Dynamic Arithmetic Optimization Algorithm Under Load Uncertainty for Wind‐Solar‐Energy Storage‐Based Hybrid Radial Network
ABSTRACT The optimal design and installation of hybrid photovoltaic (PV), wind turbine (WT) distributed generation (DG), and battery energy storage system (BESS) in radial distribution network (RDN) using dynamic arithmetic optimization algorithm (DAOA) is the main purpose of this work. The DAOA alg...
Gespeichert in:
| Veröffentlicht in: | Optimal control applications & methods Jg. 46; H. 5; S. 1897 - 1913 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2025
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0143-2087, 1099-1514 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | ABSTRACT
The optimal design and installation of hybrid photovoltaic (PV), wind turbine (WT) distributed generation (DG), and battery energy storage system (BESS) in radial distribution network (RDN) using dynamic arithmetic optimization algorithm (DAOA) is the main purpose of this work. The DAOA algorithm is the improved version of arithmetic optimization algorithm (AOA) which is widely used in the field of Electrical Engineering to solve the different optimization tasks. The simultaneous minimization of active power loss and voltage deviation is taken as the objectives to improve the efficiency of the distribution network using hybrid PV/WT/BESS system. To establish the efficacy of the suggested DAOA method, it is examined on two very well‐known test systems (33‐bus and 69‐bus). The uncertainty of power generation from PV‐ and WT‐based DG due to solar irradiance and wind speed variation also is taken into consideration. The cost analysis of the hybrid PV/WT/BESS system as well as active power loss cost are also assessed in this study. The result comparison shows that the DAOA algorithm gives supreme result in case of active power losses, voltage deviation, and benefits in active power lost cost. This algorithm has good speed of response and solution quality when hybrid PV/WT/BESS system allocation problem of the distribution network with simultaneous power loss reduction and voltage deviation minimization is executed in RDN. The placement of hybrid PV/WT/BESS system in 33‐bus reduces the active power loss by 44.27%, 41.47%, 46.23% using DAOA and 44.26%, 39.87%, 45.18% using AOA for normal loading, 15% increased loading, and 10% decreased loading, respectively. Similar results are also observed for 69‐bus test system. Moreover, if the performance of the DAOA, AOA, immune clone selection algorithm (ICSA), clone selection algorithm (CSA), manta ray foraging optimization (MRFO), and particle swarm optimization (PSO) for PV, WT, BESS‐ based 33‐bus system are observed, it can be noticed that DAOA gives annual savings of 10$, 496$, 505$, 669$, and 554$ as compared to AOA, ICSA, CSA, MRFO, and PSO, respectively. Similarly for PV, WT, BESS‐based 69‐bus system, it is observed that DAOA gives annual savings of 29$, 3147$, 3154$, 3342$, and 3158$ as compared to AOA, ICSA, CSA, MRFO, and PSO, respectively. In case of solution quality, the DAOA method grants its superiority over several optimization methods found in the literature. |
|---|---|
| AbstractList | The optimal design and installation of hybrid photovoltaic (PV), wind turbine (WT) distributed generation (DG), and battery energy storage system (BESS) in radial distribution network (RDN) using dynamic arithmetic optimization algorithm (DAOA) is the main purpose of this work. The DAOA algorithm is the improved version of arithmetic optimization algorithm (AOA) which is widely used in the field of Electrical Engineering to solve the different optimization tasks. The simultaneous minimization of active power loss and voltage deviation is taken as the objectives to improve the efficiency of the distribution network using hybrid PV/WT/BESS system. To establish the efficacy of the suggested DAOA method, it is examined on two very well‐known test systems (33‐bus and 69‐bus). The uncertainty of power generation from PV‐ and WT‐based DG due to solar irradiance and wind speed variation also is taken into consideration. The cost analysis of the hybrid PV/WT/BESS system as well as active power loss cost are also assessed in this study. The result comparison shows that the DAOA algorithm gives supreme result in case of active power losses, voltage deviation, and benefits in active power lost cost. This algorithm has good speed of response and solution quality when hybrid PV/WT/BESS system allocation problem of the distribution network with simultaneous power loss reduction and voltage deviation minimization is executed in RDN. The placement of hybrid PV/WT/BESS system in 33‐bus reduces the active power loss by 44.27%, 41.47%, 46.23% using DAOA and 44.26%, 39.87%, 45.18% using AOA for normal loading, 15% increased loading, and 10% decreased loading, respectively. Similar results are also observed for 69‐bus test system. Moreover, if the performance of the DAOA, AOA, immune clone selection algorithm (ICSA), clone selection algorithm (CSA), manta ray foraging optimization (MRFO), and particle swarm optimization (PSO) for PV, WT, BESS‐ based 33‐bus system are observed, it can be noticed that DAOA gives annual savings of 10$, 496$, 505$, 669$, and 554$ as compared to AOA, ICSA, CSA, MRFO, and PSO, respectively. Similarly for PV, WT, BESS‐based 69‐bus system, it is observed that DAOA gives annual savings of 29$, 3147$, 3154$, 3342$, and 3158$ as compared to AOA, ICSA, CSA, MRFO, and PSO, respectively. In case of solution quality, the DAOA method grants its superiority over several optimization methods found in the literature. ABSTRACT The optimal design and installation of hybrid photovoltaic (PV), wind turbine (WT) distributed generation (DG), and battery energy storage system (BESS) in radial distribution network (RDN) using dynamic arithmetic optimization algorithm (DAOA) is the main purpose of this work. The DAOA algorithm is the improved version of arithmetic optimization algorithm (AOA) which is widely used in the field of Electrical Engineering to solve the different optimization tasks. The simultaneous minimization of active power loss and voltage deviation is taken as the objectives to improve the efficiency of the distribution network using hybrid PV/WT/BESS system. To establish the efficacy of the suggested DAOA method, it is examined on two very well‐known test systems (33‐bus and 69‐bus). The uncertainty of power generation from PV‐ and WT‐based DG due to solar irradiance and wind speed variation also is taken into consideration. The cost analysis of the hybrid PV/WT/BESS system as well as active power loss cost are also assessed in this study. The result comparison shows that the DAOA algorithm gives supreme result in case of active power losses, voltage deviation, and benefits in active power lost cost. This algorithm has good speed of response and solution quality when hybrid PV/WT/BESS system allocation problem of the distribution network with simultaneous power loss reduction and voltage deviation minimization is executed in RDN. The placement of hybrid PV/WT/BESS system in 33‐bus reduces the active power loss by 44.27%, 41.47%, 46.23% using DAOA and 44.26%, 39.87%, 45.18% using AOA for normal loading, 15% increased loading, and 10% decreased loading, respectively. Similar results are also observed for 69‐bus test system. Moreover, if the performance of the DAOA, AOA, immune clone selection algorithm (ICSA), clone selection algorithm (CSA), manta ray foraging optimization (MRFO), and particle swarm optimization (PSO) for PV, WT, BESS‐ based 33‐bus system are observed, it can be noticed that DAOA gives annual savings of 10$, 496$, 505$, 669$, and 554$ as compared to AOA, ICSA, CSA, MRFO, and PSO, respectively. Similarly for PV, WT, BESS‐based 69‐bus system, it is observed that DAOA gives annual savings of 29$, 3147$, 3154$, 3342$, and 3158$ as compared to AOA, ICSA, CSA, MRFO, and PSO, respectively. In case of solution quality, the DAOA method grants its superiority over several optimization methods found in the literature. |
| Author | Dey, Indrajit Kumar Roy, Provas |
| Author_xml | – sequence: 1 givenname: Indrajit orcidid: 0000-0002-8820-2410 surname: Dey fullname: Dey, Indrajit email: dey.indrajit00@gmail.com organization: Camellia Institute of Technology and Management – sequence: 2 givenname: Provas surname: Kumar Roy fullname: Kumar Roy, Provas organization: Kalyani Government Engineering College |
| BookMark | eNp1kM1OAjEUhRuDiYAmPkITN24G-zNjZ5YjopgQSUTictJpO1gcWuyUkHHFI_iMPokF3Lo6J_d-957k9EDHWKMAuMRogBEiN1bwASUZOwFdjLIswgmOO6CLcEwjglJ2BnpNs0QIMUxJF-zuW8NXWsDcaf--Uj7Y6drrlf7iXlsD83phDys4N1I5OLFcBiuU81wb38LKOvimjfzZfc9szV3QkVFu0cKZt44vVBjc8UZJOG5LpyV84VLzGj4rv7Xu4xycVrxu1MWf9sH8YfQ6HEeT6ePTMJ9EgmSIRUpgrCQi8pYQyXDJOE1xSVkaUxoLWnGasKQsWUmEDAc8FVIolLCgCcYVon1wdfy7dvZzoxpfLO3GmRBZUJLgNE5YzAJ1faSEs03jVFWsnV5x1xYYFft-i9Bvse83oNER3epatf9yxXSYH_hfONCB1w |
| Cites_doi | 10.1080/15325008.2024.2303066 10.1016/j.asoc.2015.11.036 10.1016/j.asej.2022.101872 10.1038/s41598-024-65867-8 10.1016/j.renene.2017.12.106 10.1016/j.aej.2020.08.042 10.1016/j.est.2021.102282 10.1016/j.ijepes.2019.105442 10.1016/j.epsr.2020.106909 10.1016/j.egyr.2024.05.018 10.35833/MPCE.2019.000259 10.1109/61.25627 10.1002/oca.3137 10.1007/s12530-021-09416-y 10.3233/AJW220096 10.1002/adc2.227 10.1155/2017/2857926 10.1007/s42835-022-01355-1 10.1109/TPWRD.2003.813818 10.1016/j.asej.2019.08.011 10.1155/2022/8640423 10.1002/oca.3031 10.1080/0305215X.2023.2187790 10.1109/ACCESS.2023.3329704 10.1016/j.aej.2021.11.017 10.1016/j.measurement.2025.117012 10.1109/ACCESS.2022.3153042 10.1002/eng2.12243 10.1080/0305215X.2019.1585832 10.1016/j.ijepes.2021.107598 10.1007/s00521-023-08623-9 10.5755/j01.eee.19.10.1941 10.1016/j.ijepes.2014.09.020 10.1016/j.asoc.2019.02.003 10.1016/j.asej.2022.101792 10.1109/ACCESS.2022.3155484 10.1051/ro/2021045 10.1002/jnm.3105 10.1016/j.cma.2020.113609 10.1080/01430750.2020.1737837 10.1016/j.asoc.2021.107384 10.1002/oca.3190 10.1016/j.aej.2022.01.056 10.1016/j.epsr.2019.106100 10.1109/TPWRD.2007.905370 10.1016/j.epsr.2024.110334 10.1002/jnm.3298 10.3390/app11020627 10.1080/15325008.2014.963268 10.1016/j.egyr.2024.07.050 10.1016/j.eti.2020.101118 10.1109/ACCESS.2023.3316725 10.1109/ACCESS.2022.3146374 10.1016/j.solener.2016.05.019 10.1002/etep.2322 10.1002/oca.3164 10.1109/ACCESS.2021.3134872 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/oca.3297 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1514 |
| EndPage | 1913 |
| ExternalDocumentID | 10_1002_oca_3297 OCA3297 |
| Genre | researchArticle |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c2907-ec11ed02d622d71b7a381b3784334c3fa3575bb7b2cd290a8cdce0578cd511f03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001477040000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-2087 |
| IngestDate | Fri Sep 19 02:10:37 EDT 2025 Sat Nov 29 07:26:38 EST 2025 Fri Sep 19 09:30:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2907-ec11ed02d622d71b7a381b3784334c3fa3575bb7b2cd290a8cdce0578cd511f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8820-2410 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/oca.3297 |
| PQID | 3251845747 |
| PQPubID | 1036362 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3251845747 crossref_primary_10_1002_oca_3297 wiley_primary_10_1002_oca_3297_OCA3297 |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2025 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September/October 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Glasgow |
| PublicationTitle | Optimal control applications & methods |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 121 2023; 35 2023; 36 2020; 20 2019; 52 2024; 106 2020; 59 2003; 18 2020; 11 2024; 37 2022; 136 2020; 8 2013; 19 2021; 35 2020; 2 2024; 6 2015; 43 2021; 192 2016; 40 2024; 231 2007; 22 2025; 249 2021; 9 1989; 4 2023; 14 2023; 11 2017; 2017 2023; 18 2019; 77 2017; 27 2020; 180 2021; 107 2024; 52 2024; 11 2024; 56 2024; 12 2022; 43 2024; 14 2022; 2022 2023; 44 2021; 11 2021; 55 2021; 376 2022; 61 2015; 64 2020; 115 2022; 13 2016; 134 2022; 10 2024; 45 2022; 19 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 Neda O. M. (e_1_2_11_14_1) 2024; 106 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – volume: 45 start-page: 2076 issue: 5 year: 2024 end-page: 2099 article-title: An Efficient Hybrid Approach Based Design of Photovoltaic Fed Grid Integrated Wireless Electric Vehicle Battery Charger publication-title: Optimal Control Applications and Methods – volume: 40 start-page: 391 year: 2016 end-page: 404 article-title: Krill Herd Algorithm for Optimal Location of Distributed Generator in Radial Distribution System publication-title: Applied Soft Computing – volume: 11 start-page: 409 issue: 2 year: 2020 end-page: 418 article-title: An Exact MINLP Model for Optimal Location and Sizing of DGs in Distribution Networks: A General Algebraic Modeling System Approach publication-title: Ain Shams Engineering Journal – volume: 136 year: 2022 article-title: A Stochastic Analytic‐Probabilistic Approach to Distributed Generation Hosting Capacity Evaluation of Active Feeders publication-title: International Journal of Electrical Power & Energy Systems – volume: 59 start-page: 4771 issue: 6 year: 2020 end-page: 4786 article-title: Allocation of Distributed Generations in Radial Distribution Systems Using Adaptive PSO and Modified GSA Multi‐Objective Optimizations publication-title: Alexandria Engineering Journal – volume: 8 start-page: 499 issue: 3 year: 2020 end-page: 510 article-title: Optimal Placement and Sizing of Renewable Distributed Generation Using Hybrid Metaheuristic Algorithm publication-title: Journal of Modern Power Systems and Clean Energy – volume: 14 issue: 1 year: 2024 article-title: An Enhanced Jellyfish Search Optimizer for Stochastic Energy Management of Multi‐Microgrids With Wind Turbines, Biomass and PV Generation Systems Considering Uncertainty publication-title: Scientific Reports – volume: 35 start-page: 17645 issue: 24 year: 2023 end-page: 17670 article-title: Optimal Energy Planning of Multi‐Microgrids at Stochastic Nature of Load Demand and Renewable Energy Resources Using a Modified Capuchin Search Algorithm publication-title: Neural Computing and Applications – volume: 134 start-page: 366 year: 2016 end-page: 374 article-title: Application of the Hybrid Big Bang–Big Crunch Algorithm for Optimal Sizing of a Stand‐Alone Hybrid PV/Wind/Battery System publication-title: Solar Energy – volume: 2 issue: 10 year: 2020 article-title: A New Index‐Based Method for Optimal DG Placement in Distribution Networks publication-title: Engineering Reports – volume: 14 issue: 2 year: 2023 article-title: Optimal Allocation of Renewable DGs Using Artificial Hummingbird Algorithm Under Uncertainty Conditions publication-title: Ain Shams Engineering Journal – volume: 19 start-page: 53 issue: 10 year: 2013 end-page: 57 article-title: Optimal Placement of Distributed Generations in Radial Distribution Systems Using Various PSO and DE Algorithms publication-title: Elektronika Ir Elektrotechnika – volume: 64 start-page: 1197 year: 2015 end-page: 1205 article-title: Optimal Allocation of Multi‐Type Distributed Generators Using Backtracking Search Optimization Algorithm publication-title: International Journal of Electrical Power & Energy Systems – volume: 27 issue: 7 year: 2017 article-title: An Analytical Approach for Allocation and Sizing of Distributed Generations in Radial Distribution Network publication-title: International Transactions on Electrical Energy Systems – volume: 52 start-page: 303 issue: 2 year: 2019 end-page: 324 article-title: A Novel Opposition‐Based Tuned‐Chaotic Differential Evolution Technique for Techno‐Economic Analysis by Optimal Placement of Distributed Generation publication-title: Engineering Optimization – volume: 44 start-page: 3168 issue: 6 year: 2023 end-page: 3184 article-title: Optimal Allocation of Distributed Generation for Power Flow Enhancement in Distribution Network publication-title: Optimal Control Applications and Methods – volume: 10 start-page: 16188 year: 2022 end-page: 16208 article-title: Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints publication-title: IEEE Access – volume: 61 start-page: 5887 issue: 8 year: 2022 end-page: 5901 article-title: A MILP Model for Optimal Renewable Wind DG Allocation in Smart Distribution Systems Considering Voltage Stability and Line Loss publication-title: Alexandria Engineering Journal – volume: 43 start-page: 2540 issue: 1 year: 2022 end-page: 2548 article-title: An Enhanced Multiobjective Particle Swarm Optimisation Algorithm for Optimum Utilisation of Hybrid Renewable Energy Systems publication-title: International Journal of Ambient Energy – volume: 11 start-page: 103288 year: 2023 end-page: 103305 article-title: Optimal Distributed Generation Placement in Radial Distribution Networks Using Enhanced Search Group Algorithm publication-title: IEEE Access – volume: 11 start-page: 123610 year: 2023 end-page: 123624 article-title: A Novel Integration Technique for Optimal Location & Sizing of DG Units With Reconfiguration in Radial Distribution Networks Considering Reliability publication-title: IEEE Access – volume: 18 start-page: 2581 issue: 4 year: 2023 end-page: 2597 article-title: Enhanced Real Coded Genetic Algorithm for Optimal DG Placement in a Radial Distribution System publication-title: Journal of Electrical Engineering & Technology – volume: 45 start-page: 2432 issue: 5 year: 2024 end-page: 2465 article-title: Optimal Allocation of Solar Photovoltaic Distributed Generation for Performance Enhancement of Electrical Distribution Networks Considering Optimal Volt‐Var Regulation Under Uncertainty and High Load Variation publication-title: Optimal Control Applications and Methods – volume: 10 start-page: 25669 year: 2022 end-page: 25687 article-title: A Novel Hybrid Optimization‐Based Algorithm for the Single and Multi‐Objective Achievement With Optimal DG Allocations in Distribution Networks publication-title: IEEE Access – volume: 22 start-page: 2473 issue: 4 year: 2007 end-page: 2480 article-title: Impact of Network Reconfiguration on Loss Allocation of Radial Distribution Systems publication-title: IEEE Transactions on Power Delivery – volume: 180 year: 2020 article-title: The Role of Demand Response in Optimal Sizing and Siting of Distribution Energy Resources in Distribution Network With Time‐Varying Load: An Analytical Approach publication-title: Electric Power Systems Research – volume: 192 year: 2021 article-title: Optimal Network Reconfiguration and DG Allocation Using Adaptive Modified Whale Optimization Algorithm Considering Probabilistic Load Flow publication-title: Electric Power Systems Research – volume: 12 start-page: 1623 year: 2024 end-page: 1637 article-title: Dynamic Operation of Distribution Grids With the Integration of Photovoltaic Systems and Distribution Static Compensators Considering Network Reconfiguration publication-title: Energy Reports – volume: 43 start-page: 105 issue: 1 year: 2015 end-page: 117 article-title: A Multi‐Objective Optimization for Sizing and Placement of Voltage‐Controlled Distributed Generation Using Supervised Big Bang–Big Crunch Method publication-title: Electric Power Components & Systems – volume: 55 start-page: 899 issue: 2 year: 2021 end-page: 919 article-title: Multi‐Objective Optimization Based Optimal Sizing & Placement of Multiple Distributed Generators for Distribution Network Performance Improvement publication-title: RAIRO ‐ Operations Research – volume: 4 start-page: 1401 issue: 2 year: 1989 end-page: 1407 article-title: Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing publication-title: IEEE Transactions on Power Delivery – volume: 107 year: 2021 article-title: Optimization of Hybrid Renewable Energy System in Radial Distribution Networks Considering Uncertainty Using Meta‐Heuristic Crow Search Algorithm publication-title: Applied Soft Computing – volume: 18 start-page: 882 issue: 3 year: 2003 end-page: 887 article-title: A Direct Approach for Distribution System Load Flow Solutions publication-title: IEEE Transactions on Power Delivery – volume: 13 issue: 6 year: 2022 article-title: Improvement of Active Distribution Systems With High Penetration Capacities of Shunt Reactive Compensators and Distributed Generators Using Bald Eagle Search publication-title: Ain Shams Engineering Journal – volume: 10 start-page: 21455 year: 2022 end-page: 21474 article-title: Optimal Allocation of Renewable Distributed Generations Using Heuristic Methods to Minimize Annual Energy Losses and Voltage Deviation Index publication-title: IEEE Access – volume: 11 issue: 2 year: 2021 article-title: A Mixed‐Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks publication-title: Applied Sciences – volume: 2022 issue: 1 year: 2022 article-title: Optimal Placement and Sizing Problem for Power Loss Minimization and Voltage Profile Improvement of Distribution Networks Under Seasonal Loads Using Harris Hawks Optimizer publication-title: International Transactions on Electrical Energy Systems – volume: 61 start-page: 8069 issue: 10 year: 2022 end-page: 8088 article-title: An Improved Metaheuristic Method for Simultaneous Network Reconfiguration and Distributed Generation Allocation publication-title: Alexandria Engineering Journal – volume: 45 start-page: 2874 issue: 6 year: 2024 end-page: 2896 article-title: Optimizing Solar Photovoltaic and Biomass Integration for Electric Vehicle Charging Stations in Metropolitan Cities: A Hybrid Approach publication-title: Optimal Control Applications and Methods – volume: 2017 issue: 1 year: 2017 article-title: Optimal Allocation of DG and DSTATCOM in Radial Distribution System Using Cuckoo Search Optimization Algorithm publication-title: Modelling and Simulation in Engineering – volume: 376 year: 2021 article-title: The Arithmetic Optimization Algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 9 start-page: 165618 year: 2021 end-page: 165647 article-title: Reconfiguration of Distribution Networks With Distributed Generations Using an Improved Neural Network Algorithm publication-title: IEEE Access – volume: 231 year: 2024 article-title: Oppositional Based Artificial Rabbits Optimization Applied for Optimal Allocation of Nonlinear DG in Distribution Networks Considering Total Harmonic Distortion Limit publication-title: Electric Power Systems Research – volume: 106 start-page: 1 year: 2024 end-page: 16 article-title: Hybrid Design of Optimal Reconfiguration and DG Sizing and Siting Using a Novel Improved Salp Swarm Algorithm publication-title: Electrical Engineering – volume: 52 start-page: 1 year: 2024 end-page: 15 article-title: Enhancement of Technical, Economic and Environmental Benefits of RDN Using Jaya Algorithm Considering Renewables Uncertainties publication-title: Electric Power Components & Systems – volume: 11 start-page: 5436 year: 2024 end-page: 5455 article-title: A Novel Modified Artificial Rabbit Optimization for Stochastic Energy Management of a Grid‐Connected Microgrid: A Case Study in China publication-title: Energy Reports – volume: 35 year: 2021 article-title: Optimal Sizing and Allocation of Renewable Based Distribution Generation With Gravity Energy Storage Considering Stochastic Nature Using Particle Swarm Optimization in Radial Distribution Network publication-title: Journal of Energy Storage – volume: 6 issue: 3 year: 2024 article-title: Optimal Installation of DG in Radial Distribution Network Using Arithmetic Optimization Algorithm publication-title: Advanced Control for Applications: Engineering and Industrial Systems – volume: 56 start-page: 679 issue: 5 year: 2024 end-page: 699 article-title: Network Reconfiguration in the Presence of Optimally Integrated Multiple Distributed Generation Units in a Radial Distribution Network publication-title: Engineering Optimization – volume: 115 year: 2020 article-title: Relaxed Convex Model for Optimal Location and Sizing of DGs in DC Grids Using Sequential Quadratic Programming and Random Hyperplane Approaches publication-title: International Journal of Electrical Power & Energy Systems – volume: 36 issue: 6 year: 2023 article-title: Simultaneous Network Reconfiguration and DG Allocation in Radial Distribution Networks Using Arithmetic Optimization Algorithm publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields – volume: 121 start-page: 66 year: 2018 end-page: 80 article-title: Optimal Network Reconfiguration and Renewable DG Integration Considering Time Sequence Variation in Load and DGs publication-title: Renewable Energy – volume: 77 start-page: 761 year: 2019 end-page: 779 article-title: Fuzzy Multi‐Objective Placement of Renewable Energy Sources in Distribution System With Objective of Loss Reduction and Reliability Improvement Using a Novel Hybrid Method publication-title: Applied Soft Computing – volume: 13 start-page: 485 issue: 3 year: 2022 end-page: 498 article-title: Ant Colony Optimization Technique for Integrating Renewable DG in Distribution System With Techno‐Economic Objectives publication-title: Evolving Systems – volume: 19 start-page: 119 issue: 6 year: 2022 end-page: 125 article-title: Placement of Renewable Distributed Energy Resources in the Radial Distribution Network to Overcome the Losses and Air Pollution publication-title: Asian Journal of Water, Environment and Pollution – volume: 249 year: 2025 article-title: Renewable DG Allocation in Radial Distribution Networks for Techno‐Economic Analysis Using Chaotic Quasi Oppositional Arithmetic Optimization Algorithm publication-title: Measurement – volume: 37 issue: 5 year: 2024 article-title: Oppositional Arithmetic Optimization Algorithm for Network Reconfiguration and Simultaneous Placement of DG and Capacitor in Radial Distribution Networks publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields – volume: 20 year: 2020 article-title: Meta‐Heuristic Matrix Moth–Flame Algorithm for Optimal Reconfiguration of Distribution Networks and Placement of Solar and Wind Renewable Sources Considering Reliability publication-title: Environmental Technology & Innovation – ident: e_1_2_11_36_1 doi: 10.1080/15325008.2024.2303066 – ident: e_1_2_11_13_1 doi: 10.1016/j.asoc.2015.11.036 – ident: e_1_2_11_40_1 doi: 10.1016/j.asej.2022.101872 – ident: e_1_2_11_29_1 doi: 10.1038/s41598-024-65867-8 – ident: e_1_2_11_44_1 doi: 10.1016/j.renene.2017.12.106 – ident: e_1_2_11_57_1 doi: 10.1016/j.aej.2020.08.042 – ident: e_1_2_11_33_1 doi: 10.1016/j.est.2021.102282 – ident: e_1_2_11_6_1 doi: 10.1016/j.ijepes.2019.105442 – ident: e_1_2_11_25_1 doi: 10.1016/j.epsr.2020.106909 – ident: e_1_2_11_37_1 doi: 10.1016/j.egyr.2024.05.018 – ident: e_1_2_11_26_1 doi: 10.35833/MPCE.2019.000259 – ident: e_1_2_11_50_1 doi: 10.1109/61.25627 – ident: e_1_2_11_31_1 doi: 10.1002/oca.3137 – ident: e_1_2_11_41_1 doi: 10.1007/s12530-021-09416-y – ident: e_1_2_11_27_1 doi: 10.3233/AJW220096 – ident: e_1_2_11_11_1 doi: 10.1002/adc2.227 – ident: e_1_2_11_58_1 doi: 10.1155/2017/2857926 – ident: e_1_2_11_17_1 doi: 10.1007/s42835-022-01355-1 – ident: e_1_2_11_49_1 doi: 10.1109/TPWRD.2003.813818 – ident: e_1_2_11_9_1 doi: 10.1016/j.asej.2019.08.011 – ident: e_1_2_11_12_1 doi: 10.1155/2022/8640423 – ident: e_1_2_11_15_1 doi: 10.1002/oca.3031 – ident: e_1_2_11_21_1 doi: 10.1080/0305215X.2023.2187790 – ident: e_1_2_11_20_1 doi: 10.1109/ACCESS.2023.3329704 – ident: e_1_2_11_5_1 doi: 10.1016/j.aej.2021.11.017 – ident: e_1_2_11_38_1 doi: 10.1016/j.measurement.2025.117012 – ident: e_1_2_11_32_1 doi: 10.1109/ACCESS.2022.3153042 – ident: e_1_2_11_2_1 doi: 10.1002/eng2.12243 – ident: e_1_2_11_45_1 doi: 10.1080/0305215X.2019.1585832 – ident: e_1_2_11_8_1 doi: 10.1016/j.ijepes.2021.107598 – ident: e_1_2_11_30_1 doi: 10.1007/s00521-023-08623-9 – ident: e_1_2_11_52_1 doi: 10.5755/j01.eee.19.10.1941 – ident: e_1_2_11_53_1 doi: 10.1016/j.ijepes.2014.09.020 – ident: e_1_2_11_55_1 doi: 10.1016/j.asoc.2019.02.003 – ident: e_1_2_11_54_1 doi: 10.1016/j.asej.2022.101792 – ident: e_1_2_11_19_1 doi: 10.1109/ACCESS.2022.3155484 – ident: e_1_2_11_39_1 doi: 10.1051/ro/2021045 – ident: e_1_2_11_22_1 doi: 10.1002/jnm.3105 – ident: e_1_2_11_47_1 doi: 10.1016/j.cma.2020.113609 – ident: e_1_2_11_43_1 doi: 10.1080/01430750.2020.1737837 – ident: e_1_2_11_42_1 doi: 10.1016/j.asoc.2021.107384 – ident: e_1_2_11_35_1 doi: 10.1002/oca.3190 – ident: e_1_2_11_23_1 doi: 10.1016/j.aej.2022.01.056 – ident: e_1_2_11_4_1 doi: 10.1016/j.epsr.2019.106100 – ident: e_1_2_11_56_1 doi: 10.1109/TPWRD.2007.905370 – ident: e_1_2_11_18_1 doi: 10.1016/j.epsr.2024.110334 – ident: e_1_2_11_16_1 doi: 10.1002/jnm.3298 – ident: e_1_2_11_7_1 doi: 10.3390/app11020627 – ident: e_1_2_11_59_1 doi: 10.1080/15325008.2014.963268 – ident: e_1_2_11_34_1 doi: 10.1016/j.egyr.2024.07.050 – volume: 106 start-page: 1 year: 2024 ident: e_1_2_11_14_1 article-title: Hybrid Design of Optimal Reconfiguration and DG Sizing and Siting Using a Novel Improved Salp Swarm Algorithm publication-title: Electrical Engineering – ident: e_1_2_11_51_1 doi: 10.1016/j.eti.2020.101118 – ident: e_1_2_11_10_1 doi: 10.1109/ACCESS.2023.3316725 – ident: e_1_2_11_48_1 doi: 10.1109/ACCESS.2022.3146374 – ident: e_1_2_11_46_1 doi: 10.1016/j.solener.2016.05.019 – ident: e_1_2_11_3_1 doi: 10.1002/etep.2322 – ident: e_1_2_11_28_1 doi: 10.1002/oca.3164 – ident: e_1_2_11_24_1 doi: 10.1109/ACCESS.2021.3134872 |
| SSID | ssj0007132 |
| Score | 2.371919 |
| Snippet | ABSTRACT
The optimal design and installation of hybrid photovoltaic (PV), wind turbine (WT) distributed generation (DG), and battery energy storage system... The optimal design and installation of hybrid photovoltaic (PV), wind turbine (WT) distributed generation (DG), and battery energy storage system (BESS) in... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1897 |
| SubjectTerms | Algorithms Arithmetic arithmetic optimization algorithm (AOA) Cost benefit analysis Cost control decrements in power loss Deviation Distributed generation dynamic arithmetic optimization algorithm (DAOA) economic benefits Electric potential Electric power loss Energy storage hybrid PV/WT/BESS system Irradiance Loss reduction Mathematical analysis Optimization algorithms Particle swarm optimization Photovoltaic cells Radial distribution renewable DG Uncertainty Voltage Wind speed Wind turbines |
| Title | Dynamic Arithmetic Optimization Algorithm Under Load Uncertainty for Wind‐Solar‐Energy Storage‐Based Hybrid Radial Network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Foca.3297 https://www.proquest.com/docview/3251845747 |
| Volume | 46 |
| WOSCitedRecordID | wos001477040000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007132 issn: 0143-2087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQkJEQWyCx3TodSx9iqFpEKbBFfgWQoEW0ILHxE_iN_BLOcUphQEJichTbUWSf7-5L7r4DOGCcqjjWNmCVWAY8VZVAmtAGXOhQa25pNSvJctkWnU58fV09y6MqXS6M54f4-uDmTkamr90Bl2p0PCUNRVV_xGhVzMIcRbHlBZhrnLf67S89jPCL-gBGhrIQiwn1bEiPJ3N_GqOph_ndT80MTWv5P6-4Aku5e0lqXh5WYcYO1mDxG-ngOrw1fBF6HHQ3vn1wSYyki4rjIc_IJLX7m2HWRbKiSKQ9lAYvtQ8eGL8S9HPJFWL5j7f3nkPG2DazFELSQwSPCgpvnKB1NOT01SWEkXNHgHBPOj7kfAP6reZF_TTI6zAEmiJ2DqyOImtCaiqUGhEpIdHMKyZizhjXLJUMfT6lhKLa4AQZa6Mt-oHYojuXhmwTCoPhwG4B4VEouUnxOaHiZcNintJUcur--ESS2iLsTzYkefR0G4knVqYJrmbiVrMIpclOJfmBG2FHGbFqGcFREQ6zPfl1ftKt11y7_deBO7BAXdXfLLKsBIXx07PdhXn9Mr4bPe3lYvcJEuffsw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJqgP3sV5jSC-VdskWzt8mm5jYt1k8_ZW0iRVwW0yp-CbP8Hf6C_xpJdNHwTBp5SmKSU5Oef70nMB2GOchp4ntcVKnrB4FJYsoWxtcVfaUnJNy3FJlmvfbTa929vyxQQcZbEwSX6I0YGb2RmxvjYb3BxIH46zhqKuP2C07E5CnqMUFXOQr7brV_5IESP_ookHI0Nh8Nws96xND7OxP63RGGJ-B6qxpanP_-sbF2AuBZikkkjEIkzo3hLMfks7uAzv1aQMPT70MLzvmjBG0kLV0U1jMknl8a4fd5G4LBLx-0LhpUzcB4ZvBJEuuUE2__n-0THcGNtaHERIOsjhUUXhjWO0j4o03kxIGGmbFAiPpJk4na_AVb12edKw0koMlqTIni0tHUcrm6oSpcp1QlegoQ-Z63HGuGSRYIj6wtANqVQ4QHhSSY1IEFsEdJHNViHX6_f0GhDu2IKrCN9jh7yomMcjGglOzT8fR1BdgN1sRYKnJOFGkKRWpgHOZmBmswCb2VIF6ZZ7xo4istUi0qMC7MeL8uv4oHVSMe36Xx_cgenG5bkf-KfNsw2YoaYGcOxntgm54eBFb8GUfB0-PA-2Uxn8Am7Z46M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD7BS4w-eDeiqDUxvk23trARn1AkGgkQEOVt6dpOSRSMoAlv_AR_o7_E010EH0xMfOqytsvS9pzzfdu5ABwxTgPPk9piBU9YPAwKllC2trgrbSm5psWoJMtd1a3VvE6n2MjAWRoLE-eH-P7gZiQj0tdGwPWLCk8nWUNR158wWnRnYI7niwWUyrlys9Kufiti5F809mBkeBg8N809a9PTdO5PazSBmNNANbI0lZV_veMqLCcAk5TiE7EGGd1bh6WptIMbMC7HZehxUHf4-GzCGEkdVcdzEpNJSk8P_aiLRGWRSLUvFF7K2H1gOCKIdMk9svnP8UfLcGNsL6MgQtJCDo8qCm-co31U5GpkQsJI06RAeCK12Ol8E9qVy9uLKyupxGBJiuzZ0tJxtLKpKlCqXCdwBRr6gLkeZ4xLFgqGqC8I3IBKhROEJ5XUiASxRUAX2mwLZnv9nt4Gwh1bcBXic-yA5xXzeEhDwan55-MIqrNwmO6I_xIn3PDj1MrUx9X0zWpmIZdulZ-I3AA78shW80iPsnAcbcqv8_36Rcm0O38deAALjXLFr17XbnZhkZoSwJGbWQ5mh69veg_m5fuwO3jdT47gFyXi4x4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Arithmetic+Optimization+Algorithm+Under+Load+Uncertainty+for+Wind%E2%80%90Solar%E2%80%90Energy+Storage%E2%80%90Based+Hybrid+Radial+Network&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Dey%2C+Indrajit&rft.au=Kumar+Roy%2C+Provas&rft.date=2025-09-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=46&rft.issue=5&rft.spage=1897&rft.epage=1913&rft_id=info:doi/10.1002%2Foca.3297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_oca_3297 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon |