094_bb0170
  article-title: Forecasting China’s GDP growth using dynamic factors and mixed-frequency data
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2017.06.005
– volume: 164
  year: 2024
  ident: 10.1016/j.techfore.2025.124094_bb0270
  article-title: Interpretable machine learning for creditor recovery rates
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2024.107187
– volume: 67
  start-page: 225
  year: 2020
  ident: 10.1016/j.techfore.2025.124094_bb0155
  article-title: How does economic policy uncertainty affect corporate innovation?–evidence from China listed companies
  publication-title: Int. Rev. Econ. Financ.
  doi: 10.1016/j.iref.2020.01.006
– volume: 154
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0020
  article-title: The effect of uncertainty on stock market volatility and correlation
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2023.106929
– volume: 124
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0090
  article-title: Measuring the energy-related uncertainty index
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2023.106817
– volume: 32
  year: 2020
  ident: 10.1016/j.techfore.2025.124094_bb0110
  article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2019.01.011
– volume: 103
  start-page: 681
  year: 2008
  ident: 10.1016/j.techfore.2025.124094_bb0275
  article-title: The Bayesian lasso
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– volume: 1
  start-page: 206
  year: 2019
  ident: 10.1016/j.techfore.2025.124094_bb0285
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– volume: 270
  start-page: 654
  year: 2018
  ident: 10.1016/j.techfore.2025.124094_bb0115
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
– year: 2019
  ident: 10.1016/j.techfore.2025.124094_bb0095
  article-title: Economic policy uncertainty in China since 1949: the view from mainland newspapers
– volume: 35
  start-page: 555
  year: 2019
  ident: 10.1016/j.techfore.2025.124094_bb0055
  article-title: Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2018.10.008
– volume: 28
  start-page: 29
  year: 2014
  ident: 10.1016/j.techfore.2025.124094_bb0040
  article-title: High-dimensional methods and inference on structural and treatment effects
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.28.2.29
– volume: 39
  start-page: 1097
  year: 2023
  ident: 10.1016/j.techfore.2025.124094_bb0290
  article-title: The power of narrative sentiment in economic forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2022.04.008
SSID ssj0007386
Score 2.457563
Snippet The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124094
SubjectTerms Economic cycle
Interpretable machine learning
News narrative sentiment
Prediction
Uncertainty indices
Title Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment
URI https://dx.doi.org/10.1016/j.techfore.2025.124094
Volume 215
WOSCitedRecordID wos001456997700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0040-1625
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007386
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE9t40M-cItSUidu7OOEigaaJiQGK6fIcRyWaaRT107dgf-d9-KPZjBpIMQlqqLYVvx-tZ9ffr_3CHmd1QBdzllcG83jLFdprJSZxIqxWpkKNsCunM-Xg_zwUMxm8uNg8MNrYS7P8rYV67U8_6-mhntgbJTO_oW5Q6dwA36D0eEKZofrHxl-2p5gDo32W2Sc6DjSV_AMEgqNVhcdzxk3ryrqaI6edIgSqu8dtdL4WhJWvoiOd9SqhcsRjmqlJvBlnF8bIvReERlGQmi5wLz2Sgb3Gapb8I5Ns24CQo9d-Prr3O2o_Zj2QbMhI9jVctacrJpoHxMNrBb9AAbjG6KVjap5Zc014mfHdBxPrCjar9TMKj9_W_VtAOJ0hGlv8Q1HOMwIPJfEFlD-JaP2J-wc-wb3D_ZnLu6QLZZzKYZka-_9dPYhbOVYEdXTLrFBT2J-82g3ezc9j-XoIXngjhp0z0LkERmY9jG530tA-YQ0ASzUg4V2YKE9E9IOLHTe0mtgoQ4s1IOFAlgogoUGsNAAlqfk87vp0dv92BXfiDWTyRL-uxw_srKclZqDH1sKOHmmFdfKMMWlqsaGZ6lOqvFE52WVshqelKWUZQYeKDfpMzJs563ZJhTO9KIWUpmkNFlZCwV7QCIMq9KMmWTCdgj3k1Zol5keC6ScFZ6CeFr4yS5wsgs72TvkTWh3bnOz3NpCepsUzsO0nmMBULql7e4_tH1O7m2Q_4IMl4uVeUnu6stlc7F45VD3E9nYqUY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+economic+cycle+forecasting+based+on+interpretable+machine+learning+and+news+narrative+sentiment&rft.jtitle=Technological+forecasting+%26+social+change&rft.au=Sun%2C+Weixin&rft.au=Wang%2C+Yong&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Xihui+Haviour&rft.date=2025-06-01&rft.pub=Elsevier+Inc&rft.issn=0040-1625&rft.volume=215&rft_id=info:doi/10.1016%2Fj.techfore.2025.124094&rft.externalDocID=S0040162525001258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1625&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1625&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1625&client=summon