Observer‐Based Model‐Free Iterative Learning for Fault‐Tolerant Control of Nonlinear Systems

ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertain...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control Vol. 35; no. 13; pp. 5506 - 5518
Main Authors: Wang, Rongrong, Chi, Ronghu
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 10.09.2025
Wiley Subscription Services, Inc
Subjects:
ISSN:1049-8923, 1099-1239
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm.
AbstractList This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm.
ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and non‐repetitive time‐varying actuator faults. First, an original linearization data model (LDM) considering non‐repetitive uncertainties is established. Since it contains fault information, this allows the fault information to be estimated using the parameter estimation law. The external disturbances and the non‐repetitive time‐varying actuator faults constitute the total non‐repetitive uncertainties. Next, to deal with non‐repetitive uncertainties, we present a novel iterative output observer (ILO) that considers all historical iteration observation errors to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of ILO, the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. Meanwhile, by utilizing the estimated outputs, an observer‐based parameter updating law is proposed. Furthermore, we propose an optimal iterative learning control (ILC) algorithm to ensure precise tracking of the desired trajectory. The convergence of the proposed ObMFilFTC method is proofed strictly. The proposed ObMFilFTC method guarantees that the system can follow the desired trajectory despite non‐repetitive actuator faults and disturbances in nonlinear systems, relying solely on input/output(I/O) data. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm.
Author Chi, Ronghu
Wang, Rongrong
Author_xml – sequence: 1
  givenname: Rongrong
  orcidid: 0009-0007-7369-0048
  surname: Wang
  fullname: Wang, Rongrong
  organization: Shandong University of Science and Technology
– sequence: 2
  givenname: Ronghu
  orcidid: 0000-0002-1325-7863
  surname: Chi
  fullname: Chi, Ronghu
  email: ronghu_chi@hotmail.com
  organization: Qingdao University of Science and Technology
BookMark eNp10MFKAzEQBuAgFWyr4CMEvHjZmk2y3eSoi9VCbUHreUl2J7Jlm9RkW-nNR_AZfRJT69XTzDAfM_APUM86CwhdpmSUEkJvvK1GuZTZCeqnRMokpUz2Dj2XiZCUnaFBCCtC4o7yPtILHcDvwH9_ft2pADV-cjW0cZp4ADztwKuu2QGegfK2sW_YOI8natt20SxdG_e2w4WznXctdgbPnW0bGzV-2YcO1uEcnRrVBrj4q0P0OrlfFo_JbPEwLW5nSUUlyRJjaK1A5VRTpgUjZCy1qbQhylSkzjMQeWUyQZXOeS6ogZSNpZCGAYCmRrAhujre3Xj3voXQlSu39Ta-LBnlPOWcizyq66OqvAvBgyk3vlkrvy9TUh4SLGOC5SHBSJMj_Wha2P_ryud58et_AK5seCI
Cites_doi 10.1109/TSMC.2019.2957299
10.1016/j.ast.2018.10.006
10.1109/TAES.2018.2880035
10.1002/rnc.1033
10.1002/acs.936
10.1016/j.automatica.2003.09.011
10.1109/SYSTOL.2010.5676066
10.1002/rnc.6287
10.1109/TCYB.2020.2986006
10.1016/j.jfranklin.2019.06.002
10.1109/TCST.2008.2009641
10.1016/j.conengprac.2018.10.012
10.1109/ChiCC.2016.7553842
10.1049/iet-cta.2016.0209
10.1109/TNNLS.2015.2460258
10.1016/j.jprocont.2012.05.016
10.1002/asjc.2010
10.1109/TNNLS.2016.2598580
10.2514/2.5103
10.1080/00207179.2015.1086025
10.1360/aas‐007‐1061
10.1109/TNNLS.2020.3027651
10.1049/iet-cta.2013.0417
10.1109/TME.1964.4323124
10.1109/TNNLS.2021.3069209
10.1109/TCST.2012.2185699
10.1049/iet-cta.2009.0140
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.7995
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 5518
ExternalDocumentID 10_1002_rnc_7995
RNC7995
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62273192
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
LH4
O8X
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2905-ff2daea72b23b830069bfcbf0afc0d75e87cf582ab74782fe136989f3eeeb2f83
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470345600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-8923
IngestDate Sat Nov 01 15:09:36 EDT 2025
Sat Nov 29 07:36:50 EST 2025
Thu Aug 28 10:10:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2905-ff2daea72b23b830069bfcbf0afc0d75e87cf582ab74782fe136989f3eeeb2f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-7369-0048
0000-0002-1325-7863
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.7995
PQID 3244144487
PQPubID 1026344
PageCount 13
ParticipantIDs proquest_journals_3244144487
crossref_primary_10_1002_rnc_7995
wiley_primary_10_1002_rnc_7995_RNC7995
PublicationCentury 2000
PublicationDate 10 September 2025
2025-09-10
20250910
PublicationDateYYYYMMDD 2025-09-10
PublicationDate_xml – month: 09
  year: 2025
  text: 10 September 2025
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2004; 40
2019; 51
2010
1964; 8
2006; 16
2016; 10
2020; 32
2002
2007; 33
2015; 26
2021; 32
2019; 84
2019; 83
2020; 52
2019; 21
2003; 26
2019; 356
1984
2016
2022; 32
2016; 28
2007; 21
2014; 8
2018; 55
2010; 4
2012; 22
2012; 21
2009; 18
2016; 89
Huang L. (e_1_2_9_30_1) 1984
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Yu H. (e_1_2_9_25_1) 2019; 51
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
Chen W. (e_1_2_9_19_1) 2002
e_1_2_9_29_1
References_xml – start-page: 3147
  year: 2016
  end-page: 3151
– volume: 55
  start-page: 1989
  issue: 4
  year: 2018
  end-page: 2000
  article-title: Fault‐Tolerant Attitude Stabilization Incorporating Closed‐Loop Control Allocation Under Actuator Failure
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 51
  start-page: 1881
  issue: 3
  year: 2019
  end-page: 1891
  article-title: Extended State Observer‐Based Data‐Driven Iterative Learning Control for Permanent Magnet Linear Motor With Initial Shifts and Disturbances
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 356
  start-page: 6352
  issue: 12
  year: 2019
  end-page: 6372
  article-title: Data‐Driven Iterative Feedforward Control With Rational Parametrization: Achieving Optimality for Varying Tasks
  publication-title: Journal of the Franklin Institute
– volume: 21
  start-page: 546
  issue: 2
  year: 2012
  end-page: 551
  article-title: A Data‐Driven Constrained Norm‐Optimal Iterative Learning Control Framework for Lti Systems
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 26
  start-page: 2925
  issue: 11
  year: 2015
  end-page: 2938
  article-title: Model‐Free Primitive‐Based Iterative Learning Control Approach to Trajectory Tracking of Mimo Systems With Experimental Validation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 28
  start-page: 2541
  issue: 11
  year: 2016
  end-page: 2554
  article-title: Adaptive Neural Networks Decentralized FTC Design for Nonstrict‐Feedback Nonlinear Interconnected Large‐Scale Systems Against Actuator Faults
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 32
  start-page: 8486
  issue: 15
  year: 2022
  end-page: 8506
  article-title: Iterative Fault Estimation and Fault‐Tolerant Control for a Class of Nonlinear Variant Time‐Delay Systems
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 32
  start-page: 5232
  issue: 11
  year: 2020
  end-page: 5240
  article-title: Iterative Learning Model‐Free Control for Networked Systems With Dual‐Direction Data Dropouts and Actuator Faults
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 40
  start-page: 261
  issue: 2
  year: 2004
  end-page: 267
  article-title: A Mixed h2/h Approach to Simultaneous Fault Detection and Control
  publication-title: Automatica
– volume: 32
  start-page: 5512
  issue: 12
  year: 2021
  end-page: 5525
  article-title: Adaptive Iterative Learning Control of Multiple Autonomous Vehicles With a Time‐Varying Reference Under Actuator Faults
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 1984
– volume: 83
  start-page: 33
  year: 2019
  end-page: 44
  article-title: Iterative Learning Control of Ventricular Assist Devices With Variable Cycle Durations
  publication-title: Control Engineering Practice
– volume: 4
  start-page: 1055
  issue: 6
  year: 2010
  end-page: 1070
  article-title: Robust Adaptive Sliding‐Mode Fault‐Tolerant Control With l2‐Gain Performance for Flexible Spacecraft Using Redundant Reaction Wheels
  publication-title: IET Control Theory & Applications
– volume: 21
  start-page: 31
  issue: 1
  year: 2007
  end-page: 48
  article-title: Adaptive Unknown Input Observer Approach for Aircraft Actuator Fault Detection and Isolation
  publication-title: International Journal of Adaptive Control and Signal Processing
– volume: 18
  start-page: 152
  issue: 1
  year: 2009
  end-page: 163
  article-title: Passive Actuators' Fault‐Tolerant Control for Affine Nonlinear Systems
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 52
  start-page: 1098
  issue: 2
  year: 2020
  end-page: 1111
  article-title: Cooperative Adaptive Iterative Learning Fault‐Tolerant Control Scheme for Multiple Subway Trains
  publication-title: IEEE Transactions on Cybernetics
– year: 2002
– volume: 8
  start-page: 74
  issue: 2
  year: 1964
  end-page: 80
  article-title: Observing the State of a Linear System
  publication-title: IEEE Transactions on Military Electronics
– volume: 16
  start-page: 1
  issue: 1
  year: 2006
  end-page: 19
  article-title: An Iterative Learning Observer for Fault Detection and Accommodation in Nonlinear Time‐Delay Systems
  publication-title: International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal
– volume: 26
  start-page: 543
  issue: 4
  year: 2003
  end-page: 550
  article-title: Reconfigurable Flight Control System Design Using Direct Adaptive Method
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 51
  start-page: 5785
  issue: 9
  year: 2019
  end-page: 5799
  article-title: RBFNN‐Based Adaptive Iterative Learning Fault‐Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 21
  start-page: 43
  issue: 1
  year: 2019
  end-page: 51
  article-title: Third‐Order Sliding Mode Fault‐Tolerant Control for Satellites Based on Iterative Learning Observer
  publication-title: Asian Journal of Control
– start-page: 143
  year: 2010
  end-page: 148
– volume: 89
  start-page: 564
  issue: 3
  year: 2016
  end-page: 578
  article-title: Fault Reconstruction for Takagi–Sugeno Fuzzy Systems via Learning Observers
  publication-title: International Journal of Control
– volume: 33
  start-page: 1061
  issue: 10
  year: 2007
  end-page: 1065
  article-title: Dual‐Stage Optimal Iterative Learning Control for Nonlinear Non‐Affine Discrete‐Time Systems
  publication-title: Acta Automatica Sinica
– volume: 84
  start-page: 204
  year: 2019
  end-page: 213
  article-title: Continuous Finite‐Time Extended State Observer Based Fault Tolerant Control for Attitude Stabilization
  publication-title: Aerospace Science and Technology
– volume: 10
  start-page: 2160
  issue: 17
  year: 2016
  end-page: 2174
  article-title: Adaptive Iterative Learning Reliable Control for a Class of Non‐Linearly Parameterised Systems With Unknown State Delays and Input Saturation
  publication-title: IET Control Theory & Applications
– volume: 22
  start-page: 1273
  issue: 7
  year: 2012
  end-page: 1286
  article-title: Robust Delay Dependent Iterative Learning Fault‐Tolerant Control for Batch Processes With State Delay and Actuator Failures
  publication-title: Journal of Process Control
– volume: 8
  start-page: 42
  issue: 1
  year: 2014
  end-page: 50
  article-title: Robust Fault Reconstruction via Learning Observers in Linear Parameter‐Varying Systems Subject to Loss of Actuator Effectiveness
  publication-title: IET Control Theory & Applications
– volume-title: IFAC Congress
  year: 2002
  ident: e_1_2_9_19_1
– ident: e_1_2_9_10_1
  doi: 10.1109/TSMC.2019.2957299
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ast.2018.10.006
– volume: 51
  start-page: 1881
  issue: 3
  year: 2019
  ident: e_1_2_9_25_1
  article-title: Extended State Observer‐Based Data‐Driven Iterative Learning Control for Permanent Magnet Linear Motor With Initial Shifts and Disturbances
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– ident: e_1_2_9_21_1
  doi: 10.1109/TAES.2018.2880035
– ident: e_1_2_9_22_1
  doi: 10.1002/rnc.1033
– ident: e_1_2_9_7_1
  doi: 10.1002/acs.936
– ident: e_1_2_9_2_1
  doi: 10.1016/j.automatica.2003.09.011
– ident: e_1_2_9_8_1
  doi: 10.1109/SYSTOL.2010.5676066
– ident: e_1_2_9_13_1
  doi: 10.1002/rnc.6287
– ident: e_1_2_9_16_1
  doi: 10.1109/TCYB.2020.2986006
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jfranklin.2019.06.002
– ident: e_1_2_9_3_1
  doi: 10.1109/TCST.2008.2009641
– ident: e_1_2_9_11_1
  doi: 10.1016/j.conengprac.2018.10.012
– ident: e_1_2_9_31_1
  doi: 10.1109/ChiCC.2016.7553842
– ident: e_1_2_9_15_1
  doi: 10.1049/iet-cta.2016.0209
– ident: e_1_2_9_26_1
  doi: 10.1109/TNNLS.2015.2460258
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jprocont.2012.05.016
– ident: e_1_2_9_23_1
  doi: 10.1002/asjc.2010
– volume-title: Linear Algebra in System and Control Theory
  year: 1984
  ident: e_1_2_9_30_1
– ident: e_1_2_9_4_1
  doi: 10.1109/TNNLS.2016.2598580
– ident: e_1_2_9_9_1
  doi: 10.2514/2.5103
– ident: e_1_2_9_18_1
  doi: 10.1080/00207179.2015.1086025
– ident: e_1_2_9_28_1
  doi: 10.1360/aas‐007‐1061
– ident: e_1_2_9_12_1
  doi: 10.1109/TNNLS.2020.3027651
– ident: e_1_2_9_20_1
  doi: 10.1049/iet-cta.2013.0417
– ident: e_1_2_9_29_1
  doi: 10.1109/TME.1964.4323124
– ident: e_1_2_9_17_1
  doi: 10.1109/TNNLS.2021.3069209
– ident: e_1_2_9_24_1
  doi: 10.1109/TCST.2012.2185699
– ident: e_1_2_9_5_1
  doi: 10.1049/iet-cta.2009.0140
SSID ssj0009924
Score 2.4405143
Snippet ABSTRACT This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with...
This paper proposes an observer‐based model‐free iterative learning fault tolerant control (ObMFilFTC) algorithm for the nonlinear system with disturbances and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 5506
SubjectTerms Actuators
Algorithms
Convergence
Disturbances
Fault tolerance
Faults
iterative learning output observer
Machine learning
model‐free iterative learning control
Nonlinear control
nonlinear non‐affine system
Nonlinear systems
non‐repetitive uncertainties
Parameter estimation
time‐iterative‐varying actuator faults
Tracking errors
Uncertainty
Title Observer‐Based Model‐Free Iterative Learning for Fault‐Tolerant Control of Nonlinear Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7995
https://www.proquest.com/docview/3244144487
Volume 35
WOSCitedRecordID wos001470345600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009924
  issn: 1049-8923
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NSgMxEMcHbT3owW-xWiWCeFu6Zr_So1YXhVKltNLbkmQnIpRWtq1nH8Fn9Emc7G5tPQiCp2XZBMLsTOafkPwG4FxrTDVX6GgdSsdHTzmCm9DRrhKhURi4Ob74qR11OmIwaD6WpyrtXZiCD_G94WYjI5-vbYBLNWksoKEZxY-lma1ClZPb-hWo3nTjfnuB3G0WJW1JAzuCdMwcPevyxrzvz2S0UJjLOjVPNPHWf4a4DZulvGRXhT_swAqOdmFjCTq4B-pB2Z1YzD7fP64ph6XM1kMb0lucIbL7HLNMcyAr0avPjHQti-VsOKU2vfGQvo-mrFWccWdjwzrFWGXGSv75PvTj217rzikrLTiaN93AMYanEmXEFfeU8Cy-WBmtjCuNdtMoQBFpEwgulcXtc4OXni08aTxEWpkb4R1AZTQe4SGwSPmCYxrqIOK-1J5ETiEvA0PKiMSIrMHZ3OTJawHUSAp0Mk_IXom1Vw3q83-RlCE1SUj5-bT6owVWDS5yq__aP-l2WvZ59NeGx7DObV1fWxrCrUNlms3wBNb02_Rlkp2WjvUFJAbXag
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NSsNAEMcHrYJ68FusVl1BvAXjJmm2eNJqqFijSBVvYXczK0JpJVbPPoLP6JM4mw-rB0HwFEJ2YZnM7PxnSX4DsKc1ppordLRuSsdHTzmCm6ajXSWaRmHg5vjiu24Yx-L-vnU9AUfVvzAFH-LrwM1GRr5f2wC3B9IHY2poRgFkcWaTMOWTFwU1mDq9iW67Y-Zuq-hpSyLYESRkKvasyw-quT-z0VhifheqeaaJFv61xkWYLwUmOy48YgkmcLAMc9-wgyugrpQ9i8Xs4-39hLJYymxHtD7dRRkiO89By7QLshK--sBI2bJIvvRHNKY37NPzwYi1i6_c2dCwuFiszFhJQF-F2-is1-44Za8FR_OWGzjG8FSiDLninhKeBRgro5VxpdFuGgYoQm0CwaWywH1u8NCzrSeNh0i1uRHeGtQGwwGuAwuVLzimTR2E3Jfak8gp6GVgSBuRHJF12K1snjwVSI2kgCfzhOyVWHvVoVG9jKQMqueEtJ9P9R-VWHXYz83-6_zkJm7b68ZfB-7ATKd32U265_HFJsxy2-XXNopwG1AbZS-4BdP6dfT4nG2XXvYJ_8_bWg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIYP3hBdeBdHR40g7oo1vWVwpaPFwaGKqLgrSXoiwjAz1NG1j-Az-iSe9OLoQhBcldIEwmlOzp_Qfj_AvtaYaa7Q0TqUjo-ecgQ3oaNdJUKjMHALfPF9N0oS8fDQup6A4_pfmJIP8XXgZjOjWK9tguMwM4djamhOCWRxZpMw7QetkLJy-uwmvuuOmbut0tOWRLAjSMjU7FmXH9Z9f1ajscT8LlSLShMv_muMS7BQCUx2Us6IZZjA_grMf8MOroK6UvYsFvOPt_dTqmIZs45oPbqLc0TWKUDLtAqyCr76yEjZsli-9EbU5nbQo-f9EWuXX7mzgWFJOViZs4qAvgZ38flt-8KpvBYczVtu4BjDM4ky4op7SngWYKyMVsaVRrtZFKCItAkEl8oC97nBI89aTxoPkfbmRnjrMNUf9HEDWKR8wTELdRBxX2pPIqekl4EhbURyRDZgr455OiyRGmkJT-YpxSu18WpAs34ZaZVUzylpP5_2f7TFasBBEfZf-6c3SdteN__acBdmr8_itNtJLrdgjluTX-sT4TZhapS_4DbM6NfR03O-U02yT8Pv2tU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer%E2%80%90Based+Model%E2%80%90Free+Iterative+Learning+for+Fault%E2%80%90Tolerant+Control+of+Nonlinear+Systems&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Wang%2C+Rongrong&rft.au=Chi%2C+Ronghu&rft.date=2025-09-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=35&rft.issue=13&rft.spage=5506&rft.epage=5518&rft_id=info:doi/10.1002%2Frnc.7995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_7995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon