QoS Prediction and Adversarial Attack Protection for Distributed Services Under DLaaS

Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers Jg. 73; H. 3; S. 669 - 682
Hauptverfasser: Liang, Wei, Li, Yuhui, Xu, Jianlong, Qin, Zheng, Zhang, Dafang, Li, Kuan-Ching
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9340, 1557-9956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quality-of-Service (QoS) metrics should be revised to optimize the performance and reliability of distributed DLaaS systems. New users and services dynamically and continuously join and leave such a system, resulting in cold start issues, and additionally, the increasing demand for robust network connections requires the model to evaluate the uncertainty. To address such performance problems, we propose in this article a deep learning-based model called embedding enhanced probability neural network, in which information is extracted from inside the graph structure and then estimated the mean and variance values for the prediction distribution. The adversarial attack is a severe threat to model security under DLaaS. Due to such, the service recommender system's vulnerability is tackled, and adversarial training with uncertainty-aware loss to protect the model in noisy and adversarial environments is investigated and proposed. Extensive experiments on a large-scale real-world QoS dataset are conducted, and comprehensive analysis verifies the robustness and effectiveness of the proposed model.
AbstractList Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quality-of-Service (QoS) metrics should be revised to optimize the performance and reliability of distributed DLaaS systems. New users and services dynamically and continuously join and leave such a system, resulting in cold start issues, and additionally, the increasing demand for robust network connections requires the model to evaluate the uncertainty. To address such performance problems, we propose in this article a deep learning-based model called embedding enhanced probability neural network, in which information is extracted from inside the graph structure and then estimated the mean and variance values for the prediction distribution. The adversarial attack is a severe threat to model security under DLaaS. Due to such, the service recommender system's vulnerability is tackled, and adversarial training with uncertainty-aware loss to protect the model in noisy and adversarial environments is investigated and proposed. Extensive experiments on a large-scale real-world QoS dataset are conducted, and comprehensive analysis verifies the robustness and effectiveness of the proposed model.
Author Li, Kuan-Ching
Li, Yuhui
Xu, Jianlong
Zhang, Dafang
Liang, Wei
Qin, Zheng
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-5074-1363
  surname: Liang
  fullname: Liang, Wei
  email: weiliang99@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China
– sequence: 2
  givenname: Yuhui
  surname: Li
  fullname: Li, Yuhui
  email: 17yhli3@stu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China
– sequence: 3
  givenname: Jianlong
  orcidid: 0000-0003-2826-9282
  surname: Xu
  fullname: Xu, Jianlong
  email: xujianlong@stu.edu.cn
  organization: Computer Science Department, Colleage of Engineering, Shantou University, Shantou, Guangdong, China
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0003-0877-3887
  surname: Qin
  fullname: Qin, Zheng
  email: zqin@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China
– sequence: 5
  givenname: Dafang
  surname: Zhang
  fullname: Zhang, Dafang
  email: dfzhang@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China
– sequence: 6
  givenname: Kuan-Ching
  orcidid: 0000-0003-1381-4364
  surname: Li
  fullname: Li, Kuan-Ching
  email: kuancli@pu.edu.tw
  organization: Department of Computer Science and Information Engineering (CSIE), Providence University, Shalu, Taichung, Taiwan
BookMark eNp9kEtPAjEURhujiYCu3biYxPXAbUun7ZLgMyFRA6ybTttJijjFtpD47x0yLIwLV3dxz7mPb4jO29A6hG4wjDEGOVnNxwQIHlPgnFNxhgaYMV5KyapzNADAopR0CpdomNIGACoCcoDW72FZvEVnvck-tIVubTGzBxeTjl5vi1nO2nx0RMiuJ5oQi3ufcvT1PjtbLF08eONSsW6t61oLrZdX6KLR2-SuT3WE1o8Pq_lzuXh9epnPFqUhEnJJrNVG0spiXoPVjHBZYWa4EBKsEFQ6CayBqakbzgghtOYcE9r1mKw1qegI3fVzdzF87V3KahP2se1WKiLJFGhFBe0o1lMmhpSia5TxWR-fyVH7rcKgjgmq1VwdE1SnBDtv8sfbRf-p4_c_xm1veOfcLxpLJrprfgCG_Xu8
CODEN ITCOB4
CitedBy_id crossref_primary_10_1007_s11227_024_06160_3
crossref_primary_10_1109_TNSE_2025_3550566
crossref_primary_10_1109_TDSC_2024_3519197
crossref_primary_10_1016_j_future_2024_04_028
crossref_primary_10_1109_TR_2022_3190932
crossref_primary_10_1080_09540091_2024_2312121
crossref_primary_10_1007_s10586_021_03399_w
crossref_primary_10_1007_s42979_025_03879_5
crossref_primary_10_1109_JIOT_2025_3578198
crossref_primary_10_1109_TCC_2024_3522993
crossref_primary_10_3390_s23218744
crossref_primary_10_1016_j_inffus_2025_103297
crossref_primary_10_1109_TITS_2022_3156266
crossref_primary_10_1016_j_dcan_2025_03_004
crossref_primary_10_1109_TNSM_2025_3570464
crossref_primary_10_1016_j_jii_2025_100946
crossref_primary_10_1109_TSC_2025_3559613
crossref_primary_10_1109_JIOT_2024_3379363
crossref_primary_10_1177_17298806241312786
crossref_primary_10_1007_s11227_025_07323_6
crossref_primary_10_1145_3676164
crossref_primary_10_1145_3717069
crossref_primary_10_1002_dac_5395
crossref_primary_10_1109_TII_2021_3129631
Cites_doi 10.1109/TR.2015.2464075
10.1109/TSC.2012.34
10.1109/TSC.2011.59
10.1016/j.future.2019.05.024
10.1016/j.knosys.2017.10.001
10.1109/ICWS.2014.51
10.1109/JIOT.2020.3004498
10.1016/j.ejor.2007.07.015
10.1109/TSC.2010.52
10.1109/ICWS.2018.00012
10.1109/ICWS.2015.60
10.1109/SOCA.2014.11
10.24963/ijcai.2017/239
10.1109/ICWS.2010.27
10.1109/TII.2019.2903342
10.1109/ICWS.2012.61
10.1016/j.future.2017.06.020
10.1145/2988450.2988454
10.1109/jiot.2020.3014845
10.1109/SCC.2014.23
10.1145/3391297
10.1145/2430545.2430548
10.1109/jiot.2021.3053842
10.1109/jiot.2020.3048038
10.1080/09540091.2021.1889975
10.1002/cpe.3639
10.1007/978-3-030-60239-0_19
10.1109/tii.2020.3047843
10.1109/BigDataSecurity-HPSC-IDS49724.2020.00027
10.1109/TII.2020.3008010
10.1109/tsc.2018.2859986
10.1145/3038912.3052569
10.1109/JIOT.2020.2974281
10.1109/TSC.2012.31
10.1109/ICWS.2007.140
10.1109/MIC.2003.1167344
10.1145/3426968
10.1109/tsc.2019.2891517
10.1109/TITS.2019.2900481
10.1109/tetc.2020.2993032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2021.3077738
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 682
ExternalDocumentID 10_1109_TC_2021_3077738
10195840
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 531118010527
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61702318; 62072170
  funderid: 10.13039/501100001809
– fundername: 2020 Li Ka Shing Foundation Cross-Disciplinary Research
  grantid: 2020LKSFG08D
– fundername: 2019 Guangdong Province Special Fund for Science and Technology
  grantid: 2019ST043
GroupedDBID --Z
-DZ
-~X
.55
.DC
0R~
29I
3EH
3O-
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
MVM
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
TWZ
UHB
UKR
UPT
VH1
X7M
XJT
XOL
XZL
YXB
YYQ
YZZ
ZCG
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c290t-2ddac936d17b0da5279615c78890d8839e905f04cbf752223b771230d859ba263
IEDL.DBID RIE
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167590600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sun Nov 09 06:14:46 EST 2025
Sat Nov 29 01:35:45 EST 2025
Tue Nov 18 22:18:33 EST 2025
Wed Aug 27 02:12:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-2ddac936d17b0da5279615c78890d8839e905f04cbf752223b771230d859ba263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5074-1363
0000-0003-2826-9282
0000-0003-0877-3887
0000-0003-1381-4364
PQID 2924036383
PQPubID 85452
PageCount 14
ParticipantIDs proquest_journals_2924036383
ieee_primary_10195840
crossref_citationtrail_10_1109_TC_2021_3077738
crossref_primary_10_1109_TC_2021_3077738
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
Glorot (ref41)
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Kendall (ref42)
Xu (ref27) 2016; 53
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
Kipf (ref39) 2017
ref22
ref44
ref21
ref28
Kingma (ref48)
ref29
ref8
ref7
ref9
ref4
Vaswani (ref40) 2017
ref3
Liu (ref14) 2020; 541
ref6
ref5
Miyato (ref43) 2017
References_xml – ident: ref29
  doi: 10.1109/TR.2015.2464075
– ident: ref44
  doi: 10.1109/TSC.2012.34
– year: 2017
  ident: ref43
  article-title: Adversarial training methods for semi-supervised text classification
– ident: ref30
  doi: 10.1109/TSC.2011.59
– ident: ref35
  doi: 10.1016/j.future.2019.05.024
– ident: ref37
  doi: 10.1016/j.knosys.2017.10.001
– ident: ref25
  doi: 10.1109/ICWS.2014.51
– ident: ref10
  doi: 10.1109/JIOT.2020.3004498
– ident: ref8
  doi: 10.1016/j.ejor.2007.07.015
– ident: ref18
  doi: 10.1109/TSC.2010.52
– ident: ref34
  doi: 10.1109/ICWS.2018.00012
– ident: ref20
  doi: 10.1109/ICWS.2015.60
– ident: ref31
  doi: 10.1109/SOCA.2014.11
– ident: ref46
  doi: 10.24963/ijcai.2017/239
– ident: ref22
  doi: 10.1109/ICWS.2010.27
– year: 2017
  ident: ref39
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref12
  doi: 10.1109/TII.2019.2903342
– ident: ref23
  doi: 10.1109/ICWS.2012.61
– start-page: 5574
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref42
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
– ident: ref28
  doi: 10.1016/j.future.2017.06.020
– ident: ref38
  doi: 10.1145/2988450.2988454
– ident: ref6
  doi: 10.1109/jiot.2020.3014845
– ident: ref26
  doi: 10.1109/SCC.2014.23
– volume: 541
  start-page: 297
  volume-title: Inf. Sci.
  year: 2020
  ident: ref14
  article-title: Attention-based bidirectional GRU networks for efficient HTTPS traffic classification
– ident: ref1
  doi: 10.1145/3391297
– ident: ref24
  doi: 10.1145/2430545.2430548
– ident: ref7
  doi: 10.1109/jiot.2021.3053842
– ident: ref11
  doi: 10.1109/jiot.2020.3048038
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Representations
  ident: ref48
  article-title: Adam: A method for stochastic optimization
– ident: ref36
  doi: 10.1080/09540091.2021.1889975
– ident: ref21
  doi: 10.1002/cpe.3639
– ident: ref15
  doi: 10.1007/978-3-030-60239-0_19
– ident: ref4
  doi: 10.1109/tii.2020.3047843
– ident: ref13
  doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00027
– ident: ref16
  doi: 10.1109/TII.2020.3008010
– ident: ref33
  doi: 10.1109/tsc.2018.2859986
– ident: ref47
  doi: 10.1145/3038912.3052569
– ident: ref2
  doi: 10.1109/JIOT.2020.2974281
– ident: ref19
  doi: 10.1109/TSC.2012.31
– ident: ref17
  doi: 10.1109/ICWS.2007.140
– ident: ref45
  doi: 10.1109/MIC.2003.1167344
– start-page: 5998
  volume-title: Poc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref40
  article-title: Attention is all you need
– ident: ref5
  doi: 10.1145/3426968
– ident: ref32
  doi: 10.1109/tsc.2019.2891517
– volume: 53
  start-page: 75
  volume-title: Expert Syst. Appl.
  year: 2016
  ident: ref27
  article-title: Context-aware QoS prediction for web service recommendation and selection
– start-page: 315
  volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist.
  ident: ref41
  article-title: Deep sparse rectifier neural networks
– ident: ref3
  doi: 10.1109/TITS.2019.2900481
– ident: ref9
  doi: 10.1109/tetc.2020.2993032
SSID ssj0006209
Score 2.6896913
Snippet Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 669
SubjectTerms Adversarial attacks
Computational modeling
Deep learning
dlaas
graph neural network
Internet of Things
Neural networks
Performance evaluation
Predictive models
probability forecast
qos prediction
Quality of service
Recommender systems
Security
Uncertainty
Title QoS Prediction and Adversarial Attack Protection for Distributed Services Under DLaaS
URI https://ieeexplore.ieee.org/document/10195840
https://www.proquest.com/docview/2924036383
Volume 73
WOSCitedRecordID wos001167590600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjB6Zw4nZKDBy-daZs2zXFsDg9jTLbJbiW_CqJ0snX-_b6k7RjIDkIPhb6U0pf38l7y3vch9Eh1mEEYDpkqT4RHYxl5CY24J7hmBEaocsPtfcwmk2S55NOqWd31whhjXPGZ6dlbd5avV2prt8rAwi00CoUM_ZgxVjZr7dxuXNdz-GDBISUVjo9P-PN8AIlg4PdgPjPXibK3BDlOlT-O2K0uo-Y_v-sCnVdhJO6Xer9ERyZvoWZN0YAri22hsz28wSu0eFvN8HRtz2asPrDINXaMzBth5yHuF4VQnyDhsBusBIS0eGixdS0tltG4di3Y8SXh4ViIWRstRi_zwatX8Sp4KuCk8AKtheJhrH0miRZRwDjENQqSYU50AhGT4STKCFUyY5GNHyRjsMDBs4hLEcThNWrkq9zcICxMKCHGgSxTRDSUUoSKS63gojrWJOugXv2rU1WBjlvui6_UJR-Ep_NBanWTVrrpoKfdgO8Sb-OwaNuqYk-s1EIHdWtlppVBbtKAW-BBcDbh7YFhd-gU3k7L-rIuahTrrblHJ-qn-NisH9xc-wU-ws_n
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EBfVgfVSsVt2DBy-pm2STdI-ltVSspdIqvYV9FURppU39_c5uklIQD0IOgcySkNmZndmd-T6AW6bDKYbhmKnypvBYLCOvySLuCa4TiiNUvuH21k8Gg-ZkwodFs7rrhTHGuOIz07C37ixfz9XKbpWhhVtoFIYZ-k7EWODn7VprxxuXFR0-2nDIaIHk41N-P25jKhj4DZzRietF2ViEHKvKL1fs1pdu5Z9fdgSHRSBJWrnmj2HLzE6gUpI0kMJmT-BgA3HwFF5f5iMyXNjTGasRImaaOE7mpbAzkbSyTKgPlHDoDVYCg1rSsei6lhjLaFI6F-IYk0inL8SoCq_dh3G75xXMCp4KOM28QGuheBhrP5FUiyhIOEY2CtNhTnUTYybDaTSlTMlpEtkIQiYJLnH4LOJSBHF4Btuz-cycAxEmlBjlYJ4pIhZKKULFpVZ4MR1rOq1Bo_zVqSpgxy37xWfq0g_K03E7tbpJC93U4G494CtH3PhbtGpVsSGWa6EG9VKZaWGSyzTgFnoQ3U148cewG9jrjZ_7af9x8HQJ-_gmlleb1WE7W6zMFeyq7-x9ubh28-4HOYXTLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS+Prediction+and+Adversarial+Attack+Protection+for+Distributed+Services+Under+DLaaS&rft.jtitle=IEEE+transactions+on+computers&rft.au=Liang%2C+Wei&rft.au=Li%2C+Yuhui&rft.au=Xu%2C+Jianlong&rft.au=Zheng%2C+Qin&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=73&rft.issue=3&rft.spage=669&rft_id=info:doi/10.1109%2FTC.2021.3077738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon