Optimal Testing of Multivariate Polynomials over Small Prime Fields

We consider the problem of testing whether a given function $f : {\mathbb F}_q^n \rightarrow {\mathbb F}_q$ is close to an $n$-variate degree $d$ polynomial over the finite field ${\mathbb F}_q$ of $q$ elements. The natural, low-query test for this property would be to first pick the smallest dimens...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 42; číslo 2; s. 536 - 562
Hlavní autoři: Haramaty, Elad, Shpilka, Amir, Sudan, Madhu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of testing whether a given function $f : {\mathbb F}_q^n \rightarrow {\mathbb F}_q$ is close to an $n$-variate degree $d$ polynomial over the finite field ${\mathbb F}_q$ of $q$ elements. The natural, low-query test for this property would be to first pick the smallest dimension $t = t_{q,d}\approx d/q$ such that every function of degree greater than $d$ reveals this aspect on some $t$-dimensional affine subspace of ${\mathbb F}_q^n$. Then, one would test that $f$ when restricted to a random $t$-dimensional affine subspace is a polynomial of degree at most $d$ on this subspace. Such a test makes only $q^t$ queries, independent of $n$. Previous works, by Alon et al. [IEEE Trans. Inform. Theory, 51 (2005), pp. 4032--4039], Kaufman and Ron [SIAM J. Comput., 36 (2006), pp. 779--802], and Jutla et al. [Proceedings of the $45$th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 423--432], showed that this natural test rejected functions that were $\Omega(1)$-far from degree $d$-polynomials with probability at least $\Omega(q^{-t})$. (The initial work [IEEE Trans. Inform. Theory, 51 (2005), pp. 4032--4039] considered only the case of $q=2$, while the work [Proceedings of the $45$th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 423--432] considered only the case of prime $q$. The results in [SIAM J. Comput., 36 (2006), pp. 779--802] hold for all fields.) Thus to get a constant probability of detecting functions that are at a constant distance from the space of degree $d$ polynomials, the tests made $q^{2t}$ queries. Kaufman and Ron also noted that when $q$ is prime, then $q^t$ queries are necessary. Thus these tests were off by at least a quadratic factor from known lower bounds. Bhattacharyya et al. [Proceedings of the $51$st Annual IEEE Symposium on Foundations of Computer Science, 2010, pp. 488--497] gave an optimal analysis of this test for the case of the binary field and showed that the natural test actually rejects functions that were $\Omega(1)$-far from degree $d$-polynomials with probability $\Omega(1)$. In this work we extend this result for all fields showing that the natural test does indeed reject functions that are $\Omega(1)$-far from degree $d$ polynomials with $\Omega(1)$-probability, where the constants depend only on $q$ the field size. Thus our analysis shows that this test is optimal (matches known lower bounds) when $q$ is prime. The main technical ingredient in our work is a tight analysis of the number of "hyperplanes" (affine subspaces of co-dimension $1$) on which the restriction of a degree $d$ polynomial has degree less than $d$. We show that the number of such hyperplanes is at most $O(q^{t_{q,d}})$---which is tight to within constant factors. [PUBLICATION ABSTRACT]
AbstractList We consider the problem of testing whether a given function $f : {\mathbb F}_q Delta \rightarrow {\mathbb F}_q$ is close to an $n$-variate degree $d$ polynomial over the finite field ${\mathbb F}_q$ of $q$ elements. The natural, low-query test for this property would be to first pick the smallest dimension $t = t_{q,d}\approx d/q$ such that every function of degree greater than $d$ reveals this aspect on some $t$-dimensional affine subspace of ${\mathbb F}_q Delta $. Then, one would test that $f$ when restricted to a random $t$-dimensional affine subspace is a polynomial of degree at most $d$ on this subspace. Such a test makes only $q tau $ queries, independent of $n$. Previous works, by Alon et al. [IEEE Trans. Inform. Theory , 51 (2005), pp. 4032--4039], Kaufman and Ron [SIAM J. Comput. , 36 (2006), pp. 779--802], and Jutla et al. [Proceedings of the $45$th Annual IEEE Symposium on Foundations of Computer Science , 2004, pp. 423--432], showed that this natural test rejected functions that were $\Omega(1)$-far from degree $d$-polynomials with probability at least $\Omega(q-t})$. (The initial work [IEEE Trans. Inform. Theory , 51 (2005), pp. 4032--4039] considered only the case of $q=2$, while the work [Proceedings of the $45$th Annual IEEE Symposium on Foundations of Computer Science , 2004, pp. 423--432] considered only the case of prime $q$. The results in [SIAM J. Comput. , 36 (2006), pp. 779--802] hold for all fields.) Thus to get a constant probability of detecting functions that are at a constant distance from the space of degree $d$ polynomials, the tests made $q2t}$ queries. Kaufman and Ron also noted that when $q$ is prime, then $q tau $ queries are necessary. Thus these tests were off by at least a quadratic factor from known lower bounds. Bhattacharyya et al. [Proceedings of the $51$st Annual IEEE Symposium on Foundations of Computer Science , 2010, pp. 488--497] gave an optimal analysis of this test for the case of the binary field and showed that the natural test actually rejects functions that were $\Omega(1)$-far from degree $d$-polynomials with probability $\Omega(1)$. In this work we extend this result for all fields showing that the natural test does indeed reject functions that are $\Omega(1)$-far from degree $d$ polynomials with $\Omega(1)$-probability, where the constants depend only on $q$ the field size. Thus our analysis shows that this test is optimal (matches known lower bounds) when $q$ is prime. The main technical ingredient in our work is a tight analysis of the number of "hyperplanes" (affine subspaces of co-dimension $1$) on which the restriction of a degree $d$ polynomial has degree less than $d$. We show that the number of such hyperplanes is at most $O(qt_{q,d}})$---which is tight to within constant factors.
We consider the problem of testing whether a given function $f : {\mathbb F}_q^n \rightarrow {\mathbb F}_q$ is close to an $n$-variate degree $d$ polynomial over the finite field ${\mathbb F}_q$ of $q$ elements. The natural, low-query test for this property would be to first pick the smallest dimension $t = t_{q,d}\approx d/q$ such that every function of degree greater than $d$ reveals this aspect on some $t$-dimensional affine subspace of ${\mathbb F}_q^n$. Then, one would test that $f$ when restricted to a random $t$-dimensional affine subspace is a polynomial of degree at most $d$ on this subspace. Such a test makes only $q^t$ queries, independent of $n$. Previous works, by Alon et al. [IEEE Trans. Inform. Theory, 51 (2005), pp. 4032--4039], Kaufman and Ron [SIAM J. Comput., 36 (2006), pp. 779--802], and Jutla et al. [Proceedings of the $45$th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 423--432], showed that this natural test rejected functions that were $\Omega(1)$-far from degree $d$-polynomials with probability at least $\Omega(q^{-t})$. (The initial work [IEEE Trans. Inform. Theory, 51 (2005), pp. 4032--4039] considered only the case of $q=2$, while the work [Proceedings of the $45$th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 423--432] considered only the case of prime $q$. The results in [SIAM J. Comput., 36 (2006), pp. 779--802] hold for all fields.) Thus to get a constant probability of detecting functions that are at a constant distance from the space of degree $d$ polynomials, the tests made $q^{2t}$ queries. Kaufman and Ron also noted that when $q$ is prime, then $q^t$ queries are necessary. Thus these tests were off by at least a quadratic factor from known lower bounds. Bhattacharyya et al. [Proceedings of the $51$st Annual IEEE Symposium on Foundations of Computer Science, 2010, pp. 488--497] gave an optimal analysis of this test for the case of the binary field and showed that the natural test actually rejects functions that were $\Omega(1)$-far from degree $d$-polynomials with probability $\Omega(1)$. In this work we extend this result for all fields showing that the natural test does indeed reject functions that are $\Omega(1)$-far from degree $d$ polynomials with $\Omega(1)$-probability, where the constants depend only on $q$ the field size. Thus our analysis shows that this test is optimal (matches known lower bounds) when $q$ is prime. The main technical ingredient in our work is a tight analysis of the number of "hyperplanes" (affine subspaces of co-dimension $1$) on which the restriction of a degree $d$ polynomial has degree less than $d$. We show that the number of such hyperplanes is at most $O(q^{t_{q,d}})$---which is tight to within constant factors. [PUBLICATION ABSTRACT]
Author Shpilka, Amir
Haramaty, Elad
Sudan, Madhu
Author_xml – sequence: 1
  givenname: Elad
  surname: Haramaty
  fullname: Haramaty, Elad
– sequence: 2
  givenname: Amir
  surname: Shpilka
  fullname: Shpilka, Amir
– sequence: 3
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
BookMark eNpt0MFKAzEQBuAgFWyrB98g4EUPazObzWb3KMWqUGnB3pfsJpGUdFOTbKFvb6TioXiaw3wzzPwTNOpdrxC6BfIIQPkMclLxOmf8Ao2B1CzjADBCY0JqnjFa8ys0CWFLCBQF0DGar_bR7ITFGxWi6T-x0_h9sNEchDciKrx29ti7nRE2YHdQHn8kbfHam53CC6OsDNfoUqe2uvmtU7RZPG_mr9ly9fI2f1pmXV6TmOlKlwKUZlDxVrZSlWWluJZatkRAKzlTFWlz1cmWlkpIppMALQpekpwAnaL709q9d19DOrfZmdApa0Wv3BAaoEVdUJozmujdGd26wffpuKSgqtL3rEzq4aQ670LwSjf79JXwxwZI85Nm85dmsrMz25koonF99MLYfya-AaZad70
CitedBy_id crossref_primary_10_1109_TIT_2018_2863713
crossref_primary_10_1137_140995520
crossref_primary_10_1137_23M1571022
Cites_doi 10.1007/BF03041066
10.1109/18.868484
10.1109/TIT.2005.856958
10.1137/S0097539704445615
10.1137/S0097539793255151
10.4007/annals.2012.175.3.6
ContentType Journal Article
Copyright 2013, Society for Industrial and Applied Mathematics
Copyright_xml – notice: 2013, Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7RQ
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
U9A
7SC
8FD
L7M
L~C
L~D
DOI 10.1137/120879257
DatabaseName CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global (OCUL)
Agricultural Science Database
Computing Database
Military Database
Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1095-7111
EndPage 562
ExternalDocumentID 2924001581
10_1137_120879257
GroupedDBID --Z
-DZ
-~X
.4S
.DC
123
4.4
7RQ
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABPPZ
ABUFD
ABUWG
ACBEA
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ACUHS
ADBBV
ADMHC
ADXHL
AEMOZ
AENEX
AFFHD
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EAS
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
MK~
NHB
OHT
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
S0W
TAE
TH9
TN5
TUS
TWZ
UHB
UQL
VOH
WH7
WHG
XJE
YNT
YYP
YZZ
ZCG
ZY4
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
U9A
7SC
8FD
L7M
L~C
L~D
ID FETCH-LOGICAL-c290t-f8f6a1ef5187bdbde668e7fdfdb0a1bd75e80b2ecdb36ead5fe661fa47602013
IEDL.DBID 7RQ
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318353800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0097-5397
IngestDate Sun Nov 09 09:32:53 EST 2025
Fri Jul 25 10:33:40 EDT 2025
Tue Nov 18 21:23:58 EST 2025
Sat Nov 29 03:54:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-f8f6a1ef5187bdbde668e7fdfdb0a1bd75e80b2ecdb36ead5fe661fa47602013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1318801456
PQPubID 666313
PageCount 27
ParticipantIDs proquest_miscellaneous_1349433253
proquest_journals_1318801456
crossref_primary_10_1137_120879257
crossref_citationtrail_10_1137_120879257
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on computing
PublicationYear 2013
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb9
atypb1
atypb3
atypb10
atypb4
atypb7
References_xml – ident: atypb4
  doi: 10.1007/BF03041066
– ident: atypb3
  doi: 10.1109/18.868484
– ident: atypb1
  doi: 10.1109/TIT.2005.856958
– ident: atypb7
  doi: 10.1137/S0097539704445615
– ident: atypb10
  doi: 10.1137/S0097539793255151
– ident: atypb9
  doi: 10.4007/annals.2012.175.3.6
SSID ssj0014413
Score 2.1793075
Snippet We consider the problem of testing whether a given function $f : {\mathbb F}_q^n \rightarrow {\mathbb F}_q$ is close to an $n$-variate degree $d$ polynomial...
We consider the problem of testing whether a given function $f : {\mathbb F}_q Delta \rightarrow {\mathbb F}_q$ is close to an $n$-variate degree $d$...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 536
SubjectTerms Algebra
Computer science
Foundations
Hyperplanes
Lower bounds
Mathematical analysis
Mathematical models
Optimization
Polynomials
Queries
Subspaces
Title Optimal Testing of Multivariate Polynomials over Small Prime Fields
URI https://www.proquest.com/docview/1318801456
https://www.proquest.com/docview/1349433253
Volume 42
WOSCitedRecordID wos000318353800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: 7WY
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M0C
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M0K
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M7P
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Career & Technical Education Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: 7RQ
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/career
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: K7-
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M7S
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: PATMY
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: KB.
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M1Q
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: P5Z
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: BENPR
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M2O
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1095-7111
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0014413
  issn: 0097-5397
  databaseCode: M2P
  dateStart: 19720301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKywEOtBQqFtrKIA5cTOM4sZ0TalddIVW7De1KFC5RHNsIaUlKs63Ev2fG9aZUQlw45ClRJlYUjz3jj7xHyFuXWa9z3bC6yDyDeK2Z1oVjLhW54U5ZLeogNqFmM31xUZRxwq2P2ypXfWLoqG3X4Bz5ARfIHMYh3n-4_MlQNQpXV6OExgOyAYFaop-rs0_DKgKE-shCqVgOgTcyC3GhDniaaFWkGJX-jEf3u-MQYyab__t2W-RJzC7p4a07PCVrrt0mmyvlBhob8jZ5PB3YWvtnZHwK_cYPeG6OlBvtN9p5Gn7MvYGBNOSitOwWv_D3ZXBVils-6TlYL2iJ0gB0gnvg-udkPjmejz-yKK7AmrRIlsxrL2vufM61MtZYJ6V2yltvTVJzY1XudGJS11gjJLhb7sGC-zpTEjJMLnbIetu17gWh1hS-qQ0ckA44lRkoTxRCZkktIX2UI_Ju9YWrJhKPo_7FogoDEKGqoTJG5M1gennLtvE3o91VHVSxwfXVXQWMyOvhNjQVXP-oW9ddo01WIF1bLl7-u4hX5FEaVC9wpmWXrC-vrt0eedjcLL_3V_vBxxA_f9knG0fHs_IMrk4UQzx6DzhNxgFPEDnaTtPTgGXAOaIK5-ocsMy__gayPed7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcWihFLC1gEEhcrMZxEjsHhKrCqtW2y0rsobfIjm2EtCSl2Rb1R_EfmckmoUiIWw8ccsrEUjzjN-Ov9wBe-8QFneqSmzwJHPO15lrnnvtYplZ45bQ0rdiEmk716Wk-W4Of_V0YOlbZY2IL1K4uaY18T0hiDhOY79-ffeekGkW7q72ExiosJv7qB07ZmndHH9C_b-J4_HF-cMg7VQFexnm05EGHzAgfUqGVddb5LNNeBRecjYywTqVeRzb2pbMyw35OA1qIYBKVYWklJDZ7C24nUisaVhPFh00LrCw60kvFU8zzHZGRkGpPxJFWeUxJ8Hr6-xP925Q23vzPOuMBbHS1M9tfBftDWPPVFmz2uhSsg6ktuH8ycNE2j-DgE6LiN_xuToQi1RdWB9ZeO740OPiWns3qxRVdzsaByOhAK_uM1gs2I-EDNqYTfs02zG_ivx7DelVX_gkwZ_NQGosPFjteJRbbk7nMkshkWBxnI3jbO7QoO1p1UvdYFO30Sqpi8P0IXg2mZysukb8Z7fYuLzo4aYrf_h7By-E1AgHt7pjK1xdkk-RERpfKp_9u4gXcPZyfHBfHR9PJDtyLW30PWlPahfXl-YV_BnfKy-XX5vx5G94MihuOoF-r4zrr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Testing+of+Multivariate+Polynomials+over+Small+Prime+Fields&rft.jtitle=SIAM+journal+on+computing&rft.au=Haramaty%2C+Elad&rft.au=Shpilka%2C+Amir&rft.au=Sudan%2C+Madhu&rft.date=2013-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0097-5397&rft.eissn=1095-7111&rft.volume=42&rft.issue=2&rft.spage=536&rft_id=info:doi/10.1137%2F120879257&rft.externalDocID=2924001581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-5397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-5397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-5397&client=summon