Direct recovery of Zn from wasted alkaline batteries through selective anode's separation

In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram, under development, that aims at maximizing the value of all the battery components while reducing the costs of treatment and the environmental...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of environmental management Ročník 321; s. 115979
Hlavní autoři: V Valdrez, Inês, F Almeida, Manuel, M Dias, Joana
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2022
Témata:
ISSN:0301-4797, 1095-8630, 1095-8630
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram, under development, that aims at maximizing the value of all the battery components while reducing the costs of treatment and the environmental footprint involved in recycling this waste. It starts by a physical and selective pre-treatment stage that separates the anode from the remaining components followed by neutral leaching (three washing cycles at room temperature, S/L ratio of 1/5 (w/v), magnetic stirring for 15 min and settling during 45 min), acid leaching of the washed solid (4 mol/L of sulphuric acid, S/L ratio of 1/3 (w/v), 120 min at room temperature under magnetic stirring) and, finally, electrowinning of zinc from the pregnant leach solution (100 mA/cm2, 120 min under slow magnetic stirring). By leaching the anode alone, it is possible to obtain a solution rich in zinc (86 g/L), with very low concentration of other metals (<0.08 g/L). Such solution was adequate for zinc electrowinning, allowing an average recovery rate of 58%, without applying any purification stages, at the same time regenerating sulphuric acid for its recirculation. In conclusion, the results demonstrate that a more specific physical pre-treatment stage is highly desirable to recycle spent alkaline batteries in order to reduce the number of stages involved and the overall complexity, thus, reducing the costs involved and the potential environmental impacts, while maintaining high recovery rates of zinc. [Display omitted] •A more selective dismantling of alkaline batteries is proposed for their recycling.•The technical advantages of separating the anode were assessed.•Zinc was recovered by electrowinning after neutral and acid leaching of the anode.•A recovery rate of 58% of metallic zinc was obtained.
AbstractList In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram, under development, that aims at maximizing the value of all the battery components while reducing the costs of treatment and the environmental footprint involved in recycling this waste. It starts by a physical and selective pre-treatment stage that separates the anode from the remaining components followed by neutral leaching (three washing cycles at room temperature, S/L ratio of 1/5 (w/v), magnetic stirring for 15 min and settling during 45 min), acid leaching of the washed solid (4 mol/L of sulphuric acid, S/L ratio of 1/3 (w/v), 120 min at room temperature under magnetic stirring) and, finally, electrowinning of zinc from the pregnant leach solution (100 mA/cm2, 120 min under slow magnetic stirring). By leaching the anode alone, it is possible to obtain a solution rich in zinc (86 g/L), with very low concentration of other metals (<0.08 g/L). Such solution was adequate for zinc electrowinning, allowing an average recovery rate of 58%, without applying any purification stages, at the same time regenerating sulphuric acid for its recirculation. In conclusion, the results demonstrate that a more specific physical pre-treatment stage is highly desirable to recycle spent alkaline batteries in order to reduce the number of stages involved and the overall complexity, thus, reducing the costs involved and the potential environmental impacts, while maintaining high recovery rates of zinc.In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram, under development, that aims at maximizing the value of all the battery components while reducing the costs of treatment and the environmental footprint involved in recycling this waste. It starts by a physical and selective pre-treatment stage that separates the anode from the remaining components followed by neutral leaching (three washing cycles at room temperature, S/L ratio of 1/5 (w/v), magnetic stirring for 15 min and settling during 45 min), acid leaching of the washed solid (4 mol/L of sulphuric acid, S/L ratio of 1/3 (w/v), 120 min at room temperature under magnetic stirring) and, finally, electrowinning of zinc from the pregnant leach solution (100 mA/cm2, 120 min under slow magnetic stirring). By leaching the anode alone, it is possible to obtain a solution rich in zinc (86 g/L), with very low concentration of other metals (<0.08 g/L). Such solution was adequate for zinc electrowinning, allowing an average recovery rate of 58%, without applying any purification stages, at the same time regenerating sulphuric acid for its recirculation. In conclusion, the results demonstrate that a more specific physical pre-treatment stage is highly desirable to recycle spent alkaline batteries in order to reduce the number of stages involved and the overall complexity, thus, reducing the costs involved and the potential environmental impacts, while maintaining high recovery rates of zinc.
In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram, under development, that aims at maximizing the value of all the battery components while reducing the costs of treatment and the environmental footprint involved in recycling this waste. It starts by a physical and selective pre-treatment stage that separates the anode from the remaining components followed by neutral leaching (three washing cycles at room temperature, S/L ratio of 1/5 (w/v), magnetic stirring for 15 min and settling during 45 min), acid leaching of the washed solid (4 mol/L of sulphuric acid, S/L ratio of 1/3 (w/v), 120 min at room temperature under magnetic stirring) and, finally, electrowinning of zinc from the pregnant leach solution (100 mA/cm², 120 min under slow magnetic stirring). By leaching the anode alone, it is possible to obtain a solution rich in zinc (86 g/L), with very low concentration of other metals (<0.08 g/L). Such solution was adequate for zinc electrowinning, allowing an average recovery rate of 58%, without applying any purification stages, at the same time regenerating sulphuric acid for its recirculation. In conclusion, the results demonstrate that a more specific physical pre-treatment stage is highly desirable to recycle spent alkaline batteries in order to reduce the number of stages involved and the overall complexity, thus, reducing the costs involved and the potential environmental impacts, while maintaining high recovery rates of zinc.
In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram, under development, that aims at maximizing the value of all the battery components while reducing the costs of treatment and the environmental footprint involved in recycling this waste. It starts by a physical and selective pre-treatment stage that separates the anode from the remaining components followed by neutral leaching (three washing cycles at room temperature, S/L ratio of 1/5 (w/v), magnetic stirring for 15 min and settling during 45 min), acid leaching of the washed solid (4 mol/L of sulphuric acid, S/L ratio of 1/3 (w/v), 120 min at room temperature under magnetic stirring) and, finally, electrowinning of zinc from the pregnant leach solution (100 mA/cm2, 120 min under slow magnetic stirring). By leaching the anode alone, it is possible to obtain a solution rich in zinc (86 g/L), with very low concentration of other metals (<0.08 g/L). Such solution was adequate for zinc electrowinning, allowing an average recovery rate of 58%, without applying any purification stages, at the same time regenerating sulphuric acid for its recirculation. In conclusion, the results demonstrate that a more specific physical pre-treatment stage is highly desirable to recycle spent alkaline batteries in order to reduce the number of stages involved and the overall complexity, thus, reducing the costs involved and the potential environmental impacts, while maintaining high recovery rates of zinc. [Display omitted] •A more selective dismantling of alkaline batteries is proposed for their recycling.•The technical advantages of separating the anode were assessed.•Zinc was recovered by electrowinning after neutral and acid leaching of the anode.•A recovery rate of 58% of metallic zinc was obtained.
ArticleNumber 115979
Author M. Dias, Joana
F. Almeida, Manuel
V. Valdrez, Inês
Author_xml – sequence: 1
  givenname: Inês
  surname: V Valdrez
  fullname: V Valdrez, Inês
– sequence: 2
  givenname: Manuel
  surname: F Almeida
  fullname: F Almeida, Manuel
– sequence: 3
  givenname: Joana
  surname: M Dias
  fullname: M Dias, Joana
BookMark eNqNkcFqGzEQhkVJobbbRyjo1l7WGUm7lpYeSkjapGDIJZfkImRp1MhdS44kO-Tts45zyiW9zMDwfzPwzZScxBSRkK8M5gzY4nQ9X2Pcb0ycc-B8zljXy_4DmTDou0YtBJyQCQhgTSt7-YlMS1kDgOBMTsjtRchoKx1L2mN-osnTu0h9Thv6aEpFR83wzwwhIl2ZWjEHLLTe57T7e08LDiMc9khNTA6_lXGyNdnUkOJn8tGboeCX1z4jN79_3ZxfNcvryz_nZ8vG8h5qIwyg5EL2ynFlnewAHIrWyhVvHfMKmbdSMiG5V94ow1m3AidZ27Z-IXsxI9-Pa7c5PeywVL0JxeIwmIhpVzSXTIluvKD-IwqdbHu14GO0O0ZtTqVk9Hqbw8bkJ81AH6TrtX6Vrg_S9VH6yP14w9lQX3TUbMLwLv3zSOPoax8w62IDRovu5UnapfDOhmdStKNf
CitedBy_id crossref_primary_10_1016_j_wasman_2024_08_016
crossref_primary_10_1016_j_envres_2022_115021
crossref_primary_10_1016_j_seppur_2025_134319
crossref_primary_10_1016_j_seppur_2023_123539
crossref_primary_10_1016_j_jenvman_2025_125694
crossref_primary_10_1016_j_cscee_2023_100568
crossref_primary_10_1016_j_wasman_2025_02_001
crossref_primary_10_1016_j_jece_2025_119138
crossref_primary_10_3390_molecules29174062
crossref_primary_10_3390_ma18122768
crossref_primary_10_1016_j_mineng_2025_109322
Cites_doi 10.1021/es201744t
10.1080/12269328.2007.10541267
10.1016/S0378-7753(01)00850-3
10.1016/j.jclepro.2019.117612
10.1016/j.jclepro.2018.07.233
10.1016/j.wasman.2017.06.048
10.1016/j.jpowsour.2005.03.133
10.1016/j.jece.2019.103372
10.1016/j.jpowsour.2004.05.019
10.1016/j.jpowsour.2003.09.054
10.1016/j.wasman.2016.01.033
10.1016/j.wasman.2017.06.015
10.1016/j.egypro.2016.12.162
10.1016/S0378-7753(99)00060-9
10.1016/j.wasman.2005.04.005
10.1016/j.jpowsour.2013.10.064
10.3390/polym12071619
10.3390/met10091175
10.1016/S0304-386X(03)00129-4
10.1016/j.wasman.2015.12.033
10.1016/j.jclepro.2017.02.031
10.1016/j.jenvman.2021.113473
10.1016/j.wasman.2016.12.002
10.1016/j.wasman.2013.03.006
10.1016/j.hydromet.2010.07.004
10.1016/S0378-7753(01)00710-8
10.1016/j.wasman.2012.05.008
10.1016/j.jhazmat.2006.09.027
10.1080/09593330.2012.745621
10.1016/j.wasman.2015.06.006
10.1016/j.jpowsour.2010.07.013
10.1016/j.wasman.2012.10.005
10.1016/j.jenvman.2021.112757
10.1016/j.seppur.2018.07.038
10.1007/s10800-007-9377-2
10.1016/S0378-7753(03)00025-9
10.1016/j.wasman.2020.05.049
10.1016/j.jaap.2016.08.014
10.1016/j.jpowsour.2008.05.043
10.1016/j.jpowsour.2003.12.026
ContentType Journal Article
Copyright 2022
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2022.115979
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 10_1016_j_jenvman_2022_115979
S0301479722015523
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c290t-3a0e723798d28cd7500de34c7b24d1f8e1fc771372f8fa8a215b0d71444f6793
ISSN 0301-4797
1095-8630
IngestDate Sun Sep 28 03:47:00 EDT 2025
Wed Oct 01 13:16:11 EDT 2025
Sat Nov 29 07:21:05 EST 2025
Tue Nov 18 22:25:27 EST 2025
Fri Feb 23 02:38:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wasted alkaline batteries
Recycling
Zinc recovery
Hydrometallurgy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c290t-3a0e723798d28cd7500de34c7b24d1f8e1fc771372f8fa8a215b0d71444f6793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0966-0537
PQID 2705749862
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718357238
proquest_miscellaneous_2705749862
crossref_primary_10_1016_j_jenvman_2022_115979
crossref_citationtrail_10_1016_j_jenvman_2022_115979
elsevier_sciencedirect_doi_10_1016_j_jenvman_2022_115979
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of environmental management
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Belardi, Medici, Piga (bib6) 2014; 248
Almeida, Xará, Delgado, Costa (bib2) 2006; 26
Maryam Sadeghi, Vanpeteghem, Neto, Soares (bib34) 2017; 60
Andak, Özduğan, Türdü, Bulutcu (bib3) 2019; 7
Cabral, Pedrosa, Margarido, Nogueira (bib9) 2013; 34
Gallegos, Falco, Peluso, Sambeth, Thomas (bib20) 2013; 33
Deep, Kumar, Kumar, Kumar, Sharma, Gupta, Bharadwaj (bib12) 2011; 45
Maryam Sadeghi, Jesus, Soares (bib33) 2020; 113
Yankovych, Novoseltseva, Kovalenko, Marcin Behunova, Kanuchova, Vaclavikova, Melnyk (bib49) 2021; 292
Buzatu, Popescu, Birloaga, Sâceanu (bib8) 2013; 33
Richards (bib37) 2019
Ebin, Petranikova, Steenari, Ekberg (bib15) 2016; 121
Leite, Carvalho, de Lemos, Mageste, Rodrigues (bib29) 2019; 210
Senanayake, Shin, Senaputra, Winn, Pugaev, Avraamides, Sohn, Kim (bib39) 2010; 105
Vellingiri, Tsang, Kim, Deep, Dutta, Boukhvalov (bib45) 2018; 199
Belardi, Lavecchia, Medici, Piga (bib5) 2012; 32
Lannoo, Vilas Boas, Sadeghi, Jesus, Soares (bib28) 2019; 236
Ippolito, Belardi, Medici, Piga (bib25) 2016; 51
Ebin, Petranikova, Steenari, Ekberg (bib16) 2017; 68
Insights (bib23) 2021
Bernardes, Espinosa, Tenório (bib7) 2004; 130
Ivanov (bib26) 2004; 72
Ferella, De Michelis, Vegliò (bib18) 2008; 183
Lorero, Campo, Del Rosario, López, Prolongo (bib32) 2020; 12
Tran, Tanong, Jabir, Mercier, Blais (bib42) 2020; 10
Shin, Kang, Yang, Kim, Sohn (bib40) 2007; 10
Wei, Cheng, Wang, Li, Ren (bib47) 2021; 298
Deep, Sharma, Mohanta, Kumar, Kim (bib13) 2016; 51
Souza, Oliveira, Tenório (bib41) 2001; 103
Abid Charef, Affoune, Caballero, Cruz-Yusta, Morales (bib1) 2017; 68
Vatistas, Bartolozzi, Arras (bib44) 2001; 101
Guillaume, Leclerc, Boulanger, Lecuire, Lapicque (bib22) 2007; 37
de Souza, Tenório (bib11) 2004; 136
Intelligence (bib24) 2020
Kunický, Jandová, Formánek (bib27) 2012; 65
López, Cebriano, García-Díaz, Fernández, Rodríguez, Fernández (bib31) 2017; 148
Vatistas, Bartolozzi (bib43) 1999; 79
Xará, Almeida, Costa (bib48) 2015; 43
Barrett, Borkiewicz, Krekeler (bib4) 2011; 196
Newswire (bib36) 2021; vol. 6
Chen, Liao, Lin (bib10) 2017; 107
El-Nadi, Daoud, Aly (bib17) 2007; 143
Salgado, Veloso, Pereira, Gontijo, Salum, Mansur (bib38) 2003; 115
Linden (bib30) 1995
Duracell, N.A. Alkaline-Manganese Dioxide Technical-Bulletin.
Freitas, de Pietre (bib19) 2004; 128
NCBI, National Center for Biotechnology Information - PubChem Compound Summary for CID 24424, Zinc Sulfate, (https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-sulfate#section=Chemical-Vendors).
Veloso, Rodrigues, Ferreira, Magalhães, Mansur (bib46) 2005; 152
Global (bib21) 2021
Guillaume (10.1016/j.jenvman.2022.115979_bib22) 2007; 37
Vatistas (10.1016/j.jenvman.2022.115979_bib44) 2001; 101
Linden (10.1016/j.jenvman.2022.115979_bib30) 1995
Tran (10.1016/j.jenvman.2022.115979_bib42) 2020; 10
Xará (10.1016/j.jenvman.2022.115979_bib48) 2015; 43
Ebin (10.1016/j.jenvman.2022.115979_bib15) 2016; 121
Newswire (10.1016/j.jenvman.2022.115979_bib36) 2021; vol. 6
Yankovych (10.1016/j.jenvman.2022.115979_bib49) 2021; 292
Shin (10.1016/j.jenvman.2022.115979_bib40) 2007; 10
Wei (10.1016/j.jenvman.2022.115979_bib47) 2021; 298
Gallegos (10.1016/j.jenvman.2022.115979_bib20) 2013; 33
Ebin (10.1016/j.jenvman.2022.115979_bib16) 2017; 68
Vatistas (10.1016/j.jenvman.2022.115979_bib43) 1999; 79
Intelligence (10.1016/j.jenvman.2022.115979_bib24) 2020
Leite (10.1016/j.jenvman.2022.115979_bib29) 2019; 210
Belardi (10.1016/j.jenvman.2022.115979_bib5) 2012; 32
López (10.1016/j.jenvman.2022.115979_bib31) 2017; 148
Richards (10.1016/j.jenvman.2022.115979_bib37) 2019
Andak (10.1016/j.jenvman.2022.115979_bib3) 2019; 7
Veloso (10.1016/j.jenvman.2022.115979_bib46) 2005; 152
Lorero (10.1016/j.jenvman.2022.115979_bib32) 2020; 12
Lannoo (10.1016/j.jenvman.2022.115979_bib28) 2019; 236
10.1016/j.jenvman.2022.115979_bib35
Global (10.1016/j.jenvman.2022.115979_bib21) 2021
Maryam Sadeghi (10.1016/j.jenvman.2022.115979_bib33) 2020; 113
Ippolito (10.1016/j.jenvman.2022.115979_bib25) 2016; 51
Abid Charef (10.1016/j.jenvman.2022.115979_bib1) 2017; 68
Senanayake (10.1016/j.jenvman.2022.115979_bib39) 2010; 105
Vellingiri (10.1016/j.jenvman.2022.115979_bib45) 2018; 199
Cabral (10.1016/j.jenvman.2022.115979_bib9) 2013; 34
Chen (10.1016/j.jenvman.2022.115979_bib10) 2017; 107
Souza (10.1016/j.jenvman.2022.115979_bib41) 2001; 103
Ferella (10.1016/j.jenvman.2022.115979_bib18) 2008; 183
Ivanov (10.1016/j.jenvman.2022.115979_bib26) 2004; 72
Salgado (10.1016/j.jenvman.2022.115979_bib38) 2003; 115
Deep (10.1016/j.jenvman.2022.115979_bib12) 2011; 45
10.1016/j.jenvman.2022.115979_bib14
Bernardes (10.1016/j.jenvman.2022.115979_bib7) 2004; 130
Belardi (10.1016/j.jenvman.2022.115979_bib6) 2014; 248
Buzatu (10.1016/j.jenvman.2022.115979_bib8) 2013; 33
Kunický (10.1016/j.jenvman.2022.115979_bib27) 2012; 65
Freitas (10.1016/j.jenvman.2022.115979_bib19) 2004; 128
Almeida (10.1016/j.jenvman.2022.115979_bib2) 2006; 26
Deep (10.1016/j.jenvman.2022.115979_bib13) 2016; 51
El-Nadi (10.1016/j.jenvman.2022.115979_bib17) 2007; 143
Maryam Sadeghi (10.1016/j.jenvman.2022.115979_bib34) 2017; 60
Insights (10.1016/j.jenvman.2022.115979_bib23) 2021
de Souza (10.1016/j.jenvman.2022.115979_bib11) 2004; 136
Barrett (10.1016/j.jenvman.2022.115979_bib4) 2011; 196
References_xml – volume: 32
  start-page: 1945
  year: 2012
  end-page: 1951
  ident: bib5
  article-title: Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries
  publication-title: Waste Manag.
– volume: 10
  start-page: 21
  year: 2007
  end-page: 26
  ident: bib40
  article-title: Comparison of acid and alkaline leaching for recovery of valuable metals from spent zinc-carbon battery
  publication-title: Geosyst. Eng.
– volume: 72
  start-page: 73
  year: 2004
  end-page: 78
  ident: bib26
  article-title: Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors
  publication-title: Hydrometallurgy
– volume: 51
  start-page: 190
  year: 2016
  end-page: 195
  ident: bib13
  article-title: A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries
  publication-title: Waste Manag.
– reference: NCBI, National Center for Biotechnology Information - PubChem Compound Summary for CID 24424, Zinc Sulfate, (https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-sulfate#section=Chemical-Vendors).
– volume: 45
  start-page: 10551
  year: 2011
  end-page: 10556
  ident: bib12
  article-title: Recovery of pure ZnO nanoparticles from spent Zn-MnO2 alkaline batteries
  publication-title: Environ. Sci. Technol.
– volume: 101
  start-page: 182
  year: 2001
  end-page: 187
  ident: bib44
  article-title: The dismantling of the spent alkaline zinc manganese dioxide batteries and the recovery of the zinc from the anodic material
  publication-title: J. Power Sources
– volume: 199
  start-page: 995
  year: 2018
  end-page: 1006
  ident: bib45
  article-title: The utilization of zinc recovered from alkaline battery waste as metal precursor in the synthesis of metal-organic framework
  publication-title: J. Clean. Prod.
– volume: 33
  start-page: 1483
  year: 2013
  end-page: 1490
  ident: bib20
  article-title: Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination
  publication-title: Waste Manag.
– volume: 51
  start-page: 182
  year: 2016
  end-page: 189
  ident: bib25
  article-title: Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries
  publication-title: Waste Manag.
– volume: 210
  start-page: 327
  year: 2019
  end-page: 334
  ident: bib29
  article-title: Hydrometallurgical recovery of Zn(II) and Mn(II) from alkaline batteries waste employing aqueous two-phase system
  publication-title: Separ. Purif. Technol.
– volume: 26
  start-page: 466
  year: 2006
  end-page: 476
  ident: bib2
  article-title: Characterization of spent AA household alkaline batteries
  publication-title: Waste Manag.
– volume: 43
  start-page: 460
  year: 2015
  end-page: 484
  ident: bib48
  article-title: Life cycle assessment of three different management options for spent alkaline batteries
  publication-title: Waste Manag.
– volume: 113
  start-page: 342
  year: 2020
  end-page: 350
  ident: bib33
  article-title: A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries
  publication-title: Waste Manag.
– volume: 128
  start-page: 343
  year: 2004
  end-page: 349
  ident: bib19
  article-title: Electrochemical recycling of the zinc from spent Zn–MnO2 batteries
  publication-title: J. Power Sources
– volume: 248
  start-page: 1290
  year: 2014
  end-page: 1298
  ident: bib6
  article-title: Influence of gaseous atmosphere during a thermal process for recovery of manganese and zinc from spent batteries
  publication-title: J. Power Sources
– volume: 148
  start-page: 795
  year: 2017
  end-page: 803
  ident: bib31
  article-title: Synthesis and microstructural properties of zinc oxide nanoparticles prepared by selective leaching of zinc from spent alkaline batteries using ammoniacal ammonium carbonate
  publication-title: J. Clean. Prod.
– volume: 115
  start-page: 367
  year: 2003
  end-page: 373
  ident: bib38
  article-title: Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272
  publication-title: J. Power Sources
– volume: 183
  start-page: 805
  year: 2008
  end-page: 811
  ident: bib18
  article-title: Process for the recycling of alkaline and zinc-carbon spent batteries
  publication-title: J. Power Sources
– volume: 143
  start-page: 328
  year: 2007
  end-page: 334
  ident: bib17
  article-title: Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries
  publication-title: J. Hazard Mater.
– volume: 107
  start-page: 167
  year: 2017
  end-page: 174
  ident: bib10
  article-title: Recovery zinc and manganese from spent battery powder by hydrometallurgical route
  publication-title: Energy Proc.
– year: 2019
  ident: bib37
  article-title: Zinc Processing
– volume: 68
  start-page: 518
  year: 2017
  end-page: 526
  ident: bib1
  article-title: Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: a comparative study
  publication-title: Waste Manag.
– volume: 7
  year: 2019
  ident: bib3
  article-title: Recovery of zinc and manganese from spent zinc-carbon and alkaline battery mixtures via selective leaching and crystallization processes
  publication-title: J. Environ. Chem. Eng.
– volume: 103
  start-page: 120
  year: 2001
  end-page: 126
  ident: bib41
  article-title: Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching
  publication-title: J. Power Sources
– year: 2020
  ident: bib24
  article-title: Alkaline Battery Market - Growth, Trends, Covid-19 Impact and Forecasts
– volume: 292
  year: 2021
  ident: bib49
  article-title: New perception of Zn(II) and Mn(II) removal mechanism on sustainable sunflower biochar from alkaline batteries contaminated water
  publication-title: J. Environ. Manag.
– year: 2021
  ident: bib23
  article-title: Akaline Battery Market Size, Share and Covid-19 Impact Analysis, by Product (Primary and Secondary), by Size (AA, AAA, 9 Volt and Others), by Application (Remote Control, Consumer Electronics, Toys & Radios, and Others), and Regional Forecast, 2021-2028, Market Research Report
– volume: 10
  year: 2020
  ident: bib42
  article-title: Hydrometallurgical process and economic evaluation for recovery of zinc and manganese from spent alkaline batteries
  publication-title: Metals
– volume: 65
  start-page: 234
  year: 2012
  end-page: 238
  ident: bib27
  article-title: Recovery of zinc from spent Zn/Mn0 2 batteries through hydrometallurgical treatment
  publication-title: World of Metallurgy - ERZMETALL
– volume: 68
  start-page: 508
  year: 2017
  end-page: 517
  ident: bib16
  article-title: Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste
  publication-title: Waste Manag.
– volume: 298
  year: 2021
  ident: bib47
  article-title: From spent Zn–MnO2 primary batteries to rechargeable Zn–MnO2 batteries: a novel directly recycling route with high battery performance
  publication-title: J. Environ. Manag.
– volume: 79
  start-page: 199
  year: 1999
  end-page: 204
  ident: bib43
  article-title: Zinc contamination in the cathodic material of exhausted alkaline manganese dioxide batteries
  publication-title: J. Power Sources
– volume: vol. 6
  year: 2021
  ident: bib36
  publication-title: Global Alkaline Batteries Market to Reach
– volume: 60
  start-page: 696
  year: 2017
  end-page: 705
  ident: bib34
  article-title: Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches
  publication-title: Waste Manag.
– volume: 152
  start-page: 295
  year: 2005
  end-page: 302
  ident: bib46
  article-title: Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries
  publication-title: J. Power Sources
– volume: 37
  start-page: 1237
  year: 2007
  end-page: 1243
  ident: bib22
  article-title: Investigation of optimal conditions for zinc electrowinning from aqueous sulfuric acid electrolytes
  publication-title: J. Appl. Electrochem.
– volume: 34
  start-page: 1283
  year: 2013
  end-page: 1295
  ident: bib9
  article-title: End-of-life Zn-MnO2 batteries: electrode materials characterization
  publication-title: Environ. Technol.
– year: 2021
  ident: bib21
  article-title: Global Zinc Demand to Outpace Production Growth in 2021, Narrowing Surplus
– year: 1995
  ident: bib30
  article-title: Handbook of Batteries, Handbook of Batteries
– volume: 12
  start-page: 1619
  year: 2020
  ident: bib32
  article-title: New manufacturing process of composites reinforced with ZnO nanoparticles recycled from alkaline batteries
  publication-title: Polymers
– volume: 121
  start-page: 333
  year: 2016
  end-page: 341
  ident: bib15
  article-title: Effects of gas flow rate on zinc recovery rate and particle properties by pyrolysis of alkaline and zinc-carbon battery waste
  publication-title: J. Anal. Appl. Pyrol.
– reference: Duracell, N.A. Alkaline-Manganese Dioxide Technical-Bulletin.
– volume: 236
  year: 2019
  ident: bib28
  article-title: An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries
  publication-title: J. Clean. Prod.
– volume: 136
  start-page: 191
  year: 2004
  end-page: 196
  ident: bib11
  article-title: Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing
  publication-title: J. Power Sources
– volume: 33
  start-page: 699
  year: 2013
  end-page: 705
  ident: bib8
  article-title: Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes
  publication-title: Waste Manag.
– volume: 105
  start-page: 36
  year: 2010
  end-page: 41
  ident: bib39
  article-title: Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions
  publication-title: Hydrometallurgy
– volume: 130
  start-page: 291
  year: 2004
  end-page: 298
  ident: bib7
  article-title: Recycling of batteries: a review of current processes and technologies
  publication-title: J. Power Sources
– volume: 196
  start-page: 508
  year: 2011
  end-page: 513
  ident: bib4
  article-title: An investigation of zincite from spent anodic portions of alkaline batteries: an industrial mineral approach for evaluating stock material for recycling potential
  publication-title: J. Power Sources
– volume: 45
  start-page: 10551
  year: 2011
  ident: 10.1016/j.jenvman.2022.115979_bib12
  article-title: Recovery of pure ZnO nanoparticles from spent Zn-MnO2 alkaline batteries
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201744t
– volume: 10
  start-page: 21
  year: 2007
  ident: 10.1016/j.jenvman.2022.115979_bib40
  article-title: Comparison of acid and alkaline leaching for recovery of valuable metals from spent zinc-carbon battery
  publication-title: Geosyst. Eng.
  doi: 10.1080/12269328.2007.10541267
– volume: 103
  start-page: 120
  year: 2001
  ident: 10.1016/j.jenvman.2022.115979_bib41
  article-title: Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00850-3
– year: 2021
  ident: 10.1016/j.jenvman.2022.115979_bib21
– volume: 236
  year: 2019
  ident: 10.1016/j.jenvman.2022.115979_bib28
  article-title: An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117612
– year: 2019
  ident: 10.1016/j.jenvman.2022.115979_bib37
– volume: 199
  start-page: 995
  year: 2018
  ident: 10.1016/j.jenvman.2022.115979_bib45
  article-title: The utilization of zinc recovered from alkaline battery waste as metal precursor in the synthesis of metal-organic framework
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.233
– volume: 68
  start-page: 518
  year: 2017
  ident: 10.1016/j.jenvman.2022.115979_bib1
  article-title: Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: a comparative study
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.06.048
– volume: 152
  start-page: 295
  year: 2005
  ident: 10.1016/j.jenvman.2022.115979_bib46
  article-title: Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.133
– year: 1995
  ident: 10.1016/j.jenvman.2022.115979_bib30
– volume: 7
  year: 2019
  ident: 10.1016/j.jenvman.2022.115979_bib3
  article-title: Recovery of zinc and manganese from spent zinc-carbon and alkaline battery mixtures via selective leaching and crystallization processes
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103372
– volume: vol. 6
  year: 2021
  ident: 10.1016/j.jenvman.2022.115979_bib36
– volume: 136
  start-page: 191
  year: 2004
  ident: 10.1016/j.jenvman.2022.115979_bib11
  article-title: Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.05.019
– volume: 128
  start-page: 343
  year: 2004
  ident: 10.1016/j.jenvman.2022.115979_bib19
  article-title: Electrochemical recycling of the zinc from spent Zn–MnO2 batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.09.054
– volume: 51
  start-page: 190
  year: 2016
  ident: 10.1016/j.jenvman.2022.115979_bib13
  article-title: A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2016.01.033
– volume: 68
  start-page: 508
  year: 2017
  ident: 10.1016/j.jenvman.2022.115979_bib16
  article-title: Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.06.015
– volume: 107
  start-page: 167
  year: 2017
  ident: 10.1016/j.jenvman.2022.115979_bib10
  article-title: Recovery zinc and manganese from spent battery powder by hydrometallurgical route
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2016.12.162
– volume: 79
  start-page: 199
  year: 1999
  ident: 10.1016/j.jenvman.2022.115979_bib43
  article-title: Zinc contamination in the cathodic material of exhausted alkaline manganese dioxide batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00060-9
– volume: 26
  start-page: 466
  year: 2006
  ident: 10.1016/j.jenvman.2022.115979_bib2
  article-title: Characterization of spent AA household alkaline batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2005.04.005
– volume: 248
  start-page: 1290
  year: 2014
  ident: 10.1016/j.jenvman.2022.115979_bib6
  article-title: Influence of gaseous atmosphere during a thermal process for recovery of manganese and zinc from spent batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.064
– volume: 65
  start-page: 234
  year: 2012
  ident: 10.1016/j.jenvman.2022.115979_bib27
  article-title: Recovery of zinc from spent Zn/Mn0 2 batteries through hydrometallurgical treatment
  publication-title: World of Metallurgy - ERZMETALL
– volume: 12
  start-page: 1619
  year: 2020
  ident: 10.1016/j.jenvman.2022.115979_bib32
  article-title: New manufacturing process of composites reinforced with ZnO nanoparticles recycled from alkaline batteries
  publication-title: Polymers
  doi: 10.3390/polym12071619
– volume: 10
  year: 2020
  ident: 10.1016/j.jenvman.2022.115979_bib42
  article-title: Hydrometallurgical process and economic evaluation for recovery of zinc and manganese from spent alkaline batteries
  publication-title: Metals
  doi: 10.3390/met10091175
– volume: 72
  start-page: 73
  year: 2004
  ident: 10.1016/j.jenvman.2022.115979_bib26
  article-title: Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(03)00129-4
– volume: 51
  start-page: 182
  year: 2016
  ident: 10.1016/j.jenvman.2022.115979_bib25
  article-title: Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.12.033
– volume: 148
  start-page: 795
  year: 2017
  ident: 10.1016/j.jenvman.2022.115979_bib31
  article-title: Synthesis and microstructural properties of zinc oxide nanoparticles prepared by selective leaching of zinc from spent alkaline batteries using ammoniacal ammonium carbonate
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.02.031
– volume: 298
  year: 2021
  ident: 10.1016/j.jenvman.2022.115979_bib47
  article-title: From spent Zn–MnO2 primary batteries to rechargeable Zn–MnO2 batteries: a novel directly recycling route with high battery performance
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113473
– volume: 60
  start-page: 696
  year: 2017
  ident: 10.1016/j.jenvman.2022.115979_bib34
  article-title: Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2016.12.002
– volume: 33
  start-page: 1483
  year: 2013
  ident: 10.1016/j.jenvman.2022.115979_bib20
  article-title: Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2013.03.006
– volume: 105
  start-page: 36
  year: 2010
  ident: 10.1016/j.jenvman.2022.115979_bib39
  article-title: Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.07.004
– volume: 101
  start-page: 182
  year: 2001
  ident: 10.1016/j.jenvman.2022.115979_bib44
  article-title: The dismantling of the spent alkaline zinc manganese dioxide batteries and the recovery of the zinc from the anodic material
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00710-8
– volume: 32
  start-page: 1945
  year: 2012
  ident: 10.1016/j.jenvman.2022.115979_bib5
  article-title: Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2012.05.008
– volume: 143
  start-page: 328
  year: 2007
  ident: 10.1016/j.jenvman.2022.115979_bib17
  article-title: Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2006.09.027
– volume: 34
  start-page: 1283
  year: 2013
  ident: 10.1016/j.jenvman.2022.115979_bib9
  article-title: End-of-life Zn-MnO2 batteries: electrode materials characterization
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2012.745621
– volume: 43
  start-page: 460
  year: 2015
  ident: 10.1016/j.jenvman.2022.115979_bib48
  article-title: Life cycle assessment of three different management options for spent alkaline batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.06.006
– ident: 10.1016/j.jenvman.2022.115979_bib35
– volume: 196
  start-page: 508
  year: 2011
  ident: 10.1016/j.jenvman.2022.115979_bib4
  article-title: An investigation of zincite from spent anodic portions of alkaline batteries: an industrial mineral approach for evaluating stock material for recycling potential
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.07.013
– volume: 33
  start-page: 699
  year: 2013
  ident: 10.1016/j.jenvman.2022.115979_bib8
  article-title: Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2012.10.005
– volume: 292
  year: 2021
  ident: 10.1016/j.jenvman.2022.115979_bib49
  article-title: New perception of Zn(II) and Mn(II) removal mechanism on sustainable sunflower biochar from alkaline batteries contaminated water
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112757
– ident: 10.1016/j.jenvman.2022.115979_bib14
– volume: 210
  start-page: 327
  year: 2019
  ident: 10.1016/j.jenvman.2022.115979_bib29
  article-title: Hydrometallurgical recovery of Zn(II) and Mn(II) from alkaline batteries waste employing aqueous two-phase system
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2018.07.038
– volume: 37
  start-page: 1237
  year: 2007
  ident: 10.1016/j.jenvman.2022.115979_bib22
  article-title: Investigation of optimal conditions for zinc electrowinning from aqueous sulfuric acid electrolytes
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-007-9377-2
– volume: 115
  start-page: 367
  year: 2003
  ident: 10.1016/j.jenvman.2022.115979_bib38
  article-title: Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00025-9
– year: 2021
  ident: 10.1016/j.jenvman.2022.115979_bib23
– volume: 113
  start-page: 342
  year: 2020
  ident: 10.1016/j.jenvman.2022.115979_bib33
  article-title: A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.05.049
– volume: 121
  start-page: 333
  year: 2016
  ident: 10.1016/j.jenvman.2022.115979_bib15
  article-title: Effects of gas flow rate on zinc recovery rate and particle properties by pyrolysis of alkaline and zinc-carbon battery waste
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.08.014
– year: 2020
  ident: 10.1016/j.jenvman.2022.115979_bib24
– volume: 183
  start-page: 805
  year: 2008
  ident: 10.1016/j.jenvman.2022.115979_bib18
  article-title: Process for the recycling of alkaline and zinc-carbon spent batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.05.043
– volume: 130
  start-page: 291
  year: 2004
  ident: 10.1016/j.jenvman.2022.115979_bib7
  article-title: Recycling of batteries: a review of current processes and technologies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.026
SSID ssj0003217
Score 2.4528224
Snippet In the present study, a leaner process for recovering zinc from spent alkaline batteries is studied at a laboratory scale. Such process is part of a diagram,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115979
SubjectTerms ambient temperature
anodes
batteries
ecological footprint
Hydrometallurgy
magnetism
Recycling
sulfuric acid
Wasted alkaline batteries
wastes
zinc
Zinc recovery
Title Direct recovery of Zn from wasted alkaline batteries through selective anode's separation
URI https://dx.doi.org/10.1016/j.jenvman.2022.115979
https://www.proquest.com/docview/2705749862
https://www.proquest.com/docview/2718357238
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQleEAymXWAyEoKHKiVxnNh5rFAnQFXhIUxhL5abOFJLScrSjmm_nuPYSQYdbDzwEkVWLo7Pl-PPl-8chF4GeQadQO47mfJzh3KlnAhg4yjXS10iU2D4dcj8MZtMeJJEn3q9q0YLc7FgRcEvL6PlfzU1lIGxtXT2H8zdPhQK4ByMDkcwOxzvZHjjxPp6pAt1rxfQzwojI_kh9eRmXy6-yppdTuvgmjMd5cGm66nqtDh6N5EsSh2Rl1VQZuKDWwNuMtlrYjmtRdnYUHPaP5VaMX5lHFK9Nj_sdCf94eKbmmXSSIeKteq2KoJHtoKzUpo0380MBQxuvXaGwjhVoHEOD-36i7qhzHpi34ilrS8FrhqZRDMbbt7MOMwHc_hA-KqBfuugu_7XsNqTj-Lk83gs4lESv1p-d3TGMb0yb9OvbKEdwoIIPOLO8P0o-dD241CbOjVPU9NO__Xmxjf_idn81sfXxCV-hB5aO-GhQcpj1FPFLrrfCNKrXbQ3um4_bL199QR9MVDCDZRwmeOzAmsoYQMl3EAJt1DCFkq4hRKuofS6wh2QnqL4ZBS_fefYVBxOSiJ35fjSVYz4LOIZ4WkGNNOFn5umbEpo5uVceXnKmOczkvNccglEcupmDEbrNA-hC9hD20VZqH2EA04kSbn0Mk6p8kLJpFKU8jCf8ijzgwNEm1YUqQ1Tr7OlLESzH3EubOML3fjCNP4BGrS3LU2clttu4I2JhCWbhkQKANltt75oTCrAGesVNlmocl0JwmD4QyMekr9dA71ooHP9Hd7hOUfoQfdLPUPbq_O1eo7upRerWXV-jLZYwo8tcH8CT-C7FQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+recovery+of+Zn+from+wasted+alkaline+batteries+through+selective+anode%27s+separation&rft.jtitle=Journal+of+environmental+management&rft.au=V+Valdrez%2C+In%C3%AAs&rft.au=F+Almeida%2C+Manuel&rft.au=M+Dias%2C+Joana&rft.date=2022-11-01&rft.issn=1095-8630&rft.eissn=1095-8630&rft.volume=321&rft.spage=115979&rft_id=info:doi/10.1016%2Fj.jenvman.2022.115979&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon