Nonlinear Causal Discovery via Dynamic Latent Variables

Distinguishing causality from mere correlation is a cornerstone in empirical research, as conflating the two can result in significant errors in decision-making, affecting policy formulation and the validity of scientific inferences. Traditional experimental designs, such as randomized trials, often...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automation science and engineering Ročník 22; s. 10381 - 10391
Hlavní autori: Yang, Xing, Lan, Tian, Qiu, Hao, Zhang, Chen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1545-5955, 1558-3783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Distinguishing causality from mere correlation is a cornerstone in empirical research, as conflating the two can result in significant errors in decision-making, affecting policy formulation and the validity of scientific inferences. Traditional experimental designs, such as randomized trials, often fall short in complex systems where variables interact in a high-dimensional space with limited data. This paper aims to address these challenges by introducing an innovative causal discovery approach, extending beyond conventional methodologies by incorporating algorithmic advances in computational efficiency and design. We present a novel double Gaussian process state space causal model (GPSSCM) that contends with the multifaceted nature of causal inference, accounting for noisy observations and latent variables, which are commonly encountered in dynamic systems. Our methodological contribution includes the application of a Markov chain Monte Carlo technique for unraveling latent state dynamics and an expectation-maximization (EM) algorithm for robust parameter estimation. The acyclic nature of the causal graph is ensured through an integrated acyclic constraint within the EM framework, maintaining the integrity of the causal model. The efficacy of our proposed GPSSCM is evaluated through a series of tests on both synthetic data and empirical case studies from the industrial domain. The results highlight the model's capacity to accurately infer complex nonlinear causal relationships, demonstrating its superiority over traditional structural equation modeling, especially when dealing with time series data and latent variables. This paper not only contributes a sophisticated tool for researchers and practitioners but also enriches the literature on causal discovery by offering a new perspective on the analysis of intricate systems, thereby facilitating more informed and ethical decision-making across various scientific fields. Note to Practitioners-Understanding the intricate web of causality is crucial for making informed decisions in various scientific and professional fields. Our study presents a Gaussian process state space causal model, which enhances the analysis of dynamic causal relationships in complex systems, particularly when dealing with noisy observations and latent variables. Leveraging a combination of Markov chain Monte Carlo and expectation maximization algorithms, the model ensures accurate estimation of parameters and causal structures. This paper is particularly relevant for those in fields such as economics, transportation, and biology, offering a sophisticated tool to support ethical decision-making and safeguard against errors in high-stakes environments. The practical implications of this research are underscored by its ability to inform targeted interventions and predict outcomes under new conditions, advancing the comprehension and application of causality in real-world scenarios.
AbstractList Distinguishing causality from mere correlation is a cornerstone in empirical research, as conflating the two can result in significant errors in decision-making, affecting policy formulation and the validity of scientific inferences. Traditional experimental designs, such as randomized trials, often fall short in complex systems where variables interact in a high-dimensional space with limited data. This paper aims to address these challenges by introducing an innovative causal discovery approach, extending beyond conventional methodologies by incorporating algorithmic advances in computational efficiency and design. We present a novel double Gaussian process state space causal model (GPSSCM) that contends with the multifaceted nature of causal inference, accounting for noisy observations and latent variables, which are commonly encountered in dynamic systems. Our methodological contribution includes the application of a Markov chain Monte Carlo technique for unraveling latent state dynamics and an expectation-maximization (EM) algorithm for robust parameter estimation. The acyclic nature of the causal graph is ensured through an integrated acyclic constraint within the EM framework, maintaining the integrity of the causal model. The efficacy of our proposed GPSSCM is evaluated through a series of tests on both synthetic data and empirical case studies from the industrial domain. The results highlight the model's capacity to accurately infer complex nonlinear causal relationships, demonstrating its superiority over traditional structural equation modeling, especially when dealing with time series data and latent variables. This paper not only contributes a sophisticated tool for researchers and practitioners but also enriches the literature on causal discovery by offering a new perspective on the analysis of intricate systems, thereby facilitating more informed and ethical decision-making across various scientific fields. Note to Practitioners-Understanding the intricate web of causality is crucial for making informed decisions in various scientific and professional fields. Our study presents a Gaussian process state space causal model, which enhances the analysis of dynamic causal relationships in complex systems, particularly when dealing with noisy observations and latent variables. Leveraging a combination of Markov chain Monte Carlo and expectation maximization algorithms, the model ensures accurate estimation of parameters and causal structures. This paper is particularly relevant for those in fields such as economics, transportation, and biology, offering a sophisticated tool to support ethical decision-making and safeguard against errors in high-stakes environments. The practical implications of this research are underscored by its ability to inform targeted interventions and predict outcomes under new conditions, advancing the comprehension and application of causality in real-world scenarios.
Author Zhang, Chen
Yang, Xing
Qiu, Hao
Lan, Tian
Author_xml – sequence: 1
  givenname: Xing
  orcidid: 0000-0002-2051-3191
  surname: Yang
  fullname: Yang, Xing
  organization: College of Management, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Tian
  orcidid: 0009-0005-8331-1190
  surname: Lan
  fullname: Lan, Tian
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Hao
  surname: Qiu
  fullname: Qiu, Hao
  organization: Sichuan Baicha Baidao Industrial Company Ltd., Chengdu, China
– sequence: 4
  givenname: Chen
  orcidid: 0000-0002-4767-9597
  surname: Zhang
  fullname: Zhang, Chen
  email: zhangchen01@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNpNj0tqwzAYhEVJoUnaAxS68AXs6mlLy-CkDzDtomm34rcsgYojFykN-Pa1SRZdzTDMDHwrtAhDsAjdE1wQgtXjfvOxKyimvGCCUkWqK7QkQsicVZItZs9FLpQQN2iV0jeemlLhJarehtD7YCFmNfwm6LOtT2Y42ThmJw_Zdgxw8CZr4GjDMfuC6KHtbbpF1w76ZO8uukafT7t9_ZI378-v9abJDVX4mJfOUWxxy7llpewkNhJmz6BrqSGGY0KcqiojSiBly0EoZRjv3BS0VEi2RuT8a-KQUrRO_0R_gDhqgvVMrmdyPZPrC_m0eThvvLX2X19yKShhfxB7Vi8
CODEN ITASC7
Cites_doi 10.7551/mitpress/1754.001.0001
10.1016/j.ijar.2008.02.006
10.1080/00207170802382376
10.1080/01621459.2023.2179490
10.1002/widm.1449
10.1214/aoms/1177732676
10.24963/ijcai.2019/223
10.1080/01621459.1999.10473840
10.1109/TNNLS.2021.3106111
10.1109/ICDM.2013.103
10.3182/20140824-6-ZA-1003.01843
10.1093/biomet/asz048
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2024.3522917
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-3783
EndPage 10391
ExternalDocumentID 10_1109_TASE_2024_3522917
10848521
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2024A1515011712
  funderid: 10.13039/501100003453
– fundername: Natural Science Foundation of China
  grantid: 72401201; 71932006; 72334004
  funderid: 10.13039/501100001809
– fundername: Tsinghua-NUS Joint Research Initiative Fund
  grantid: 20243080039
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: 9222014
  funderid: 10.13039/501100004826
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c290t-6ff20e0b44e368d80c8a44e33adb2c1c4011f977c56a16b4a599c34dfc56b2583
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001406001900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 08:05:19 EST 2025
Wed Aug 27 02:04:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-6ff20e0b44e368d80c8a44e33adb2c1c4011f977c56a16b4a599c34dfc56b2583
ORCID 0000-0002-2051-3191
0009-0005-8331-1190
0000-0002-4767-9597
PageCount 11
ParticipantIDs crossref_primary_10_1109_TASE_2024_3522917
ieee_primary_10848521
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Zhang (ref9) 2012
ref15
ref14
Svensson (ref30)
Chen (ref2) 2022
Zhang (ref18) 2012
Samarasinghe (ref5)
Xie (ref17); 33
ref1
ref16
ref19
Lam (ref27)
Brouillard (ref20)
Pamfil (ref10)
Ng (ref26); 33
Yu (ref25) 2019
Wang (ref23); 18
Huang (ref4); 97
ref22
Reisach (ref21); 34
Krajzewicz (ref31)
ref29
ref8
ref7
ref6
Rohekar (ref28)
Tu (ref3)
Hoyer (ref11); 21
Zheng (ref24)
References_xml – ident: ref14
  doi: 10.7551/mitpress/1754.001.0001
– volume: 97
  start-page: 2901
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref4
  article-title: Causal discovery and forecasting in nonstationary environments with state-space models
– ident: ref7
  doi: 10.1016/j.ijar.2008.02.006
– ident: ref29
  doi: 10.1080/00207170802382376
– start-page: 213
  volume-title: Proc. 19th Int. Conf. Artif. Intell. Statist.
  ident: ref30
  article-title: Computationally efficient Bayesian learning of Gaussian process state space models
– volume: 33
  start-page: 14891
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: Generalized independent noise condition for estimating latent variable causal graphs
– year: 2012
  ident: ref18
  article-title: On the identifiability of the post-nonlinear causal model
  publication-title: arXiv:1205.2599
– start-page: 3414
  volume-title: Proc. Int. Conf. Artif. Intell. Statist. (AISTATS)
  ident: ref24
  article-title: Learning sparse nonparametric DAGs
– start-page: 1762
  volume-title: Proc. 22nd Int. Conf. Artif. Intell. Statist.
  ident: ref3
  article-title: Causal discovery in the presence of missing data
– ident: ref8
  doi: 10.1080/01621459.2023.2179490
– year: 2012
  ident: ref9
  article-title: Invariant Gaussian process latent variable models and application in causal discovery
  publication-title: arXiv:1203.3534
– start-page: 39939
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref28
  article-title: From temporal to contemporaneous iterative causal discovery in the presence of latent confounders
– start-page: 1595
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref10
  article-title: DYNOTEARS: Structure learning from time-series data
– volume: 18
  start-page: 1441
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Gaussian process dynamical models
– ident: ref1
  doi: 10.1002/widm.1449
– ident: ref6
  doi: 10.1214/aoms/1177732676
– ident: ref15
  doi: 10.24963/ijcai.2019/223
– ident: ref19
  doi: 10.1080/01621459.1999.10473840
– start-page: 1052
  volume-title: Proc. 38th Conf. Uncertainty Artif. Intell.
  ident: ref27
  article-title: Greedy relaxations of the sparsest permutation algorithm
– ident: ref13
  doi: 10.1109/TNNLS.2021.3106111
– start-page: 183
  volume-title: Proc. 4th Middle East Symp. Simulation Modelling (MESM)
  ident: ref31
  article-title: SUMO (Simulation of Urban MObility)—An open-source traffic simulation
– ident: ref12
  doi: 10.1109/ICDM.2013.103
– ident: ref22
  doi: 10.3182/20140824-6-ZA-1003.01843
– year: 2022
  ident: ref2
  article-title: A review and roadmap of deep learning causal discovery in different variable paradigms
  publication-title: arXiv:2209.06367
– ident: ref16
  doi: 10.1093/biomet/asz048
– volume: 33
  start-page: 17943
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: On the role of sparsity and dag constraints for learning linear dags
– year: 2019
  ident: ref25
  article-title: DAG-GNN: DAG structure learning with graph neural networks
  publication-title: arXiv:1904.10098
– volume: 21
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Nonlinear causal discovery with additive noise models
– volume: 34
  start-page: 27772
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Beware of the simulated DAG! Causal discovery benchmarks may be easy to game
– start-page: 53
  volume-title: Proc. Int. Workshop Climate Inform. (CI)
  ident: ref5
  article-title: Causal discovery in the presence of confounding latent variables for climate science
– start-page: 162
  volume-title: Proc. Conf. Causal Learn. Reasoning
  ident: ref20
  article-title: Typing assumptions improve identification in causal discovery
SSID ssj0024890
Score 2.4018438
Snippet Distinguishing causality from mere correlation is a cornerstone in empirical research, as conflating the two can result in significant errors in...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 10381
SubjectTerms Causal discovery
Cause effect analysis
Economics
Estimation
expectation maximization
Gaussian process
Gaussian processes
Heuristic algorithms
Inference algorithms
Kernel
Markov chain Monte Carlo
Mathematical models
Monte Carlo methods
Numerical analysis
state space model
Title Nonlinear Causal Discovery via Dynamic Latent Variables
URI https://ieeexplore.ieee.org/document/10848521
Volume 22
WOSCitedRecordID wos001406001900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA46BPXgY06cL3rwJHSmaZImx7EHHmQITtmt5Am7dLK2A_97k7Rju3jwFkIK4fvR5PfI9_sAeKKKcI60dacfo7EvFMXMHQmxlsamEmuuoAxiE9lsxhYL_t6S1QMXxhgTHp-ZgR-GWr5eqdqnytwfzjAjnjZ-mGW0IWvtGuuxkFDxLkFMOCFtCTOB_GU-_Ji4UBDhgXc3eBAn211Ce6oq4VKZnv9zOxfgrPUeo2Fj7ktwYIouON6Si8suON3rL3gFslnTCEOso5GoS_fleFkq_2jzJ9osRTRu5OijN-dwFlX05eJmz6Qqe-BzOpmPXuNWKSFWiMMqptYiaKDE2KSUaQYVE36cCi2RSpQLohLrPD1FqEioxMIZSKVYWzchEWHpNegUq8LcgEgYypRUmUCWYSu5INCmJFOSJwLRVPfB8xa6_LtpiJGHQALy3OOce5zzFuc-6HnY9hY2iN3-MX8HTpDX1w0pjnvQqda1eQBHalMty_VjsPcvZymn_g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA6iwvTgY06czx48CZ1pmrTJcezBxDkEp-xW8oRdOlm7gf-9SdqxXTx4CyGF8P1o8nvk-30APCaSMIaUsacfTUJXKAqpPRJCJbSJBVZMQuHFJtLJhM5m7L0mq3sujNbaPz7THTf0tXy1kCuXKrN_OMWUONr4AcEYwYqutW2tR31KxTkFIWGE1EXMCLLnafdjYINBhDvO4WBenmx7De3oqvhrZXj6zw2dgZPafwy6lcHPwZ7Om6CxoRcXTXC802HwAqSTqhUGXwY9virsl_15Id2zzZ9gPedBvxKkD8bW5czL4MtGzo5LVbTA53Aw7Y3CWishlIjBMkyMQVBDgbGOE6oolJS7ccyVQDKSNoyKjPX1JEl4lAjMrYlkjJWxEwIRGl-C_XyR6ysQcJ1QKWTKkaHYCMYJNDFJpWARR0ms2uBpA132XbXEyHwoAVnmcM4czlmNcxu0HGw7CyvErv-YfwCN0fRtnI1fJq834Ag5tV2f8LgF--Vype_AoVyX82J5723_C1b8q0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Causal+Discovery+via+Dynamic+Latent+Variables&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yang%2C+Xing&rft.au=Lan%2C+Tian&rft.au=Qiu%2C+Hao&rft.au=Zhang%2C+Chen&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=10381&rft.epage=10391&rft_id=info:doi/10.1109%2FTASE.2024.3522917&rft.externalDocID=10848521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon