Observer‐Based Model‐Free Iterative Learning for Fault‐Tolerant Control of Nonlinear Systems
ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertain...
Saved in:
| Published in: | International journal of robust and nonlinear control Vol. 35; no. 13; pp. 5506 - 5518 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
10.09.2025
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1049-8923, 1099-1239 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT
This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. |
| Author | Chi, Ronghu Wang, Rongrong |
| Author_xml | – sequence: 1 givenname: Rongrong orcidid: 0009-0007-7369-0048 surname: Wang fullname: Wang, Rongrong organization: Shandong University of Science and Technology – sequence: 2 givenname: Ronghu orcidid: 0000-0002-1325-7863 surname: Chi fullname: Chi, Ronghu email: ronghu_chi@hotmail.com organization: Qingdao University of Science and Technology |
| BookMark | eNp10MFKAzEQBuAgFWyr4CMEvHjZmk2y3eSoi9VCbUHreUl2J7Jlm9RkW-nNR_AZfRJT69XTzDAfM_APUM86CwhdpmSUEkJvvK1GuZTZCeqnRMokpUz2Dj2XiZCUnaFBCCtC4o7yPtILHcDvwH9_ft2pADV-cjW0cZp4ADztwKuu2QGegfK2sW_YOI8natt20SxdG_e2w4WznXctdgbPnW0bGzV-2YcO1uEcnRrVBrj4q0P0OrlfFo_JbPEwLW5nSUUlyRJjaK1A5VRTpgUjZCy1qbQhylSkzjMQeWUyQZXOeS6ogZSNpZCGAYCmRrAhujre3Xj3voXQlSu39Ta-LBnlPOWcizyq66OqvAvBgyk3vlkrvy9TUh4SLGOC5SHBSJMj_Wha2P_ryud58et_AK5seCI |
| Cites_doi | 10.1109/TSMC.2019.2957299 10.1016/j.ast.2018.10.006 10.1109/TAES.2018.2880035 10.1002/rnc.1033 10.1002/acs.936 10.1016/j.automatica.2003.09.011 10.1109/SYSTOL.2010.5676066 10.1002/rnc.6287 10.1109/TCYB.2020.2986006 10.1016/j.jfranklin.2019.06.002 10.1109/TCST.2008.2009641 10.1016/j.conengprac.2018.10.012 10.1109/ChiCC.2016.7553842 10.1049/iet-cta.2016.0209 10.1109/TNNLS.2015.2460258 10.1016/j.jprocont.2012.05.016 10.1002/asjc.2010 10.1109/TNNLS.2016.2598580 10.2514/2.5103 10.1080/00207179.2015.1086025 10.1360/aas‐007‐1061 10.1109/TNNLS.2020.3027651 10.1049/iet-cta.2013.0417 10.1109/TME.1964.4323124 10.1109/TNNLS.2021.3069209 10.1109/TCST.2012.2185699 10.1049/iet-cta.2009.0140 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1002/rnc.7995 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1239 |
| EndPage | 5518 |
| ExternalDocumentID | 10_1002_rnc_7995 RNC7995 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62273192 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION LH4 O8X 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2905-ff2daea72b23b830069bfcbf0afc0d75e87cf582ab74782fe136989f3eeeb2f83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470345600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1049-8923 |
| IngestDate | Sat Nov 01 15:09:36 EDT 2025 Sat Nov 29 07:36:50 EST 2025 Thu Aug 28 10:10:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2905-ff2daea72b23b830069bfcbf0afc0d75e87cf582ab74782fe136989f3eeeb2f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-7369-0048 0000-0002-1325-7863 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.7995 |
| PQID | 3244144487 |
| PQPubID | 1026344 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3244144487 crossref_primary_10_1002_rnc_7995 wiley_primary_10_1002_rnc_7995_RNC7995 |
| PublicationCentury | 2000 |
| PublicationDate | 10 September 2025 2025-09-10 20250910 |
| PublicationDateYYYYMMDD | 2025-09-10 |
| PublicationDate_xml | – month: 09 year: 2025 text: 10 September 2025 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
| PublicationTitle | International journal of robust and nonlinear control |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2004; 40 2019; 51 2010 1964; 8 2006; 16 2016; 10 2020; 32 2002 2007; 33 2015; 26 2021; 32 2019; 84 2019; 83 2020; 52 2019; 21 2003; 26 2019; 356 1984 2016 2022; 32 2016; 28 2007; 21 2014; 8 2018; 55 2010; 4 2012; 22 2012; 21 2009; 18 2016; 89 Huang L. (e_1_2_9_30_1) 1984 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Yu H. (e_1_2_9_25_1) 2019; 51 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_27_1 Chen W. (e_1_2_9_19_1) 2002 e_1_2_9_29_1 |
| References_xml | – start-page: 3147 year: 2016 end-page: 3151 – volume: 55 start-page: 1989 issue: 4 year: 2018 end-page: 2000 article-title: Fault‐Tolerant Attitude Stabilization Incorporating Closed‐Loop Control Allocation Under Actuator Failure publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 51 start-page: 1881 issue: 3 year: 2019 end-page: 1891 article-title: Extended State Observer‐Based Data‐Driven Iterative Learning Control for Permanent Magnet Linear Motor With Initial Shifts and Disturbances publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 356 start-page: 6352 issue: 12 year: 2019 end-page: 6372 article-title: Data‐Driven Iterative Feedforward Control With Rational Parametrization: Achieving Optimality for Varying Tasks publication-title: Journal of the Franklin Institute – volume: 21 start-page: 546 issue: 2 year: 2012 end-page: 551 article-title: A Data‐Driven Constrained Norm‐Optimal Iterative Learning Control Framework for Lti Systems publication-title: IEEE Transactions on Control Systems Technology – volume: 26 start-page: 2925 issue: 11 year: 2015 end-page: 2938 article-title: Model‐Free Primitive‐Based Iterative Learning Control Approach to Trajectory Tracking of Mimo Systems With Experimental Validation publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 28 start-page: 2541 issue: 11 year: 2016 end-page: 2554 article-title: Adaptive Neural Networks Decentralized FTC Design for Nonstrict‐Feedback Nonlinear Interconnected Large‐Scale Systems Against Actuator Faults publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 32 start-page: 8486 issue: 15 year: 2022 end-page: 8506 article-title: Iterative Fault Estimation and Fault‐Tolerant Control for a Class of Nonlinear Variant Time‐Delay Systems publication-title: International Journal of Robust and Nonlinear Control – volume: 32 start-page: 5232 issue: 11 year: 2020 end-page: 5240 article-title: Iterative Learning Model‐Free Control for Networked Systems With Dual‐Direction Data Dropouts and Actuator Faults publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 40 start-page: 261 issue: 2 year: 2004 end-page: 267 article-title: A Mixed h2/h Approach to Simultaneous Fault Detection and Control publication-title: Automatica – volume: 32 start-page: 5512 issue: 12 year: 2021 end-page: 5525 article-title: Adaptive Iterative Learning Control of Multiple Autonomous Vehicles With a Time‐Varying Reference Under Actuator Faults publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 1984 – volume: 83 start-page: 33 year: 2019 end-page: 44 article-title: Iterative Learning Control of Ventricular Assist Devices With Variable Cycle Durations publication-title: Control Engineering Practice – volume: 4 start-page: 1055 issue: 6 year: 2010 end-page: 1070 article-title: Robust Adaptive Sliding‐Mode Fault‐Tolerant Control With l2‐Gain Performance for Flexible Spacecraft Using Redundant Reaction Wheels publication-title: IET Control Theory & Applications – volume: 21 start-page: 31 issue: 1 year: 2007 end-page: 48 article-title: Adaptive Unknown Input Observer Approach for Aircraft Actuator Fault Detection and Isolation publication-title: International Journal of Adaptive Control and Signal Processing – volume: 18 start-page: 152 issue: 1 year: 2009 end-page: 163 article-title: Passive Actuators' Fault‐Tolerant Control for Affine Nonlinear Systems publication-title: IEEE Transactions on Control Systems Technology – volume: 52 start-page: 1098 issue: 2 year: 2020 end-page: 1111 article-title: Cooperative Adaptive Iterative Learning Fault‐Tolerant Control Scheme for Multiple Subway Trains publication-title: IEEE Transactions on Cybernetics – year: 2002 – volume: 8 start-page: 74 issue: 2 year: 1964 end-page: 80 article-title: Observing the State of a Linear System publication-title: IEEE Transactions on Military Electronics – volume: 16 start-page: 1 issue: 1 year: 2006 end-page: 19 article-title: An Iterative Learning Observer for Fault Detection and Accommodation in Nonlinear Time‐Delay Systems publication-title: International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal – volume: 26 start-page: 543 issue: 4 year: 2003 end-page: 550 article-title: Reconfigurable Flight Control System Design Using Direct Adaptive Method publication-title: Journal of Guidance, Control, and Dynamics – volume: 51 start-page: 5785 issue: 9 year: 2019 end-page: 5799 article-title: RBFNN‐Based Adaptive Iterative Learning Fault‐Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 21 start-page: 43 issue: 1 year: 2019 end-page: 51 article-title: Third‐Order Sliding Mode Fault‐Tolerant Control for Satellites Based on Iterative Learning Observer publication-title: Asian Journal of Control – start-page: 143 year: 2010 end-page: 148 – volume: 89 start-page: 564 issue: 3 year: 2016 end-page: 578 article-title: Fault Reconstruction for Takagi–Sugeno Fuzzy Systems via Learning Observers publication-title: International Journal of Control – volume: 33 start-page: 1061 issue: 10 year: 2007 end-page: 1065 article-title: Dual‐Stage Optimal Iterative Learning Control for Nonlinear Non‐Affine Discrete‐Time Systems publication-title: Acta Automatica Sinica – volume: 84 start-page: 204 year: 2019 end-page: 213 article-title: Continuous Finite‐Time Extended State Observer Based Fault Tolerant Control for Attitude Stabilization publication-title: Aerospace Science and Technology – volume: 10 start-page: 2160 issue: 17 year: 2016 end-page: 2174 article-title: Adaptive Iterative Learning Reliable Control for a Class of Non‐Linearly Parameterised Systems With Unknown State Delays and Input Saturation publication-title: IET Control Theory & Applications – volume: 22 start-page: 1273 issue: 7 year: 2012 end-page: 1286 article-title: Robust Delay Dependent Iterative Learning Fault‐Tolerant Control for Batch Processes With State Delay and Actuator Failures publication-title: Journal of Process Control – volume: 8 start-page: 42 issue: 1 year: 2014 end-page: 50 article-title: Robust Fault Reconstruction via Learning Observers in Linear Parameter‐Varying Systems Subject to Loss of Actuator Effectiveness publication-title: IET Control Theory & Applications – volume-title: IFAC Congress year: 2002 ident: e_1_2_9_19_1 – ident: e_1_2_9_10_1 doi: 10.1109/TSMC.2019.2957299 – ident: e_1_2_9_6_1 doi: 10.1016/j.ast.2018.10.006 – volume: 51 start-page: 1881 issue: 3 year: 2019 ident: e_1_2_9_25_1 article-title: Extended State Observer‐Based Data‐Driven Iterative Learning Control for Permanent Magnet Linear Motor With Initial Shifts and Disturbances publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – ident: e_1_2_9_21_1 doi: 10.1109/TAES.2018.2880035 – ident: e_1_2_9_22_1 doi: 10.1002/rnc.1033 – ident: e_1_2_9_7_1 doi: 10.1002/acs.936 – ident: e_1_2_9_2_1 doi: 10.1016/j.automatica.2003.09.011 – ident: e_1_2_9_8_1 doi: 10.1109/SYSTOL.2010.5676066 – ident: e_1_2_9_13_1 doi: 10.1002/rnc.6287 – ident: e_1_2_9_16_1 doi: 10.1109/TCYB.2020.2986006 – ident: e_1_2_9_27_1 doi: 10.1016/j.jfranklin.2019.06.002 – ident: e_1_2_9_3_1 doi: 10.1109/TCST.2008.2009641 – ident: e_1_2_9_11_1 doi: 10.1016/j.conengprac.2018.10.012 – ident: e_1_2_9_31_1 doi: 10.1109/ChiCC.2016.7553842 – ident: e_1_2_9_15_1 doi: 10.1049/iet-cta.2016.0209 – ident: e_1_2_9_26_1 doi: 10.1109/TNNLS.2015.2460258 – ident: e_1_2_9_14_1 doi: 10.1016/j.jprocont.2012.05.016 – ident: e_1_2_9_23_1 doi: 10.1002/asjc.2010 – volume-title: Linear Algebra in System and Control Theory year: 1984 ident: e_1_2_9_30_1 – ident: e_1_2_9_4_1 doi: 10.1109/TNNLS.2016.2598580 – ident: e_1_2_9_9_1 doi: 10.2514/2.5103 – ident: e_1_2_9_18_1 doi: 10.1080/00207179.2015.1086025 – ident: e_1_2_9_28_1 doi: 10.1360/aas‐007‐1061 – ident: e_1_2_9_12_1 doi: 10.1109/TNNLS.2020.3027651 – ident: e_1_2_9_20_1 doi: 10.1049/iet-cta.2013.0417 – ident: e_1_2_9_29_1 doi: 10.1109/TME.1964.4323124 – ident: e_1_2_9_17_1 doi: 10.1109/TNNLS.2021.3069209 – ident: e_1_2_9_24_1 doi: 10.1109/TCST.2012.2185699 – ident: e_1_2_9_5_1 doi: 10.1049/iet-cta.2009.0140 |
| SSID | ssj0009924 |
| Score | 2.4405143 |
| Snippet | ABSTRACT
This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with... This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5506 |
| SubjectTerms | Actuators Algorithms Convergence Disturbances Fault tolerance Faults iterative learning output observer Machine learning model‐free iterative learning control Nonlinear control nonlinear non‐affine system Nonlinear systems non‐repetitive uncertainties Parameter estimation time‐iterative‐varying actuator faults Tracking errors Uncertainty |
| Title | Observer‐Based Model‐Free Iterative Learning for Fault‐Tolerant Control of Nonlinear Systems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7995 https://www.proquest.com/docview/3244144487 |
| Volume | 35 |
| WOSCitedRecordID | wos001470345600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1239 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009924 issn: 1049-8923 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NSgMxEMcHbT3owW-xWiWCeFu6Zr_So1YXhVKltNLbkmQnIpRWtq1nH8Fn9Emc7G5tPQiCp2XZBMLsTOafkPwG4FxrTDVX6GgdSsdHTzmCm9DRrhKhURi4Ob74qR11OmIwaD6WpyrtXZiCD_G94WYjI5-vbYBLNWksoKEZxY-lma1ClZPb-hWo3nTjfnuB3G0WJW1JAzuCdMwcPevyxrzvz2S0UJjLOjVPNPHWf4a4DZulvGRXhT_swAqOdmFjCTq4B-pB2Z1YzD7fP64ph6XM1kMb0lucIbL7HLNMcyAr0avPjHQti-VsOKU2vfGQvo-mrFWccWdjwzrFWGXGSv75PvTj217rzikrLTiaN93AMYanEmXEFfeU8Cy-WBmtjCuNdtMoQBFpEwgulcXtc4OXni08aTxEWpkb4R1AZTQe4SGwSPmCYxrqIOK-1J5ETiEvA0PKiMSIrMHZ3OTJawHUSAp0Mk_IXom1Vw3q83-RlCE1SUj5-bT6owVWDS5yq__aP-l2WvZ59NeGx7DObV1fWxrCrUNlms3wBNb02_Rlkp2WjvUFJAbXag |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NSsNAEMcHrYJ68FusVl1BvAXjJmm2eNJqqFijSBVvYXczK0JpJVbPPoLP6JM4mw-rB0HwFEJ2YZnM7PxnSX4DsKc1ppordLRuSsdHTzmCm6ajXSWaRmHg5vjiu24Yx-L-vnU9AUfVvzAFH-LrwM1GRr5f2wC3B9IHY2poRgFkcWaTMOWTFwU1mDq9iW67Y-Zuq-hpSyLYESRkKvasyw-quT-z0VhifheqeaaJFv61xkWYLwUmOy48YgkmcLAMc9-wgyugrpQ9i8Xs4-39hLJYymxHtD7dRRkiO89By7QLshK--sBI2bJIvvRHNKY37NPzwYi1i6_c2dCwuFiszFhJQF-F2-is1-44Za8FR_OWGzjG8FSiDLninhKeBRgro5VxpdFuGgYoQm0CwaWywH1u8NCzrSeNh0i1uRHeGtQGwwGuAwuVLzimTR2E3Jfak8gp6GVgSBuRHJF12K1snjwVSI2kgCfzhOyVWHvVoVG9jKQMqueEtJ9P9R-VWHXYz83-6_zkJm7b68ZfB-7ATKd32U265_HFJsxy2-XXNopwG1AbZS-4BdP6dfT4nG2XXvYJ_8_bWg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIYP3hBdeBdHR40g7oo1vWVwpaPFwaGKqLgrSXoiwjAz1NG1j-Az-iSe9OLoQhBcldIEwmlOzp_Qfj_AvtaYaa7Q0TqUjo-ecgQ3oaNdJUKjMHALfPF9N0oS8fDQup6A4_pfmJIP8XXgZjOjWK9tguMwM4djamhOCWRxZpMw7QetkLJy-uwmvuuOmbut0tOWRLAjSMjU7FmXH9Z9f1ajscT8LlSLShMv_muMS7BQCUx2Us6IZZjA_grMf8MOroK6UvYsFvOPt_dTqmIZs45oPbqLc0TWKUDLtAqyCr76yEjZsli-9EbU5nbQo-f9EWuXX7mzgWFJOViZs4qAvgZ38flt-8KpvBYczVtu4BjDM4ky4op7SngWYKyMVsaVRrtZFKCItAkEl8oC97nBI89aTxoPkfbmRnjrMNUf9HEDWKR8wTELdRBxX2pPIqekl4EhbURyRDZgr455OiyRGmkJT-YpxSu18WpAs34ZaZVUzylpP5_2f7TFasBBEfZf-6c3SdteN__acBdmr8_itNtJLrdgjluTX-sT4TZhapS_4DbM6NfR03O-U02yT8Pv2tU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer%E2%80%90Based+Model%E2%80%90Free+Iterative+Learning+for+Fault%E2%80%90Tolerant+Control+of+Nonlinear+Systems&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Wang%2C+Rongrong&rft.au=Chi%2C+Ronghu&rft.date=2025-09-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=35&rft.issue=13&rft.spage=5506&rft.epage=5518&rft_id=info:doi/10.1002%2Frnc.7995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_7995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |