Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment
The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve...
Saved in:
| Published in: | Technological forecasting & social change Vol. 215; p. 124094 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.06.2025
|
| Subjects: | |
| ISSN: | 0040-1625 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve accuracy, stability, and interpretability, particularly during uncertainty shocks. To achieve this, several methodological innovations were implemented. First, news sentiment-based uncertainty indices were incorporated as candidate variables to capture uncertainty dynamics. Second, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO) was employed for efficient variable selection, mitigating the curse of dimensionality in small samples. Third, the multi-objective Lichtenberg algorithm (MOLA) was applied to optimize the prediction window size, ensuring model robustness. Additionally, a MOLA-based extreme gradient boosting (MOLA-XGBoost) model was developed to fine-tune hyperparameters across dimensions of prediction accuracy, stability, and directional consistency. Finally, SHapley Additive exPlanations (SHAP) theory was used to enhance model interpretability. This study forecasts China's economic cycle using multiple indicators, demonstrating that the proposed approach consistently delivers accurate and robust predictions even under uncertainty shocks. The findings highlight the crucial role of uncertainty indices in improving economic forecasts, offering new insights and methodologies for predictive modeling in volatile environments.
[Display omitted]
•Proposed MOLA-XGBoost model for economic cycle forecasting•Implemented intelligent selection for prediction window size and model parameters•Multiple uncertainty indices are used to improve prediction accuracy.•MOLA-XGBoost shows excellent predictive performance and robustness for economic cycle forecasting and is interpretable. |
|---|---|
| AbstractList | The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve accuracy, stability, and interpretability, particularly during uncertainty shocks. To achieve this, several methodological innovations were implemented. First, news sentiment-based uncertainty indices were incorporated as candidate variables to capture uncertainty dynamics. Second, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO) was employed for efficient variable selection, mitigating the curse of dimensionality in small samples. Third, the multi-objective Lichtenberg algorithm (MOLA) was applied to optimize the prediction window size, ensuring model robustness. Additionally, a MOLA-based extreme gradient boosting (MOLA-XGBoost) model was developed to fine-tune hyperparameters across dimensions of prediction accuracy, stability, and directional consistency. Finally, SHapley Additive exPlanations (SHAP) theory was used to enhance model interpretability. This study forecasts China's economic cycle using multiple indicators, demonstrating that the proposed approach consistently delivers accurate and robust predictions even under uncertainty shocks. The findings highlight the crucial role of uncertainty indices in improving economic forecasts, offering new insights and methodologies for predictive modeling in volatile environments.
[Display omitted]
•Proposed MOLA-XGBoost model for economic cycle forecasting•Implemented intelligent selection for prediction window size and model parameters•Multiple uncertainty indices are used to improve prediction accuracy.•MOLA-XGBoost shows excellent predictive performance and robustness for economic cycle forecasting and is interpretable. |
| ArticleNumber | 124094 |
| Author | Chen, Xihui Haviour Sun, Weixin Wang, Yong Zhang, Li Hoang, Yen Hai |
| Author_xml | – sequence: 1 givenname: Weixin surname: Sun fullname: Sun, Weixin email: sunweixin@stumail.dufe.edu.cn organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China – sequence: 2 givenname: Yong surname: Wang fullname: Wang, Yong email: ywang@dufe.edu.cn organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China – sequence: 3 givenname: Li surname: Zhang fullname: Zhang, Li organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China – sequence: 4 givenname: Xihui Haviour surname: Chen fullname: Chen, Xihui Haviour email: X.chen@keele.ac.uk organization: Keele Business School, Keele University, UK – sequence: 5 givenname: Yen Hai surname: Hoang fullname: Hoang, Yen Hai email: yenhh@ueh.edu.vn organization: School of Banking, University of Economics HCM City, Viet Nam |
| BookMark | eNqFkMtOwzAQRb0oEm3hF5B_IMF2XrXEAlSVh1SJDawtZzyhrhK7sq2i_j2JChs23XgWvudq5izIzHmHhNxxlnPG6_t9nhB2nQ-YCyaqnIuSyXJG5oyVLOO1qK7JIsY9Y6wpVvWc2I3baQfWfVEE7_xggcIJeqRTCeiYpq9WRzTUO2pdwnAImHQ7RgYNO-uQ9qiDm3LaGerwO1KnQ9DJHpFGdMkO43NDrjrdR7z9nUvy-bz5WL9m2_eXt_XTNgMhWco6rLhYcdGIFipWF-1KNmVhKtAodCW14ViVBTDDa2haU4huTMpWyraUnFVYLMnDuReCjzFgp8CmcRfvUtC2V5ypSZXaqz9ValKlzqpGvP6HH4IddDhdBh_PII7HHS0GFcGiAzR2FJmU8fZSxQ9WQI5c |
| CitedBy_id | crossref_primary_10_3390_info16090733 crossref_primary_10_1016_j_swevo_2025_101977 |
| Cites_doi | 10.1016/j.neucom.2023.126500 10.1016/j.frl.2022.103137 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.irfa.2024.103114 10.1016/j.econlet.2020.109072 10.1093/biomet/asp047 10.1257/jep.28.2.3 10.1016/j.jempfin.2017.01.001 10.1016/j.jimonfin.2023.102970 10.1016/j.frl.2023.104116 10.1002/for.2663 10.1016/j.techfore.2024.123723 10.1016/j.techfore.2024.123464 10.1016/j.jeca.2019.e00133 10.1002/for.2753 10.1016/j.ijforecast.2016.02.012 10.1016/j.eswa.2021.115939 10.1016/j.frl.2021.102273 10.1016/j.techfore.2024.123399 10.1016/j.techfore.2024.123344 10.1257/aer.p20151022 10.1016/j.techfore.2024.123740 10.1016/j.techfore.2024.123437 10.1016/j.eneco.2023.107268 10.1093/qje/qjw024 10.1016/j.jeconom.2005.03.003 10.1080/07350015.2012.747847 10.1016/j.techfore.2024.123874 10.1016/j.techfore.2024.123846 10.2307/1914213 10.1016/j.ribaf.2018.06.001 10.1016/S0304-3932(99)00027-6 10.1016/j.eneco.2023.107234 10.1016/j.techfore.2022.121810 10.1002/jae.3030 10.1007/s10479-024-06319-4 10.1016/j.techfore.2024.123701 10.1016/j.techfore.2023.122470 10.1002/for.2769 10.1002/jae.2910 10.1257/aer.20191823 10.1016/j.techfore.2023.122825 10.1016/j.ijforecast.2022.02.006 10.1016/j.jjie.2020.101104 10.1016/j.irfa.2024.103238 10.1257/jep.31.2.87 10.1016/j.econmod.2017.06.005 10.1016/j.jbankfin.2024.107187 10.1016/j.iref.2020.01.006 10.1016/j.jbankfin.2023.106929 10.1016/j.eneco.2023.106817 10.1016/j.frl.2019.01.011 10.1198/016214508000000337 10.1038/s42256-019-0048-x 10.1016/j.ejor.2017.11.054 10.1016/j.ijforecast.2018.10.008 10.1257/jep.28.2.29 10.1016/j.ijforecast.2022.04.008 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.techfore.2025.124094 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_techfore_2025_124094 S0040162525001258 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 13V 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 96U 9JO AAAKF AAAKG AABNK AACTN AADFP AAEDT AAEDW AAFTH AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYOK ABEFU ABEHJ ABFNM ABJNI ABKBG ABMAC ABMVD ABOYX ABPPZ ABUCO ABWVN ABXDB ACBMB ACDAQ ACGFO ACGFS ACHQT ACHRH ACIWK ACNTT ACRLP ACRPL ACXNI ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AFAZI AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGUMN AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P F8P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLX HMY HVGLF HZ~ IHE J1W KOM LG8 LPU LXL LXN LY7 M3Y M41 MO0 N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBM SDF SDG SDP SES SET SEW SPCBC SSB SSD SSH SSL SSS SSY SSZ T5K TAE TN5 U5U UHS WH7 WUQ XJT XPP XYO YK3 ZRQ ~02 ~G- ~KM 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c290t-fe51281272bc5063b89743d5cae2a59ad1e543c0d16c7bd32f72b9b99b49105e3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001456997700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-1625 |
| IngestDate | Sat Nov 29 07:00:30 EST 2025 Tue Nov 18 22:29:09 EST 2025 Sat Apr 26 15:41:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty indices Interpretable machine learning News narrative sentiment Prediction Economic cycle |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c290t-fe51281272bc5063b89743d5cae2a59ad1e543c0d16c7bd32f72b9b99b49105e3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.techfore.2025.124094 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_techfore_2025_124094 crossref_primary_10_1016_j_techfore_2025_124094 elsevier_sciencedirect_doi_10_1016_j_techfore_2025_124094 |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Technological forecasting & social change |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Bergstra, Bengio (bb0045) 2012; 13 Gupta, Pierdzioch, Salisu (bb0140) 2022; 77 Lu, Ma, Feng (bb0215) 2024; 205 Vo, Tran (bb0320) 2024; 208 Zhang, Zhang, Luo (bb0350) 2024; 93 Belloni, Chernozhukov, Hansen (bb0040) 2014; 28 Wang, Xiao (bb0325) 2023; 139 Luiz Junho Pereira, Antônio Oliver, Brendon Francisco, Simões Cunha, Ferreira Gomes (bb0225) 2022; 187 Goulet Coulombe, Leroux, Stevanovic, Surprenant (bb0130) 2022; 37 Lu, Ma, Hu (bb0220) 2024; 129 Zhang (bb0345) 2024; 204 Griliches (bb0135) 1974; 42 Naveed, HongXing, Memon, Ali, Alhussam, Sohu (bb0265) 2023; 190 Caldara, Iacoviello (bb0050) 2022; 112 Davis, Liu, Sheng (bb0095) 2019 Chernozhukov, Hansen, Spindler (bb0075) 2015; 105 Nakajima, West (bb0260) 2013; 31 Sun, Li, Chen, Wang (bb0305) 2024 He, Ma, Zhang (bb0155) 2020; 67 Inoue, Kilian (bb0160) 2006; 130 Ahir, Bloom, Furceri (bb0005) 2022 Chen, Xie, Zhang, Bai, Hou (bb0070) 2020; 39 Jurado, Ludvigson, Ng (bb0355) 2013 Dai, Zhang, Liang (bb0085) 2024; 129 Li, Zhang, Bao, Liang, Li, Zheng (bb0190) 2020 Lundberg, Lee (bb0230) 2017 McSharry, Mawejje (bb0245) 2024; 203 Cepni, Güney, Swanson (bb0055) 2019; 35 Maehashi, Shintani (bb0240) 2020; 58 Aprigliano, Emiliozzi, Guaitoli, Luciani, Marcucci, Monteforte (bb0015) 2023; 39 Mirza, Rizvi, Naqvi, Umar (bb0250) 2024; 94 Varian (bb0315) 2014; 28 Baker, Bloom, Davis (bb0030) 2016; 131 Gavriilidis (bb0120) 2021 Rudin (bb0285) 2019; 1 Mullainathan, Spiess (bb0255) 2017; 31 Sharpe, Sinha, Hollrah (bb0290) 2023; 39 Wen, Li, Sha, Shao (bb0330) 2021; 41 Goulet Coulombe (bb0125) 2024; 39 Fang, Gozgor, Lau, Lu (bb0110) 2020; 32 Liu, Gao (bb0205) 2022; 49 Nazemi, Fabozzi (bb0270) 2024; 164 Han, Tian, Yu, Gao (bb0145) 2023; 552 Liang, Umar, Ma, Huynh (bb0200) 2022; 182 Döpke, Müller, Tegtmeier (bb0100) 2018; 46 Chen, Guestrin (bb0060) 2016 Yang, Dong, Liang (bb0340) 2024; 202 Ribeiro, Singh, Guestrin (bb0280) 2016 Sun, Zhang, Li, Wang (bb0300) 2023; 196 Asgharian, Christiansen, Hou (bb0020) 2023; 154 Kim, Swanson (bb0180) 2018; 34 Aysan, Batten, Gozgor, Khalfaoui, Nanaeva (bb0025) 2023; 56 Jiang, Guo, Zhang (bb0170) 2017; 66 Li, French, Chen (bb0185) 2017; 42 Al-Thaqeb, Algharabali (bb0010) 2019; 20 Chen, Song, Wainwright, Jordan (bb0065) 2018 Dang, Nguyen, Lee, Nguyen, Le (bb0090) 2023; 124 Stock, Watson (bb0295) 1999; 44 Chishti, Dogan, Binsaeed (bb0080) 2024; 209 Tibshirani (bb0310) 1996; 58 Park, Casella (bb0275) 2008; 103 Hans (bb0150) 2009; 96 Batra, Tiwari, Yadav, Danso (bb0035) 2025; 210 Liu, Swanson (bb0210) 2023 Fischer, Krauss (bb0115) 2018; 270 Duan, Goodell, Li, Li (bb0105) 2022; 46 Jiang (bb0165) 2020; 190 Jiang, Dong, Dong, Wang (bb0175) 2025; 210 Wu, Hu (bb0335) 2024; 208 Liang, Ma, Wang, Zeng (bb0195) 2021; 40 Ma, Lu, Wang, Chevallier (bb0235) 2021; 40 Chen (10.1016/j.techfore.2025.124094_bb0060) 2016 Hans (10.1016/j.techfore.2025.124094_bb0150) 2009; 96 Han (10.1016/j.techfore.2025.124094_bb0145) 2023; 552 Döpke (10.1016/j.techfore.2025.124094_bb0100) 2018; 46 Gupta (10.1016/j.techfore.2025.124094_bb0140) 2022; 77 Chernozhukov (10.1016/j.techfore.2025.124094_bb0075) 2015; 105 Davis (10.1016/j.techfore.2025.124094_bb0095) 2019 Jurado (10.1016/j.techfore.2025.124094_bb0355) 2013 Lundberg (10.1016/j.techfore.2025.124094_bb0230) 2017 Liu (10.1016/j.techfore.2025.124094_bb0205) 2022; 49 Lu (10.1016/j.techfore.2025.124094_bb0215) 2024; 205 Zhang (10.1016/j.techfore.2025.124094_bb0350) 2024; 93 Batra (10.1016/j.techfore.2025.124094_bb0035) 2025; 210 Maehashi (10.1016/j.techfore.2025.124094_bb0240) 2020; 58 Varian (10.1016/j.techfore.2025.124094_bb0315) 2014; 28 Chen (10.1016/j.techfore.2025.124094_bb0070) 2020; 39 He (10.1016/j.techfore.2025.124094_bb0155) 2020; 67 Fischer (10.1016/j.techfore.2025.124094_bb0115) 2018; 270 Dang (10.1016/j.techfore.2025.124094_bb0090) 2023; 124 Mirza (10.1016/j.techfore.2025.124094_bb0250) 2024; 94 Yang (10.1016/j.techfore.2025.124094_bb0340) 2024; 202 Caldara (10.1016/j.techfore.2025.124094_bb0050) 2022; 112 Dai (10.1016/j.techfore.2025.124094_bb0085) 2024; 129 Kim (10.1016/j.techfore.2025.124094_bb0180) 2018; 34 Baker (10.1016/j.techfore.2025.124094_bb0030) 2016; 131 Goulet Coulombe (10.1016/j.techfore.2025.124094_bb0130) 2022; 37 Luiz Junho Pereira (10.1016/j.techfore.2025.124094_bb0225) 2022; 187 Nazemi (10.1016/j.techfore.2025.124094_bb0270) 2024; 164 Wu (10.1016/j.techfore.2025.124094_bb0335) 2024; 208 Chishti (10.1016/j.techfore.2025.124094_bb0080) 2024; 209 Inoue (10.1016/j.techfore.2025.124094_bb0160) 2006; 130 Al-Thaqeb (10.1016/j.techfore.2025.124094_bb0010) 2019; 20 Tibshirani (10.1016/j.techfore.2025.124094_bb0310) 1996; 58 Aprigliano (10.1016/j.techfore.2025.124094_bb0015) 2023; 39 Ma (10.1016/j.techfore.2025.124094_bb0235) 2021; 40 Gavriilidis (10.1016/j.techfore.2025.124094_bb0120) 2021 Rudin (10.1016/j.techfore.2025.124094_bb0285) 2019; 1 Wen (10.1016/j.techfore.2025.124094_bb0330) 2021; 41 Bergstra (10.1016/j.techfore.2025.124094_bb0045) 2012; 13 Park (10.1016/j.techfore.2025.124094_bb0275) 2008; 103 Ahir (10.1016/j.techfore.2025.124094_bb0005) 2022 Liang (10.1016/j.techfore.2025.124094_bb0200) 2022; 182 Griliches (10.1016/j.techfore.2025.124094_bb0135) 1974; 42 Liang (10.1016/j.techfore.2025.124094_bb0195) 2021; 40 Li (10.1016/j.techfore.2025.124094_bb0185) 2017; 42 Ribeiro (10.1016/j.techfore.2025.124094_bb0280) 2016 Jiang (10.1016/j.techfore.2025.124094_bb0165) 2020; 190 Sun (10.1016/j.techfore.2025.124094_bb0300) 2023; 196 Asgharian (10.1016/j.techfore.2025.124094_bb0020) 2023; 154 Aysan (10.1016/j.techfore.2025.124094_bb0025) 2023; 56 Cepni (10.1016/j.techfore.2025.124094_bb0055) 2019; 35 Chen (10.1016/j.techfore.2025.124094_bb0065) 2018 Sun (10.1016/j.techfore.2025.124094_bb0305) 2024 Mullainathan (10.1016/j.techfore.2025.124094_bb0255) 2017; 31 Fang (10.1016/j.techfore.2025.124094_bb0110) 2020; 32 Belloni (10.1016/j.techfore.2025.124094_bb0040) 2014; 28 Wang (10.1016/j.techfore.2025.124094_bb0325) 2023; 139 Jiang (10.1016/j.techfore.2025.124094_bb0175) 2025; 210 Naveed (10.1016/j.techfore.2025.124094_bb0265) 2023; 190 Duan (10.1016/j.techfore.2025.124094_bb0105) 2022; 46 Li (10.1016/j.techfore.2025.124094_bb0190) 2020 Goulet Coulombe (10.1016/j.techfore.2025.124094_bb0125) 2024; 39 Lu (10.1016/j.techfore.2025.124094_bb0220) 2024; 129 Stock (10.1016/j.techfore.2025.124094_bb0295) 1999; 44 McSharry (10.1016/j.techfore.2025.124094_bb0245) 2024; 203 Vo (10.1016/j.techfore.2025.124094_bb0320) 2024; 208 Zhang (10.1016/j.techfore.2025.124094_bb0345) 2024; 204 Sharpe (10.1016/j.techfore.2025.124094_bb0290) 2023; 39 Jiang (10.1016/j.techfore.2025.124094_bb0170) 2017; 66 Nakajima (10.1016/j.techfore.2025.124094_bb0260) 2013; 31 Liu (10.1016/j.techfore.2025.124094_bb0210) 2023 |
| References_xml | – volume: 42 start-page: 971 year: 1974 ident: bb0135 article-title: Errors in variables and other unobservables publication-title: Econometrica – volume: 202 year: 2024 ident: bb0340 article-title: Climate policy uncertainty and the U.S. economic cycle publication-title: Technol. Forecast. Soc. Chang. – volume: 105 start-page: 486 year: 2015 end-page: 490 ident: bb0075 article-title: Post-selection and post-regularization inference in linear models with many controls and instruments publication-title: Am. Econ. Rev. – volume: 49 year: 2022 ident: bb0205 article-title: The world uncertainty index and GDP growth rate publication-title: Financ. Res. Lett. – volume: 46 year: 2022 ident: bb0105 article-title: Assessing machine learning for forecasting economic risk: evidence from an expanded Chinese financial information set publication-title: Financ. Res. Lett. – volume: 208 year: 2024 ident: bb0320 article-title: Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: does uncertainty from the Russo-Ukrainian conflict matter? publication-title: Technol. Forecast. Soc. Chang. – volume: 139 year: 2023 ident: bb0325 article-title: The term effect of financial cycle variables on GDP growth publication-title: J. Int. Money Financ. – volume: 190 year: 2023 ident: bb0265 article-title: Artificial neural network (ANN)-based estimation of the influence of COVID-19 pandemic on dynamic and emerging financial markets publication-title: Technol. Forecast. Soc. Chang. – volume: 34 start-page: 339 year: 2018 end-page: 354 ident: bb0180 article-title: Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods publication-title: Int. J. Forecast. – volume: 20 year: 2019 ident: bb0010 article-title: Economic policy uncertainty: a literature review publication-title: The Journal of Economic Asymmetries – volume: 39 start-page: 791 year: 2023 end-page: 808 ident: bb0015 article-title: The power of text-based indicators in forecasting Italian economic activity publication-title: Int. J. Forecast. – volume: 103 start-page: 681 year: 2008 end-page: 686 ident: bb0275 article-title: The Bayesian lasso publication-title: J. Am. Stat. Assoc. – volume: 37 start-page: 920 year: 2022 end-page: 964 ident: bb0130 article-title: How is machine learning useful for macroeconomic forecasting? publication-title: J. Appl. Econ. – volume: 35 start-page: 555 year: 2019 end-page: 572 ident: bb0055 article-title: Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes publication-title: Int. J. Forecast. – volume: 39 start-page: 986 year: 2020 end-page: 999 ident: bb0070 article-title: A deep residual compensation extreme learning machine and applications publication-title: J. Forecast. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bb0045 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 67 start-page: 225 year: 2020 end-page: 239 ident: bb0155 article-title: How does economic policy uncertainty affect corporate innovation?–evidence from China listed companies publication-title: Int. Rev. Econ. Financ. – year: 2024 ident: bb0305 article-title: Enhancing exchange rate prediction and risk management under uncertainty shocks: an AI-driven ensemble prediction model based on metaheuristic optimization publication-title: Ann. Oper. Res. – volume: 124 year: 2023 ident: bb0090 article-title: Measuring the energy-related uncertainty index publication-title: Energy Econ. – volume: 28 start-page: 3 year: 2014 end-page: 28 ident: bb0315 article-title: Big Data: new tricks for econometrics publication-title: J. Econ. Perspect. – volume: 209 year: 2024 ident: bb0080 article-title: Can artificial intelligence and green finance affect economic cycles? publication-title: Technol. Forecast. Soc. Chang. – volume: 187 year: 2022 ident: bb0225 article-title: Multi-objective Lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems publication-title: Expert Syst. Appl. – volume: 208 year: 2024 ident: bb0335 article-title: Asymmetric spillovers and resilience in physical and financial assets amid climate policy uncertainties: evidence from China publication-title: Technol. Forecast. Soc. Chang. – volume: 112 start-page: 1194 year: 2022 end-page: 1225 ident: bb0050 article-title: Measuring geopolitical risk publication-title: Am. Econ. Rev. – start-page: 883 year: 2018 end-page: 892 ident: bb0065 article-title: Learning to explain: an information-theoretic perspective on model interpretation publication-title: Proceedings of the 35th International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR – volume: 32 year: 2020 ident: bb0110 article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets publication-title: Financ. Res. Lett. – volume: 196 year: 2023 ident: bb0300 article-title: Interpretable high-stakes decision support system for credit default forecasting publication-title: Technol. Forecast. Soc. Chang. – volume: 44 start-page: 293 year: 1999 end-page: 335 ident: bb0295 article-title: Forecasting inflation publication-title: J. Monet. Econ. – volume: 203 year: 2024 ident: bb0245 article-title: Estimating urban GDP growth using nighttime lights and machine learning techniques in data poor environments: the case of South Sudan publication-title: Technol. Forecast. Soc. Chang. – volume: 130 start-page: 273 year: 2006 end-page: 306 ident: bb0160 article-title: On the selection of forecasting models publication-title: J. Econ. – volume: 205 year: 2024 ident: bb0215 article-title: Carbon dioxide emissions and economic growth: new evidence from GDP forecasting publication-title: Technol. Forecast. Soc. Chang. – volume: 190 year: 2020 ident: bb0165 article-title: Identification of business cycles and the Great Moderation in the post-war U.S. economy publication-title: Econ. Lett. – year: 2013 ident: bb0355 article-title: Measuring Uncertainty – volume: 210 year: 2025 ident: bb0175 article-title: Probabilistic electricity price forecasting by integrating interpretable model publication-title: Technol. Forecast. Soc. Chang. – volume: 40 start-page: 1310 year: 2021 end-page: 1324 ident: bb0195 article-title: The information content of uncertainty indices for natural gas futures volatility forecasting publication-title: J. Forecast. – volume: 129 year: 2024 ident: bb0220 article-title: Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting publication-title: Energy Econ. – volume: 270 start-page: 654 year: 2018 end-page: 669 ident: bb0115 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. – start-page: 794 year: 2020 end-page: 802 ident: bb0190 article-title: AutoST: efficient neural architecture search for spatio-temporal prediction publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '20 – volume: 46 start-page: 445 year: 2018 end-page: 461 ident: bb0100 article-title: The economic value of business cycle forecasts for potential investors – evidence from Germany publication-title: Res. Int. Bus. Financ. – volume: 40 start-page: 1070 year: 2021 end-page: 1085 ident: bb0235 article-title: Global economic policy uncertainty and gold futures market volatility: evidence from Markov regime-switching GARCH-MIDAS models publication-title: J. Forecast. – volume: 182 year: 2022 ident: bb0200 article-title: Climate policy uncertainty and world renewable energy index volatility forecasting publication-title: Technol. Forecast. Soc. Chang. – year: 2023 ident: bb0210 article-title: An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors publication-title: Int. J. Forecast. – volume: 28 start-page: 29 year: 2014 end-page: 50 ident: bb0040 article-title: High-dimensional methods and inference on structural and treatment effects publication-title: J. Econ. Perspect. – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: bb0285 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intell – volume: 39 start-page: 1097 year: 2023 end-page: 1121 ident: bb0290 article-title: The power of narrative sentiment in economic forecasts publication-title: Int. J. Forecast. – volume: 77 year: 2022 ident: bb0140 article-title: Oil-price uncertainty and the U.K. unemployment rate: a forecasting experiment with random forests using 150 years of data publication-title: Res. Policy – year: 2019 ident: bb0095 article-title: Economic policy uncertainty in China since 1949: the view from mainland newspapers publication-title: The Macroeconomics of Uncertainty and Volatility – volume: 31 start-page: 87 year: 2017 end-page: 106 ident: bb0255 article-title: Machine learning: an applied econometric approach publication-title: J. Econ. Perspect. – volume: 210 year: 2025 ident: bb0035 article-title: Connectedness among diverse financial assets: evidence from cryptocurrency uncertainty indices publication-title: Technol. Forecast. Soc. Chang. – volume: 66 start-page: 132 year: 2017 end-page: 138 ident: bb0170 article-title: Forecasting China’s GDP growth using dynamic factors and mixed-frequency data publication-title: Econ. Model. – volume: 204 year: 2024 ident: bb0345 article-title: Country-level energy-related uncertainties and stock market returns: insights from the U.S. and China publication-title: Technol. Forecast. Soc. Chang. – start-page: 1135 year: 2016 end-page: 1144 ident: bb0280 article-title: Why should I trust you? publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Presented at the KDD ’16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco California USA – year: 2021 ident: bb0120 article-title: Measuring Climate Policy Uncertainty – start-page: 785 year: 2016 end-page: 794 ident: bb0060 article-title: XGBoost publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Presented at the KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco California USA – volume: 94 year: 2024 ident: bb0250 article-title: Inflation prediction in emerging economies: machine learning and FX reserves integration for enhanced forecasting publication-title: Int. Rev. Financ. Anal. – volume: 96 start-page: 835 year: 2009 end-page: 845 ident: bb0150 article-title: Bayesian lasso regression publication-title: Biometrika – volume: 154 year: 2023 ident: bb0020 article-title: The effect of uncertainty on stock market volatility and correlation publication-title: J. Bank. Financ. – volume: 42 start-page: 40 year: 2017 end-page: 65 ident: bb0185 article-title: Informed trading in S&P index options? Evidence from the 2008 financial crisis publication-title: J. Empir. Financ. – volume: 58 year: 2020 ident: bb0240 article-title: Macroeconomic forecasting using factor models and machine learning: an application to Japan publication-title: Journal of the Japanese and International Economies – start-page: 4768 year: 2017 end-page: 4777 ident: bb0230 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17 – volume: 39 start-page: 401 year: 2024 end-page: 421 ident: bb0125 article-title: The macroeconomy as a random forest publication-title: J. Appl. Econ. – volume: 93 year: 2024 ident: bb0350 article-title: Asymmetric and high-order risk transmission across VIX and Chinese futures markets publication-title: Int. Rev. Financ. Anal. – volume: 31 start-page: 151 year: 2013 end-page: 164 ident: bb0260 article-title: Bayesian analysis of latent threshold dynamic models publication-title: J. Bus. Econ. Stat. – volume: 41 year: 2021 ident: bb0330 article-title: How does economic policy uncertainty affect corporate risk-taking? publication-title: Evidence from China. Finance Research Letters – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0310 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B. Methodol. – volume: 552 year: 2023 ident: bb0145 article-title: Economic system forecasting based on temporal fusion transformers: multi-dimensional evaluation and cross-model comparative analysis publication-title: Neurocomputing – volume: 164 year: 2024 ident: bb0270 article-title: Interpretable machine learning for creditor recovery rates publication-title: J. Bank. Financ. – year: 2022 ident: bb0005 article-title: The world uncertainty index publication-title: Working Paper Series – volume: 129 year: 2024 ident: bb0085 article-title: Efficient predictability of oil price: the role of VIX-based panic index shadow line difference publication-title: Energy Econ. – volume: 131 start-page: 1593 year: 2016 end-page: 1636 ident: bb0030 article-title: Measuring economic policy uncertainty* publication-title: Q. J. Econ. – volume: 56 year: 2023 ident: bb0025 article-title: Twitter matters for metaverse stocks amid economic uncertainty publication-title: Financ. Res. Lett. – volume: 552 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0145 article-title: Economic system forecasting based on temporal fusion transformers: multi-dimensional evaluation and cross-model comparative analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126500 – volume: 49 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0205 article-title: The world uncertainty index and GDP growth rate publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2022.103137 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.techfore.2025.124094_bb0310 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 93 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0350 article-title: Asymmetric and high-order risk transmission across VIX and Chinese futures markets publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2024.103114 – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.techfore.2025.124094_bb0045 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 190 year: 2020 ident: 10.1016/j.techfore.2025.124094_bb0165 article-title: Identification of business cycles and the Great Moderation in the post-war U.S. economy publication-title: Econ. Lett. doi: 10.1016/j.econlet.2020.109072 – start-page: 883 year: 2018 ident: 10.1016/j.techfore.2025.124094_bb0065 article-title: Learning to explain: an information-theoretic perspective on model interpretation – volume: 77 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0140 article-title: Oil-price uncertainty and the U.K. unemployment rate: a forecasting experiment with random forests using 150 years of data publication-title: Res. Policy – volume: 96 start-page: 835 year: 2009 ident: 10.1016/j.techfore.2025.124094_bb0150 article-title: Bayesian lasso regression publication-title: Biometrika doi: 10.1093/biomet/asp047 – year: 2013 ident: 10.1016/j.techfore.2025.124094_bb0355 – volume: 28 start-page: 3 year: 2014 ident: 10.1016/j.techfore.2025.124094_bb0315 article-title: Big Data: new tricks for econometrics publication-title: J. Econ. Perspect. doi: 10.1257/jep.28.2.3 – year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0005 article-title: The world uncertainty index – volume: 42 start-page: 40 year: 2017 ident: 10.1016/j.techfore.2025.124094_bb0185 article-title: Informed trading in S&P index options? Evidence from the 2008 financial crisis publication-title: J. Empir. Financ. doi: 10.1016/j.jempfin.2017.01.001 – volume: 139 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0325 article-title: The term effect of financial cycle variables on GDP growth publication-title: J. Int. Money Financ. doi: 10.1016/j.jimonfin.2023.102970 – year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0210 article-title: An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors publication-title: Int. J. Forecast. – volume: 56 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0025 article-title: Twitter matters for metaverse stocks amid economic uncertainty publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2023.104116 – volume: 39 start-page: 986 year: 2020 ident: 10.1016/j.techfore.2025.124094_bb0070 article-title: A deep residual compensation extreme learning machine and applications publication-title: J. Forecast. doi: 10.1002/for.2663 – start-page: 4768 year: 2017 ident: 10.1016/j.techfore.2025.124094_bb0230 article-title: A unified approach to interpreting model predictions – volume: 208 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0320 article-title: Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: does uncertainty from the Russo-Ukrainian conflict matter? publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123723 – volume: 205 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0215 article-title: Carbon dioxide emissions and economic growth: new evidence from GDP forecasting publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123464 – volume: 20 year: 2019 ident: 10.1016/j.techfore.2025.124094_bb0010 article-title: Economic policy uncertainty: a literature review publication-title: The Journal of Economic Asymmetries doi: 10.1016/j.jeca.2019.e00133 – volume: 40 start-page: 1070 year: 2021 ident: 10.1016/j.techfore.2025.124094_bb0235 article-title: Global economic policy uncertainty and gold futures market volatility: evidence from Markov regime-switching GARCH-MIDAS models publication-title: J. Forecast. doi: 10.1002/for.2753 – volume: 34 start-page: 339 year: 2018 ident: 10.1016/j.techfore.2025.124094_bb0180 article-title: Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2016.02.012 – start-page: 794 year: 2020 ident: 10.1016/j.techfore.2025.124094_bb0190 article-title: AutoST: efficient neural architecture search for spatio-temporal prediction – volume: 187 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0225 article-title: Multi-objective Lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115939 – volume: 46 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0105 article-title: Assessing machine learning for forecasting economic risk: evidence from an expanded Chinese financial information set publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2021.102273 – volume: 203 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0245 article-title: Estimating urban GDP growth using nighttime lights and machine learning techniques in data poor environments: the case of South Sudan publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123399 – volume: 202 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0340 article-title: Climate policy uncertainty and the U.S. economic cycle publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123344 – volume: 105 start-page: 486 year: 2015 ident: 10.1016/j.techfore.2025.124094_bb0075 article-title: Post-selection and post-regularization inference in linear models with many controls and instruments publication-title: Am. Econ. Rev. doi: 10.1257/aer.p20151022 – volume: 209 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0080 article-title: Can artificial intelligence and green finance affect economic cycles? publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123740 – volume: 204 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0345 article-title: Country-level energy-related uncertainties and stock market returns: insights from the U.S. and China publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123437 – volume: 129 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0220 article-title: Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2023.107268 – volume: 131 start-page: 1593 year: 2016 ident: 10.1016/j.techfore.2025.124094_bb0030 article-title: Measuring economic policy uncertainty* publication-title: Q. J. Econ. doi: 10.1093/qje/qjw024 – volume: 130 start-page: 273 year: 2006 ident: 10.1016/j.techfore.2025.124094_bb0160 article-title: On the selection of forecasting models publication-title: J. Econ. doi: 10.1016/j.jeconom.2005.03.003 – volume: 31 start-page: 151 year: 2013 ident: 10.1016/j.techfore.2025.124094_bb0260 article-title: Bayesian analysis of latent threshold dynamic models publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.2012.747847 – volume: 210 year: 2025 ident: 10.1016/j.techfore.2025.124094_bb0035 article-title: Connectedness among diverse financial assets: evidence from cryptocurrency uncertainty indices publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123874 – volume: 41 year: 2021 ident: 10.1016/j.techfore.2025.124094_bb0330 article-title: How does economic policy uncertainty affect corporate risk-taking? publication-title: Evidence from China. Finance Research Letters – volume: 210 year: 2025 ident: 10.1016/j.techfore.2025.124094_bb0175 article-title: Probabilistic electricity price forecasting by integrating interpretable model publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123846 – year: 2021 ident: 10.1016/j.techfore.2025.124094_bb0120 – volume: 42 start-page: 971 year: 1974 ident: 10.1016/j.techfore.2025.124094_bb0135 article-title: Errors in variables and other unobservables publication-title: Econometrica doi: 10.2307/1914213 – volume: 46 start-page: 445 year: 2018 ident: 10.1016/j.techfore.2025.124094_bb0100 article-title: The economic value of business cycle forecasts for potential investors – evidence from Germany publication-title: Res. Int. Bus. Financ. doi: 10.1016/j.ribaf.2018.06.001 – volume: 44 start-page: 293 year: 1999 ident: 10.1016/j.techfore.2025.124094_bb0295 article-title: Forecasting inflation publication-title: J. Monet. Econ. doi: 10.1016/S0304-3932(99)00027-6 – start-page: 785 year: 2016 ident: 10.1016/j.techfore.2025.124094_bb0060 article-title: XGBoost – volume: 129 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0085 article-title: Efficient predictability of oil price: the role of VIX-based panic index shadow line difference publication-title: Energy Econ. doi: 10.1016/j.eneco.2023.107234 – start-page: 1135 year: 2016 ident: 10.1016/j.techfore.2025.124094_bb0280 article-title: Why should I trust you? – volume: 182 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0200 article-title: Climate policy uncertainty and world renewable energy index volatility forecasting publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2022.121810 – volume: 39 start-page: 401 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0125 article-title: The macroeconomy as a random forest publication-title: J. Appl. Econ. doi: 10.1002/jae.3030 – year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0305 article-title: Enhancing exchange rate prediction and risk management under uncertainty shocks: an AI-driven ensemble prediction model based on metaheuristic optimization publication-title: Ann. Oper. Res. doi: 10.1007/s10479-024-06319-4 – volume: 208 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0335 article-title: Asymmetric spillovers and resilience in physical and financial assets amid climate policy uncertainties: evidence from China publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2024.123701 – volume: 190 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0265 article-title: Artificial neural network (ANN)-based estimation of the influence of COVID-19 pandemic on dynamic and emerging financial markets publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2023.122470 – volume: 40 start-page: 1310 year: 2021 ident: 10.1016/j.techfore.2025.124094_bb0195 article-title: The information content of uncertainty indices for natural gas futures volatility forecasting publication-title: J. Forecast. doi: 10.1002/for.2769 – volume: 37 start-page: 920 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0130 article-title: How is machine learning useful for macroeconomic forecasting? publication-title: J. Appl. Econ. doi: 10.1002/jae.2910 – volume: 112 start-page: 1194 year: 2022 ident: 10.1016/j.techfore.2025.124094_bb0050 article-title: Measuring geopolitical risk publication-title: Am. Econ. Rev. doi: 10.1257/aer.20191823 – volume: 196 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0300 article-title: Interpretable high-stakes decision support system for credit default forecasting publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2023.122825 – volume: 39 start-page: 791 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0015 article-title: The power of text-based indicators in forecasting Italian economic activity publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2022.02.006 – volume: 58 year: 2020 ident: 10.1016/j.techfore.2025.124094_bb0240 article-title: Macroeconomic forecasting using factor models and machine learning: an application to Japan publication-title: Journal of the Japanese and International Economies doi: 10.1016/j.jjie.2020.101104 – volume: 94 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0250 article-title: Inflation prediction in emerging economies: machine learning and FX reserves integration for enhanced forecasting publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2024.103238 – volume: 31 start-page: 87 year: 2017 ident: 10.1016/j.techfore.2025.124094_bb0255 article-title: Machine learning: an applied econometric approach publication-title: J. Econ. Perspect. doi: 10.1257/jep.31.2.87 – volume: 66 start-page: 132 year: 2017 ident: 10.1016/j.techfore.2025.124094_bb0170 article-title: Forecasting China’s GDP growth using dynamic factors and mixed-frequency data publication-title: Econ. Model. doi: 10.1016/j.econmod.2017.06.005 – volume: 164 year: 2024 ident: 10.1016/j.techfore.2025.124094_bb0270 article-title: Interpretable machine learning for creditor recovery rates publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2024.107187 – volume: 67 start-page: 225 year: 2020 ident: 10.1016/j.techfore.2025.124094_bb0155 article-title: How does economic policy uncertainty affect corporate innovation?–evidence from China listed companies publication-title: Int. Rev. Econ. Financ. doi: 10.1016/j.iref.2020.01.006 – volume: 154 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0020 article-title: The effect of uncertainty on stock market volatility and correlation publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2023.106929 – volume: 124 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0090 article-title: Measuring the energy-related uncertainty index publication-title: Energy Econ. doi: 10.1016/j.eneco.2023.106817 – volume: 32 year: 2020 ident: 10.1016/j.techfore.2025.124094_bb0110 article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2019.01.011 – volume: 103 start-page: 681 year: 2008 ident: 10.1016/j.techfore.2025.124094_bb0275 article-title: The Bayesian lasso publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – volume: 1 start-page: 206 year: 2019 ident: 10.1016/j.techfore.2025.124094_bb0285 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0048-x – volume: 270 start-page: 654 year: 2018 ident: 10.1016/j.techfore.2025.124094_bb0115 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 – year: 2019 ident: 10.1016/j.techfore.2025.124094_bb0095 article-title: Economic policy uncertainty in China since 1949: the view from mainland newspapers – volume: 35 start-page: 555 year: 2019 ident: 10.1016/j.techfore.2025.124094_bb0055 article-title: Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2018.10.008 – volume: 28 start-page: 29 year: 2014 ident: 10.1016/j.techfore.2025.124094_bb0040 article-title: High-dimensional methods and inference on structural and treatment effects publication-title: J. Econ. Perspect. doi: 10.1257/jep.28.2.29 – volume: 39 start-page: 1097 year: 2023 ident: 10.1016/j.techfore.2025.124094_bb0290 article-title: The power of narrative sentiment in economic forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2022.04.008 |
| SSID | ssj0007386 |
| Score | 2.4576418 |
| Snippet | The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124094 |
| SubjectTerms | Economic cycle Interpretable machine learning News narrative sentiment Prediction Uncertainty indices |
| Title | Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment |
| URI | https://dx.doi.org/10.1016/j.techfore.2025.124094 |
| Volume | 215 |
| WOSCitedRecordID | wos001456997700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0040-1625 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007386 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDtyjLrhNv7GOFFhWEKiSKupyi2HFoqtZbbXer5cB_ZyZ-bAqVCkJcoiiKHcXzxf4ynm-GkNdmYjhu16VVk-sU-H-TqqKQcJYblgNPUsYVmygODsR8Lj8NBj-CFubytLBWbDby_L-aGq6BsVE6-xfmjp3CBTgHo8MRzA7HPzL8zB5jDg37LTFedJzo73APBhQaXV10cc64eNVJF-YYgg5RQnXWhVaaUEvCyReReCe2Wvoc4ahWamO8jOe10UMfFJHxSQgt75jXQcngt6G6Ce_ItJs2IvTIu6-_LvyK2vdpf2y3wQhutpy3x-s22cdEA-tl34HB-DbQynnVgrLmSuBnF-k4mTpRdJipmVN-_jbrOwfEyQjT3uIbjvAxI2AuY1dA-ZeM2p-xc-wb6B-sz1zcIjus4FIMyc7e-9n8Q1zKsSJqCLvEBj2J-fVPu57d9BjL4X1yz_9q0D0HkQdkYOxDcreXgPIRaSNYaAAL7cBCeyakHVjowtIrYKEeLDSAhQJYKIKFRrDQCJbH5Mu72eHb_dQX30g1k-NV2hiOm6ysYErD15wpAX-eWc11ZVjFZVXDR55nelxPprpQdcYauFMqKVUODJSb7AkZ2oU1TwnNx1qKTE1E0eRAf6ZCcgXEsRJ1UwvZ5LuEh0Ertc9MjwVSTssQgnhShsEucbBLN9i75E1sd-5ys9zYQgablJ5hOuZYApRuaPvsH9o-J3e2yH9Bhqvl2rwkt_Xlqr1YvvKo-wmoU6iY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+economic+cycle+forecasting+based+on+interpretable+machine+learning+and+news+narrative+sentiment&rft.jtitle=Technological+forecasting+%26+social+change&rft.au=Sun%2C+Weixin&rft.au=Wang%2C+Yong&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Xihui+Haviour&rft.date=2025-06-01&rft.pub=Elsevier+Inc&rft.issn=0040-1625&rft.volume=215&rft_id=info:doi/10.1016%2Fj.techfore.2025.124094&rft.externalDocID=S0040162525001258 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1625&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1625&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1625&client=summon |