Observer‐Based Model‐Free Iterative Learning for Fault‐Tolerant Control of Nonlinear Systems

ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertain...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control Ročník 35; číslo 13; s. 5506 - 5518
Hlavní autoři: Wang, Rongrong, Chi, Ronghu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 10.09.2025
Wiley Subscription Services, Inc
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.7995