Auto-Embedding Transformer for Interpretable Few-Shot Fault Diagnosis of Rolling Bearings
Deep-learning-based intelligent diagnosis is a popular method to ensure the safe operation of rolling bearings. However, practical diagnostic tasks are often subject to a lack of labeled data, resulting in poor performance in scenarios with insufficient training samples. Moreover, conventional intel...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on reliability Jg. 73; H. 2; S. 1270 - 1279 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9529, 1558-1721 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep-learning-based intelligent diagnosis is a popular method to ensure the safe operation of rolling bearings. However, practical diagnostic tasks are often subject to a lack of labeled data, resulting in poor performance in scenarios with insufficient training samples. Moreover, conventional intelligent diagnosis methods suffer from a deficiency in interpretability. In this article, an auto-embedding transformer (AET) method is proposed to implement the interpretable few-shot fault diagnosis of rolling bearings. First, an auto-embedding module is developed to improve the embedding quality of the signal, which is designed based on a novel asymmetric convolutional encoder-decoder architecture. This module can leverage the merits of unsupervised learning in data mining and allow the transformer to learn more diagnostic knowledge from limited data. Second, an attention scoring method is proposed that utilizes positionwise attention to quantify the importance of each signal embedding for diagnosis, thereby interpreting the AET method. Experimental results confirm that, even with limited training samples, the AET method outperforms various comparison methods in terms of recognition accuracy and convergence rate. Furthermore, the attention scores assigned to each embedding facilitate the interpretability of the AET method. |
|---|---|
| AbstractList | Deep-learning-based intelligent diagnosis is a popular method to ensure the safe operation of rolling bearings. However, practical diagnostic tasks are often subject to a lack of labeled data, resulting in poor performance in scenarios with insufficient training samples. Moreover, conventional intelligent diagnosis methods suffer from a deficiency in interpretability. In this article, an auto-embedding transformer (AET) method is proposed to implement the interpretable few-shot fault diagnosis of rolling bearings. First, an auto-embedding module is developed to improve the embedding quality of the signal, which is designed based on a novel asymmetric convolutional encoder-decoder architecture. This module can leverage the merits of unsupervised learning in data mining and allow the transformer to learn more diagnostic knowledge from limited data. Second, an attention scoring method is proposed that utilizes positionwise attention to quantify the importance of each signal embedding for diagnosis, thereby interpreting the AET method. Experimental results confirm that, even with limited training samples, the AET method outperforms various comparison methods in terms of recognition accuracy and convergence rate. Furthermore, the attention scores assigned to each embedding facilitate the interpretability of the AET method. |
| Author | Liu, Dongdong Cui, Lingli Wang, Gang |
| Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0002-3084-8825 surname: Wang fullname: Wang, Gang email: wangg@emails.bjut.edu.cn organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Dongdong orcidid: 0000-0003-2638-3014 surname: Liu fullname: Liu, Dongdong email: liudd@bjut.edu.cn organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China – sequence: 3 givenname: Lingli orcidid: 0000-0003-2883-4018 surname: Cui fullname: Cui, Lingli email: acuilingli@163.com organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China |
| BookMark | eNp9kM1LAzEUxINUsK2evXhY8LxtPjbbzbHWVgsFoa4HT0uyfakp26QmWcT_3i3tQTx4Gh7Mb94wA9SzzgJCtwSPCMFiXK5HFFM2YowWXEwuUJ9wXqRkQkkP9TEmRSo4FVdoEMKuO7NMFH30Pm2jS-d7BZuNsduk9NIG7fwefNJJsrQR_MFDlKqBZAFf6euHi8lCtk1MHo3cWhdMSJxO1q5pjgkPIH2n4RpdatkEuDnrEL0t5uXsOV29PC1n01VaU4FjSjhWXRXMMpErybkGPJFcYi1ErQoKXADmCkCpopaUsY1WGQZCsc6hZrlmQ3R_yj1499lCiNXOtd52LyuG82xCGBe8c_GTq_YuBA-6qk2U0TgbvTRNRXB1XLEq19Vxxeq8YseN_3AHb_bSf_9D3J0IAwC_3Ix0PTj7AV3OfyE |
| CODEN | IERQAD |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3487989 crossref_primary_10_1109_JIOT_2025_3547957 crossref_primary_10_1088_1361_6501_ad9e1d crossref_primary_10_1109_JSEN_2024_3516015 crossref_primary_10_1016_j_ress_2025_111271 crossref_primary_10_1109_TR_2024_3507377 crossref_primary_10_1016_j_aei_2025_103813 crossref_primary_10_3390_app14198582 crossref_primary_10_1016_j_engappai_2024_109261 crossref_primary_10_1109_ACCESS_2024_3430010 crossref_primary_10_1109_TR_2025_3540500 crossref_primary_10_1088_1361_6501_adb2b0 crossref_primary_10_1016_j_aei_2024_102708 crossref_primary_10_1088_1361_6501_ad5de7 crossref_primary_10_3390_act14050255 crossref_primary_10_1007_s11071_024_09389_y crossref_primary_10_3390_s25072254 crossref_primary_10_3390_app142210095 crossref_primary_10_1177_14759217251350560 crossref_primary_10_1063_5_0255451 crossref_primary_10_1088_1361_6501_ad4d15 crossref_primary_10_1109_TII_2024_3438252 crossref_primary_10_1109_TR_2025_3527739 crossref_primary_10_1016_j_ress_2024_110632 crossref_primary_10_1016_j_ress_2025_110830 crossref_primary_10_1016_j_rser_2025_115809 |
| Cites_doi | 10.1016/j.renene.2021.12.054 10.1109/tim.2020.3039648 10.1016/j.neucom.2022.04.111 10.1016/j.ymssp.2023.110427 10.1016/j.asoc.2021.108391 10.1007/s11465-021-0650-6 10.1109/TR.2018.2882682 10.1109/TII.2020.2968370 10.1016/j.eswa.2023.120696 10.1109/tim.2022.3169528 10.1016/j.ymssp.2021.108673 10.1109/tim.2022.3163167 10.1109/TPAMI.2022.3152247 10.1109/acc.2005.1470385 10.1109/ICCV48922.2021.00986 10.1016/j.measurement.2022.111228 10.1088/1361-6501/ace98a 10.1109/TR.2022.3215243 10.1016/j.ymssp.2019.106530 10.1109/JSEN.2022.3188646 10.1109/TMECH.2021.3058061 10.1016/j.jmsy.2021.12.003 10.1109/TR.2021.3117732 10.1088/1361-6501/acf390 10.1109/TIE.2022.3140403 10.1109/TSMC.2020.3048950 10.1109/tim.2022.3181933 10.1109/TII.2022.3192597 10.1016/j.ijmecsci.2022.107708 10.1109/JSEN.2020.3008177 10.1109/JSEN.2022.3146151 10.1016/j.neucom.2022.06.066 10.1109/tim.2022.3225013 10.1109/tnnls.2022.3230458 10.1016/j.ymssp.2019.106587 10.1109/TIE.2020.3028821 10.48550/ARXIV.1706.03762 10.1109/CVPR52688.2022.01553 10.1016/j.ymssp.2018.12.051 10.1016/j.ress.2023.109319 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TR.2023.3328597 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-1721 |
| EndPage | 1279 |
| ExternalDocumentID | 10_1109_TR_2023_3328597 10315955 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52075008; 52305086 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c290t-150b44903496ba55fe07a5a0f99cb82e59e05beebb8ca233dfb40e120f6ec36f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111908000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9529 |
| IngestDate | Sun Jun 29 15:24:00 EDT 2025 Tue Nov 18 22:31:27 EST 2025 Sat Nov 29 01:54:37 EST 2025 Wed Aug 27 02:00:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c290t-150b44903496ba55fe07a5a0f99cb82e59e05beebb8ca233dfb40e120f6ec36f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2883-4018 0000-0003-2638-3014 0000-0002-3084-8825 |
| PQID | 3064713595 |
| PQPubID | 85456 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3064713595 ieee_primary_10315955 crossref_citationtrail_10_1109_TR_2023_3328597 crossref_primary_10_1109_TR_2023_3328597 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June 2024-6-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on reliability |
| PublicationTitleAbbrev | TR |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 Kingma (ref43) ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 van der Maaten (ref44) 2008; 9 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref25 ref20 ref41 ref22 ref21 Yu (ref42) 2014 ref28 ref27 ref29 ref8 Dosovitskiy (ref26) ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref21 doi: 10.1016/j.renene.2021.12.054 – ident: ref4 doi: 10.1109/tim.2020.3039648 – ident: ref22 doi: 10.1016/j.neucom.2022.04.111 – ident: ref12 doi: 10.1016/j.ymssp.2023.110427 – ident: ref36 doi: 10.1016/j.asoc.2021.108391 – ident: ref39 doi: 10.1007/s11465-021-0650-6 – ident: ref3 doi: 10.1109/TR.2018.2882682 – ident: ref20 doi: 10.1109/TII.2020.2968370 – year: 2014 ident: ref42 article-title: Case Western Reserve University Bearing Data Center – ident: ref15 doi: 10.1016/j.eswa.2023.120696 – ident: ref29 doi: 10.1109/tim.2022.3169528 – ident: ref34 doi: 10.1016/j.ymssp.2021.108673 – ident: ref5 doi: 10.1109/tim.2022.3163167 – ident: ref27 doi: 10.1109/TPAMI.2022.3152247 – ident: ref2 doi: 10.1109/acc.2005.1470385 – ident: ref28 doi: 10.1109/ICCV48922.2021.00986 – start-page: 1 ident: ref43 article-title: Adam: A method for stochastic optimization publication-title: Proc. Int. Conf. Learn. Representations – ident: ref41 doi: 10.1016/j.measurement.2022.111228 – start-page: 2750 ident: ref26 article-title: An image is worth 1616 words: Transformers for image recognition at scale publication-title: Proc. Int. Conf. Learn. Representations – ident: ref7 doi: 10.1088/1361-6501/ace98a – ident: ref23 doi: 10.1109/TR.2022.3215243 – ident: ref31 doi: 10.1016/j.ymssp.2019.106530 – ident: ref10 doi: 10.1109/JSEN.2022.3188646 – ident: ref32 doi: 10.1109/TMECH.2021.3058061 – ident: ref24 doi: 10.1016/j.jmsy.2021.12.003 – ident: ref11 doi: 10.1109/TR.2021.3117732 – ident: ref8 doi: 10.1088/1361-6501/acf390 – ident: ref18 doi: 10.1109/TIE.2022.3140403 – ident: ref40 doi: 10.1109/TSMC.2020.3048950 – ident: ref30 doi: 10.1109/tim.2022.3181933 – ident: ref1 doi: 10.1109/TII.2022.3192597 – ident: ref9 doi: 10.1016/j.ijmecsci.2022.107708 – ident: ref17 doi: 10.1109/JSEN.2020.3008177 – volume: 9 start-page: 2579 year: 2008 ident: ref44 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref13 doi: 10.1109/JSEN.2022.3146151 – ident: ref14 doi: 10.1016/j.neucom.2022.06.066 – ident: ref16 doi: 10.1109/tim.2022.3225013 – ident: ref35 doi: 10.1109/tnnls.2022.3230458 – ident: ref6 doi: 10.1016/j.ymssp.2019.106587 – ident: ref19 doi: 10.1109/TIE.2020.3028821 – ident: ref25 doi: 10.48550/ARXIV.1706.03762 – ident: ref33 doi: 10.1109/CVPR52688.2022.01553 – ident: ref37 doi: 10.1016/j.ymssp.2018.12.051 – ident: ref38 doi: 10.1016/j.ress.2023.109319 |
| SSID | ssj0014498 |
| Score | 2.569148 |
| Snippet | Deep-learning-based intelligent diagnosis is a popular method to ensure the safe operation of rolling bearings. However, practical diagnostic tasks are often... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1270 |
| SubjectTerms | Autoencoder Convolution Data mining Deep learning Diagnostic systems Embedding Fault diagnosis Feature extraction few-shot diagnosis interpretability Modules Roller bearings Rolling bearings Signal quality transformer Transformers Unsupervised learning Vibrations |
| Title | Auto-Embedding Transformer for Interpretable Few-Shot Fault Diagnosis of Rolling Bearings |
| URI | https://ieeexplore.ieee.org/document/10315955 https://www.proquest.com/docview/3064713595 |
| Volume | 73 |
| WOSCitedRecordID | wos001111908000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014498 issn: 0018-9529 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECbWeNCDzxqr1XDw4IV2d4ECR1-NJ2O0JnraADtEk9o17Vb_vgtLfcR48MQeYENmGGaAme9D6LgQA-GkTYn3xYQ5x4hJBRAKmmaFNDSzRSCbENfX8uFB3cRi9VALAwAh-Qx6_jO85Relnfursn6gJFCct1BLCNEUa30-GTCm4rZbWzDPVMTxSRPVH932PEt4j1IP1yZ-uKDAqfJrIw7eZbjxz3ltovUYRuLTRu9baAkm22jtG7jgDno8nVcluXwxUHj_hEeLEBWmuG7wV7qhGQMewju5eyorPNTzcYUvmgy85xkuHY7A3fistgp_sd5G98PL0fkViUQKxGYqqUgd9JlaPAEc3mjOHSRCc504payRGXAFCTcAxkirM0oLZ1gCaZa4AVg6cHQXLU_KCewhrCVIZpmpIzXLhCzkQKdUqBScsplTuoN6C9nmNqKMe7KLcR5OG4nKR7e5V0YeldFBJ58DXhuAjb-7tr3sv3VrxN5B3YX28miBs9yfrDz9oOL7fww7QKv131mT99VFy9V0Dodoxb5Vz7PpUVhcH4DbzMg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH5BJFEPCIphBaQHD166zPTHTntEYQMRNwbHBE-TtvMaSdYdsjur_77TThcxhAOnzqHNNO_19b22730fwPu6GBVeuZwGX0yF94LavEDK0XBWK8uZqyPZRDGZqKsr_TUVq8daGESMyWc4DJ_xLb9u3DJclR1FSgIt5RN4KoVgeV-udftoIIROG29nw5LphOSTZ_qovBwGnvAh5wGwrfjPCUVWlXtbcfQv45ePnNkWbKZAkhz3mt-GNZy9ghd34AVfw4_jZdvQ018W6-ChSLkKUnFOuob8Szi0UyRj_EO__WxaMjbLaUtO-hy86wVpPEnQ3eRjZxfhan0Hvo9Py09nNFEpUMd01tIu7LOdeCI8vDVSeswKI03mtXZWMZQaM2kRrVXOMM5rb0WGOcv8CB0fef4G1mfNDHeBGIVKOGG7WM2JQtVqZHJe6By9dsxrM4DhSraVSzjjge5iWsXzRqar8rIKyqiSMgbw4XbATQ-x8XDXnSD7O916sQ9gf6W9Ktngogpnq0BAqOXbB4YdwrOz8stFdXE--bwHz7s_iT4LbB_W2_kSD2DD_W6vF_N3caH9BVGP0A8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-Embedding+Transformer+for+Interpretable+Few-Shot+Fault+Diagnosis+of+Rolling+Bearings&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Wang%2C+Gang&rft.au=Liu%2C+Dongdong&rft.au=Cui%2C+Lingli&rft.date=2024-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=73&rft.issue=2&rft.spage=1270&rft_id=info:doi/10.1109%2FTR.2023.3328597&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |