Identifying Hydrilla verticillata in Real Time With a Machine Learning–Based Underwater Object Detection Program

ABSTRACT Standard tools for detection and identification of invasive macrophytes have limitations that may result in failure to detect patches of invasive vegetation. These undetected growths can spread rapidly, leading to significant disruption of invasive macrophyte control programs. The ability t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aquatic conservation Ročník 35; číslo 1
Hlavní autori: Jeong, Han S., Schad, Aaron N., Cheng, Jing‐Ru C., Donohue, Griffin, Hawkins, Jazmine L., Steen, Andrew M., Farthing, William F., Knight, Ian A., Dodd, Lynde L., Katzenmeyer, Alan W., Sistrunk, Virginia A., Hammond, Shea L., Bellinger, Brent J., Rycroft, Taylor E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Wiley Subscription Services, Inc 01.01.2025
Predmet:
ISSN:1052-7613, 1099-0755
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT Standard tools for detection and identification of invasive macrophytes have limitations that may result in failure to detect patches of invasive vegetation. These undetected growths can spread rapidly, leading to significant disruption of invasive macrophyte control programs. The ability to accurately identify and map invasive submerged aquatic vegetation (SAV) over large transects in a cost‐efficient manner has been identified by water resource managers as a pressing issue that requires an immediate solution. To help with this challenge, we have developed an artificial intelligence/machine learning (AI/ML)–based image analysis program to automatically detect a priority invasive macrophyte, hydrilla (Hydrilla verticillata), in real time. The AI/ML model, based on the existing AI model EfficientDet, was trained and tested on nearly 12,000 images of H. verticillata captured underwater using remotely operated vehicles (ROVs) and handheld cameras. Accuracy of the object detection model was evaluated based on the Microsoft Common Objects in Context (MS COCO) metric of mean average precision (mAP). Our model had a peak mAP@[0.5:0.05:0.95] of 58.2% and a mAP@[0.5] of 81.2% (with inference latencies between 50 and 100 ms). These results suggest that real‐time underwater identification of H. verticillata with our detection model is achievable at high accuracy, with further enhancement possible through integration with multiple commercially available underwater ROV platforms and continued training in environments with various combinations of invasive and native SAV assemblages.
AbstractList Standard tools for detection and identification of invasive macrophytes have limitations that may result in failure to detect patches of invasive vegetation. These undetected growths can spread rapidly, leading to significant disruption of invasive macrophyte control programs. The ability to accurately identify and map invasive submerged aquatic vegetation (SAV) over large transects in a cost‐efficient manner has been identified by water resource managers as a pressing issue that requires an immediate solution. To help with this challenge, we have developed an artificial intelligence/machine learning (AI/ML)–based image analysis program to automatically detect a priority invasive macrophyte, hydrilla (Hydrilla verticillata), in real time. The AI/ML model, based on the existing AI model EfficientDet, was trained and tested on nearly 12,000 images of H. verticillata captured underwater using remotely operated vehicles (ROVs) and handheld cameras. Accuracy of the object detection model was evaluated based on the Microsoft Common Objects in Context (MS COCO) metric of mean average precision (mAP). Our model had a peak mAP@[0.5:0.05:0.95] of 58.2% and a mAP@[0.5] of 81.2% (with inference latencies between 50 and 100 ms). These results suggest that real‐time underwater identification of H. verticillata with our detection model is achievable at high accuracy, with further enhancement possible through integration with multiple commercially available underwater ROV platforms and continued training in environments with various combinations of invasive and native SAV assemblages.
ABSTRACT Standard tools for detection and identification of invasive macrophytes have limitations that may result in failure to detect patches of invasive vegetation. These undetected growths can spread rapidly, leading to significant disruption of invasive macrophyte control programs. The ability to accurately identify and map invasive submerged aquatic vegetation (SAV) over large transects in a cost‐efficient manner has been identified by water resource managers as a pressing issue that requires an immediate solution. To help with this challenge, we have developed an artificial intelligence/machine learning (AI/ML)–based image analysis program to automatically detect a priority invasive macrophyte, hydrilla (Hydrilla verticillata), in real time. The AI/ML model, based on the existing AI model EfficientDet, was trained and tested on nearly 12,000 images of H. verticillata captured underwater using remotely operated vehicles (ROVs) and handheld cameras. Accuracy of the object detection model was evaluated based on the Microsoft Common Objects in Context (MS COCO) metric of mean average precision (mAP). Our model had a peak mAP@[0.5:0.05:0.95] of 58.2% and a mAP@[0.5] of 81.2% (with inference latencies between 50 and 100 ms). These results suggest that real‐time underwater identification of H. verticillata with our detection model is achievable at high accuracy, with further enhancement possible through integration with multiple commercially available underwater ROV platforms and continued training in environments with various combinations of invasive and native SAV assemblages.
Author Knight, Ian A.
Steen, Andrew M.
Schad, Aaron N.
Cheng, Jing‐Ru C.
Dodd, Lynde L.
Donohue, Griffin
Hammond, Shea L.
Hawkins, Jazmine L.
Farthing, William F.
Katzenmeyer, Alan W.
Bellinger, Brent J.
Rycroft, Taylor E.
Jeong, Han S.
Sistrunk, Virginia A.
Author_xml – sequence: 1
  givenname: Han S.
  surname: Jeong
  fullname: Jeong, Han S.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 2
  givenname: Aaron N.
  surname: Schad
  fullname: Schad, Aaron N.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 3
  givenname: Jing‐Ru C.
  surname: Cheng
  fullname: Cheng, Jing‐Ru C.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 4
  givenname: Griffin
  surname: Donohue
  fullname: Donohue, Griffin
  organization: Oak Ridge Institute for Science and Education
– sequence: 5
  givenname: Jazmine L.
  surname: Hawkins
  fullname: Hawkins, Jazmine L.
  organization: Oak Ridge Institute for Science and Education
– sequence: 6
  givenname: Andrew M.
  surname: Steen
  fullname: Steen, Andrew M.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 7
  givenname: William F.
  surname: Farthing
  fullname: Farthing, William F.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 8
  givenname: Ian A.
  surname: Knight
  fullname: Knight, Ian A.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 9
  givenname: Lynde L.
  surname: Dodd
  fullname: Dodd, Lynde L.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 10
  givenname: Alan W.
  surname: Katzenmeyer
  fullname: Katzenmeyer, Alan W.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 11
  givenname: Virginia A.
  surname: Sistrunk
  fullname: Sistrunk, Virginia A.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 12
  givenname: Shea L.
  surname: Hammond
  fullname: Hammond, Shea L.
  organization: U.S. Army Engineer Research and Development Center
– sequence: 13
  givenname: Brent J.
  surname: Bellinger
  fullname: Bellinger, Brent J.
  organization: City of Austin
– sequence: 14
  givenname: Taylor E.
  orcidid: 0000-0003-0427-3201
  surname: Rycroft
  fullname: Rycroft, Taylor E.
  email: taylor.e.rycroft@usace.army.mil
  organization: U.S. Army Engineer Research and Development Center
BookMark eNp1kM1OwzAQhC0EEm3hwBtY4gKHlLXjpPGxlF-piB-BOFqOs6GuUqe1U6reeAfekCchpZyQOM0cvhntTpfsutohIUcM-gyAn-mF6Q8AErFDOgykjGCQJLsbn_BokLJ4n3RDmAKATFnaIf62QNfYcm3dG71ZF95Wlabv6BtrNrbR1Dr6hLqiz3aG9NU2E6rpnTYT65COUXvXRr8-Ps91wIK-uAL9Sjfo6X0-RdPQC2xasbWjD75-83p2QPZKXQU8_NUeebm6fB7dROP769vRcBwZLkFEAnOhE5lBVgw4sEymukwEz3kmWYwsZ5iKHPOMp9wUhUAt81KKMuOxYbwoWdwjJ9veua8XSwyNmtlgsH3KYb0MKuYAMfCUZS16_Aed1kvv2utUzFImBE8S0VKnW8r4OgSPpZp7O9N-rRiozfqqXV_9rN-yZ1t2ZStc_w-q4eNom_gGeV-Iig
Cites_doi 10.1109/CVPR.2016.91
10.1016/j.ecoinf.2023.102305
10.1002/nafm.10386
10.1016/j.array.2021.100057
10.1007/s11263-009-0275-4
10.1007/s11042-022-12502-1
10.3390/rs13193841
10.3390/rs14184487
10.3390/su12093544
10.3390/rs15020539
10.3390/rs12203431
10.3354/ab00450
10.3390/s22239536
10.1186/s40537-023-00701-y
10.1007/s10530-020-02434-y
10.1080/21642583.2021.1990159
10.1017/S1068280500010157
10.1672/0277-5212(2007)27[1144:MSMVUA]2.0.CO;2
10.1007/978-3-642-35749-7_1
10.1109/LRA.2023.3245405
10.1109/CVPR.2014.81
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7QH
7QL
7SN
7SS
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H99
L.F
L.G
M7N
P64
7S9
L.6
DOI 10.1002/aqc.70054
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Ecology Abstracts
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Oceanography
EISSN 1099-0755
EndPage n/a
ExternalDocumentID 10_1002_aqc_70054
AQC70054
Genre article
GrantInformation_xml – fundername: Aquatic Nuisance Species Research Program
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
CITATION
O8X
7QH
7QL
7SN
7SS
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H99
L.F
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-c2904-4eb4a59808d7201896af542b28913e1b1e64beb8262cdd4ea9bf94f823c12df13
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001406990100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1052-7613
IngestDate Fri Jul 11 17:25:36 EDT 2025
Sun Nov 09 05:44:55 EST 2025
Sat Nov 29 07:40:30 EST 2025
Fri Jan 31 10:08:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2904-4eb4a59808d7201896af542b28913e1b1e64beb8262cdd4ea9bf94f823c12df13
Notes Funding
This study was funded by the Aquatic Nuisance Species Research Program (ANSRP) of the US Army Engineer Research and Development Center. At the time of publication, the ANSRP Program Manager was Mr. Michael Greer and the Technical Director was Dr. Jennifer Seiter‐Moser.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0427-3201
PQID 3161442554
PQPubID 2029164
PageCount 8
ParticipantIDs proquest_miscellaneous_3200302618
proquest_journals_3161442554
crossref_primary_10_1002_aqc_70054
wiley_primary_10_1002_aqc_70054_AQC70054
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Aquatic conservation
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2021; 23
2017; 2017
2012
2006; 35
2020; 40
2023; 15
2023; 8
2020; 1911
2020; 12
2012; 16
2022; 22
2024
2010; 88
2021; 13
2021; 10
2022; 81
2022
2017; 55
2024; 9
2022; 14
2017
2015
2014
2022; 10
2023; 102305
2007; 27
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Madesen J. D. (e_1_2_9_21_1) 2017; 55
Al‐Qizwini M. (e_1_2_9_2_1) 2017; 2017
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
Tan M. (e_1_2_9_27_1) 2020; 1911
e_1_2_9_29_1
Dai L. (e_1_2_9_7_1) 2024
References_xml – volume: 23
  start-page: 1321
  year: 2021
  end-page: 1327
  article-title: Detection of Anolis carolinensis Using Drone Images and a Deep Neural Network: An Effective Tool for Controlling Invasive Species
  publication-title: Biological Invasions
– volume: 81
  start-page: 20871
  year: 2022
  end-page: 20916
  article-title: Underwater Object Detection: Architectures and Algorithms – A Comprehensive Review
  publication-title: Multimedia Tools and Applications
– volume: 40
  start-page: 145
  year: 2020
  end-page: 153
  article-title: Using Recreation‐Grade Side‐Scan Sonar to Produce Classified Maps of Submerged Aquatic Vegetation
  publication-title: North American Journal of Fisheries Management
– volume: 102305
  year: 2023
  article-title: Adoption of Unmanned Aerial Vehicle (UAV) Imagery in Agricultural Management: A Systematic Literature Review
  publication-title: Ecological Informatics
– start-page: 1
  year: 2012
  end-page: 14
– volume: 10
  year: 2021
  article-title: Deep Learning for Object Detection and Scene Perception in Self‐Driving Cars: Survey, Challenges, and Open Issues
  publication-title: Array
– year: 2024
– volume: 9
  start-page: 1078
  year: 2024
  end-page: 1091
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 338
  article-title: The PASCAL Visual Object Classes (VOC) Challenge
  publication-title: International Journal of Computer Vision
– volume: 14
  start-page: 4487
  issue: 18
  year: 2022
  article-title: Underwater Object Detection Based on Improved Efficientdet
  publication-title: Remote Sensing
– volume: 8
  start-page: 2134
  issue: 4
  year: 2023
  end-page: 2141
  article-title: Towards More Efficient Efficientdets and Real‐Time Marine Debris Detection
  publication-title: IEEE Robotics and Automation Letters
– volume: 27
  start-page: 1144
  issue: 4
  year: 2007
  end-page: 1152
  article-title: Mapping Salt Marsh Vegetation Using Aerial Hyperspectral Imagery and Linear Unmixing in Humboldt Bay, California
  publication-title: Wetlands
– year: 2014
– volume: 55
  start-page: 1
  year: 2017
  end-page: 22
  article-title: A Review of Aquatic Plant Monitoring and Assessment Methods
  publication-title: Journal of Aquatic Plant Management
– volume: 10
  start-page: 61
  issue: 1
  year: 2023
  article-title: Exploration of Issues, Challenges and Latest Developments in Autonomous Cars
  publication-title: Journal of Big Data
– volume: 12
  start-page: 3431
  issue: 20
  year: 2020
  article-title: Detection of Invasive Species in Wetlands: Practical DL With Heavily Imbalanced Data
  publication-title: Remote Sensing
– volume: 10
  start-page: 264
  issue: 1
  year: 2022
  end-page: 271
  article-title: Ship Target Detection of Unmanned Surface Vehicle Base on Efficientdet
  publication-title: Systems Science & Control Engineering
– volume: 16
  start-page: 197
  issue: 2
  year: 2012
  end-page: 202
  article-title: Colonization, Regeneration Potential and Growth Rates of Fragments of the Exotic Aquatic Macrophyte Hydrilla verticillata
  publication-title: Aquatic Biology
– volume: 35
  start-page: 195
  issue: 1
  year: 2006
  end-page: 208
  article-title: The Economic Impacts of Aquatic Invasive Species: A Review of the Literature
  publication-title: Agricultural and Resource Economics Review
– year: 2022
– volume: 12
  start-page: 3544
  issue: 9
  year: 2020
  article-title: Employing Machine Learning for Detection of Invasive Species Using Sentinel‐2 and Aviris Data: The Case of Kudzu in the United States
  publication-title: Sustainability
– volume: 2017
  start-page: 89
  year: 2017
  end-page: 96
  article-title: Deep Learning Algorithm for Autonomous Driving Using GoogLeNet
  publication-title: IEEE Intelligent Vehicles Symposium (IV)
– volume: 15
  start-page: 539
  issue: 2
  year: 2023
  article-title: Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset From UAV Images
  publication-title: Remote Sensing
– start-page: 580
  year: 2014
  end-page: 587
– volume: 13
  start-page: 1
  issue: 19
  year: 2021
  end-page: 23
  article-title: Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review
  publication-title: Remote Sensing
– year: 2017
– volume: 22
  start-page: 9536
  issue: 23
  year: 2022
  article-title: Sea Mine Detection Framework Using YOLO, SSD and EfficientDet Deep Learning Models
  publication-title: Sensors
– year: 2015
– volume: 1911
  start-page: 09070
  year: 2020
  article-title: EfficientDet: Scalable and Efficient Object Detection
  publication-title: CVPR. arXiv
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ecoinf.2023.102305
– ident: e_1_2_9_6_1
– volume: 1911
  start-page: 09070
  year: 2020
  ident: e_1_2_9_27_1
  article-title: EfficientDet: Scalable and Efficient Object Detection
  publication-title: CVPR. arXiv
– ident: e_1_2_9_4_1
  doi: 10.1002/nafm.10386
– ident: e_1_2_9_12_1
  doi: 10.1016/j.array.2021.100057
– ident: e_1_2_9_8_1
  doi: 10.1007/s11263-009-0275-4
– ident: e_1_2_9_9_1
  doi: 10.1007/s11042-022-12502-1
– ident: e_1_2_9_23_1
  doi: 10.3390/rs13193841
– ident: e_1_2_9_15_1
  doi: 10.3390/rs14184487
– ident: e_1_2_9_19_1
– ident: e_1_2_9_14_1
  doi: 10.3390/su12093544
– ident: e_1_2_9_10_1
  doi: 10.3390/rs15020539
– start-page: 1078
  volume-title: Edge‐Guided Representation Learning for Underwater Object Detection
  year: 2024
  ident: e_1_2_9_7_1
– ident: e_1_2_9_5_1
  doi: 10.3390/rs12203431
– ident: e_1_2_9_28_1
  doi: 10.3354/ab00450
– ident: e_1_2_9_22_1
  doi: 10.3390/s22239536
– ident: e_1_2_9_24_1
  doi: 10.1186/s40537-023-00701-y
– ident: e_1_2_9_3_1
  doi: 10.1007/s10530-020-02434-y
– ident: e_1_2_9_17_1
  doi: 10.1080/21642583.2021.1990159
– volume: 2017
  start-page: 89
  year: 2017
  ident: e_1_2_9_2_1
  article-title: Deep Learning Algorithm for Autonomous Driving Using GoogLeNet
  publication-title: IEEE Intelligent Vehicles Symposium (IV)
– ident: e_1_2_9_30_1
– ident: e_1_2_9_18_1
– ident: e_1_2_9_20_1
  doi: 10.1017/S1068280500010157
– ident: e_1_2_9_16_1
  doi: 10.1672/0277-5212(2007)27[1144:MSMVUA]2.0.CO;2
– volume: 55
  start-page: 1
  year: 2017
  ident: e_1_2_9_21_1
  article-title: A Review of Aquatic Plant Monitoring and Assessment Methods
  publication-title: Journal of Aquatic Plant Management
– ident: e_1_2_9_26_1
  doi: 10.1007/978-3-642-35749-7_1
– ident: e_1_2_9_31_1
  doi: 10.1109/LRA.2023.3245405
– ident: e_1_2_9_11_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_9_29_1
SSID ssj0009616
Score 2.39636
Snippet ABSTRACT Standard tools for detection and identification of invasive macrophytes have limitations that may result in failure to detect patches of invasive...
Standard tools for detection and identification of invasive macrophytes have limitations that may result in failure to detect patches of invasive vegetation....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Aquatic plants
Artificial intelligence
Autonomous underwater vehicles
computer software
Control programs
cost effectiveness
deep CNN
EfficientDet
freshwater
Freshwater plants
Hydrilla verticillata
Image analysis
Image processing
invasive macrophyte
Learning algorithms
Machine learning
Macrophytes
Object recognition
Real time
Remotely operated vehicles
ROV
SAV
submerged aquatic plants
Underwater
Unmanned vehicles
Vegetation
Water resources
Water resources management
Title Identifying Hydrilla verticillata in Real Time With a Machine Learning–Based Underwater Object Detection Program
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faqc.70054
https://www.proquest.com/docview/3161442554
https://www.proquest.com/docview/3200302618
Volume 35
WOSCitedRecordID wos001406990100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009616
  issn: 1052-7613
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50VRDBt7i-iOLBS7VJ0zbBk6_Fg2983UqSprqXqt2qePM_-A_9JSZpd1cPguBtICktmUznm2TmG4D1MGQaZzr1sI65R6nEnoio8FQY8cwXNGauQu76KD45Ybe3_GwAtru1MBU_RO_AzVqG-19bAxeys9UnDRVPajO2iGMQhojZt7QBQ_sXraujPudu5DqfGgRhQKRxW11iIZ9s9R7-6Y76GPM7UnWupjXxr4-chPEaYaKdaktMwYDOp2Gk6jn5ZqQDVUtjp0qLvKasnoGiqtl1dU_o8C0tbD8i9FLlXRuxFKidowsDLJGtG0E37fIeCXTssjE1qola7z7fP3aNZ0yR66j0aqBsgU6lPe1B-7p0iV85OquywmbhqnVwuXfo1R0ZPEW4Tz2qJRUhZz5LY4McGI9EFlIiib3s1FhiHVGppQlZiEpTqgWXGacZI4HCJM1wMAeN_CHX84BkkHKJpbCIiKpAMKZDX_qZpL7ASmVNWOsqJnmsiDeSimKZJGZVE7eqTVjqqiypba-TBNgGuSZUMsOrvWFjNfYqROT64dnMsTl5NvxkTdhwCvz9JcnO-Z4TFv4-dRFGiW0U7M5qlqBRFs96GYbVS9nuFCv1Rv0C88_sIQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-xsmlo0v6xiW4MvGkPewnEjpPY0l4YbVW0trAKNt4i27GhL2ELaSfe-A58Qz4JtpO228MkpL2dZEeJbF_ud-e73wF8jGOmsdF5gHXKA0olDkRCRaDihJtQ0JT5Crnvg3Q0Yqen_GgFPs9rYWp-iEXAzWmG_187BXcB6d0la6j4pXZSBzkewCq1xyhuwWpn3DsZLEl3E9_61EIIiyKt3ZozC4Vkd_Hw3_ZoCTL_hKre1vSe_d9XPoenDcZEe_WheAErungJj-quk1dW6qpGenKotCga0up1KOuqXV_5hPpXeek6EqFZnXltxUqgSYHGFloiVzmCfkyqcyTQ0OdjatRQtZ7dXt98sbYxR76n0m8LZkt0KF28B3V05VO_CnRU54W9gpNe93i_HzQ9GQJFeEgDqiUVMWchy1OLHRhPhIkpkcRdd2ossU6o1NI6LUTlOdWCS8OpYSRSmOQGR6-hVVwUegOQjHIusRQOE1EVCcZ0HMrQSBoKrJRpw4f5zmQ_a-qNrCZZJpld1cyvahs253uWNdp3mUXYubnWWbLD7xfDVm_cZYgo9MXUznFZec4BZW345Hfw3y_J9r7te-HN_aduw-P-8XCQDQ5GX9_CGnFtg33kZhNaVTnV7-ChmlWTy3KrObV3GF7wEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFiqExD9ioYBBHLiExo6T2BKX0u2qiGW7VLT0FvlnXPaSljQt6o134A15EmwnuwsHJCRuI9lRIo8n84098w3AyzwXSB3ahGIpE841TVTBVWLyQrpU8VLECrnDcTmZiKMjOV2BN_NamI4fYnHgFiwj_q-DgeOpdZtL1lD11bwuA-S4Ams8l4U3y7Xh_uhgvCTdLWLrUw8hPIr0fmvOLJSyzcXDf_qjJcj8HapGXzO69X9feRtu9hiTbHWb4g6sYH0XrnVdJy-9tGN66caeQVX3pNX3oOmqdmPlE9m9tE3oSEQuusxrL7aKzGqy76ElCZUj5POs_UIU-RDzMZH0VK3HP7__eOt9oyWxp9I3D2YbsqfDeQ8ZYhtTv2oy7fLC7sPBaOfT9m7S92RIDJMpTzhqrnIpUmFLjx2ELJTLOdMsXHci1RQLrlH7oIUZazkqqZ3kTrDMUGYdzR7Aan1S40MgOrNSU60CJuImU0JgnurUaZ4qaowbwIu5ZqrTjnqj6kiWWeVXtYqrOoCNuc6q3vrOqoyGMNcHS374-WLY2024DFE1npz7OSErLwSgYgCvogb__pJq6-N2FB79-9RnsD4djqrxu8n7x3Cdha7B8eBmA1bb5hyfwFVz0c7Omqf9pv0FuuDvjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Hydrilla+verticillata+in+Real+Time+With+a+Machine+Learning%E2%80%93Based+Underwater+Object+Detection+Program&rft.jtitle=Aquatic+conservation&rft.au=Jeong%2C+Han%C2%A0S.&rft.au=Schad%2C+Aaron%C2%A0N.&rft.au=Cheng%2C+Jing%E2%80%90Ru%C2%A0C.&rft.au=Donohue%2C+Griffin&rft.date=2025-01-01&rft.issn=1052-7613&rft.eissn=1099-0755&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faqc.70054&rft.externalDBID=10.1002%252Faqc.70054&rft.externalDocID=AQC70054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-7613&client=summon