Review and Analysis of Digital Signal Processing Algorithms for Coherent Optical Satellite Links

ABSTRACT Coherent optical satellite links enable high‐throughput communication and high accuracy ranging to and between satellites. Due to the ever‐increasing demand for throughput, wavelength division multiplexing of polarization multiplexed optical signals is being considered as a solution to prov...

Full description

Saved in:
Bibliographic Details
Published in:International journal of satellite communications and networking Vol. 43; no. 3; pp. 229 - 250
Main Authors: Valjus, Carl, Wolf, Raphael, Poliak, Juraj
Format: Journal Article
Language:English
Published: Chichester Wiley Subscription Services, Inc 01.06.2025
Subjects:
ISSN:1542-0973, 1542-0981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Coherent optical satellite links enable high‐throughput communication and high accuracy ranging to and between satellites. Due to the ever‐increasing demand for throughput, wavelength division multiplexing of polarization multiplexed optical signals is being considered as a solution to provide high‐speed optical satellite links. Fiber‐optic systems solve the implementation scalability problem of these systems by shifting design complexity to integrated circuits, thereby massively reducing the system footprint. As a result of the major advances in complementary metal‐oxide‐semiconductor (CMOS) technology, the implementation scalability of such systems in terrestrial fiber systems has been solved by shifting the system complexity to digital hardware, enabling intradyne reception and complex signal recovery algorithms. While the use of fiber‐optic transceivers provides a fast path to high‐speed coherent optical satellite links (OSLs), it requires additional mitigation techniques to combat the effects of both the OSL channel and the space environment. To support future satellite networks with Tbit/s optical links, it will be critical to further minimize the size, weight, and power (SWaP), cost and reliability of the transceivers. Thus, the development of custom intradyne optical transceivers for OSLs is emerging as an attractive option as the demand for throughput in satellite networks continues to grow. This would not only enable the use of a more optimized signal processing chain but also enable the use of radiation mitigation techniques optimized for the signal processing architecture and the use of soft‐decision forward error correction (FEC) optimized for OSLs. The signal processing of coherent optical satellite receivers can be divided into three key subsystems: timing recovery, carrier synchronization, and equalization. This paper reviews state‐of‐the‐art digital signal processing for optical communication to identify suitable algorithms for timing recovery, carrier frequency and phase compensation, equalization, and polarization demultiplexing with emphasis on high‐throughput optical satellite links. Finally, the performance of different digital signal processing algorithms is assessed by numerical simulations considering different optical satellite link scenarios.
AbstractList ABSTRACT Coherent optical satellite links enable high‐throughput communication and high accuracy ranging to and between satellites. Due to the ever‐increasing demand for throughput, wavelength division multiplexing of polarization multiplexed optical signals is being considered as a solution to provide high‐speed optical satellite links. Fiber‐optic systems solve the implementation scalability problem of these systems by shifting design complexity to integrated circuits, thereby massively reducing the system footprint. As a result of the major advances in complementary metal‐oxide‐semiconductor (CMOS) technology, the implementation scalability of such systems in terrestrial fiber systems has been solved by shifting the system complexity to digital hardware, enabling intradyne reception and complex signal recovery algorithms. While the use of fiber‐optic transceivers provides a fast path to high‐speed coherent optical satellite links (OSLs), it requires additional mitigation techniques to combat the effects of both the OSL channel and the space environment. To support future satellite networks with Tbit/s optical links, it will be critical to further minimize the size, weight, and power (SWaP), cost and reliability of the transceivers. Thus, the development of custom intradyne optical transceivers for OSLs is emerging as an attractive option as the demand for throughput in satellite networks continues to grow. This would not only enable the use of a more optimized signal processing chain but also enable the use of radiation mitigation techniques optimized for the signal processing architecture and the use of soft‐decision forward error correction (FEC) optimized for OSLs. The signal processing of coherent optical satellite receivers can be divided into three key subsystems: timing recovery, carrier synchronization, and equalization. This paper reviews state‐of‐the‐art digital signal processing for optical communication to identify suitable algorithms for timing recovery, carrier frequency and phase compensation, equalization, and polarization demultiplexing with emphasis on high‐throughput optical satellite links. Finally, the performance of different digital signal processing algorithms is assessed by numerical simulations considering different optical satellite link scenarios.
Coherent optical satellite links enable high‐throughput communication and high accuracy ranging to and between satellites. Due to the ever‐increasing demand for throughput, wavelength division multiplexing of polarization multiplexed optical signals is being considered as a solution to provide high‐speed optical satellite links. Fiber‐optic systems solve the implementation scalability problem of these systems by shifting design complexity to integrated circuits, thereby massively reducing the system footprint. As a result of the major advances in complementary metal‐oxide‐semiconductor (CMOS) technology, the implementation scalability of such systems in terrestrial fiber systems has been solved by shifting the system complexity to digital hardware, enabling intradyne reception and complex signal recovery algorithms. While the use of fiber‐optic transceivers provides a fast path to high‐speed coherent optical satellite links (OSLs), it requires additional mitigation techniques to combat the effects of both the OSL channel and the space environment. To support future satellite networks with Tbit/s optical links, it will be critical to further minimize the size, weight, and power (SWaP), cost and reliability of the transceivers. Thus, the development of custom intradyne optical transceivers for OSLs is emerging as an attractive option as the demand for throughput in satellite networks continues to grow. This would not only enable the use of a more optimized signal processing chain but also enable the use of radiation mitigation techniques optimized for the signal processing architecture and the use of soft‐decision forward error correction (FEC) optimized for OSLs. The signal processing of coherent optical satellite receivers can be divided into three key subsystems: timing recovery, carrier synchronization, and equalization. This paper reviews state‐of‐the‐art digital signal processing for optical communication to identify suitable algorithms for timing recovery, carrier frequency and phase compensation, equalization, and polarization demultiplexing with emphasis on high‐throughput optical satellite links. Finally, the performance of different digital signal processing algorithms is assessed by numerical simulations considering different optical satellite link scenarios.
Author Poliak, Juraj
Valjus, Carl
Wolf, Raphael
Author_xml – sequence: 1
  givenname: Carl
  orcidid: 0009-0005-3434-9125
  surname: Valjus
  fullname: Valjus, Carl
  email: carl.valjus@dlr.de
  organization: University of Bremen
– sequence: 2
  givenname: Raphael
  orcidid: 0009-0001-2170-4344
  surname: Wolf
  fullname: Wolf, Raphael
  organization: German Aerospace Center
– sequence: 3
  givenname: Juraj
  surname: Poliak
  fullname: Poliak, Juraj
  organization: German Aerospace Center
BookMark eNp1kEFPAjEQhRuDiYAm_oQmXrwsttttlz1uUNSEBCN4rt22uxSXLbZFwr-3iPHmaSZvvpm8eQPQ62ynAbjGaIQRSu-8CCNMKTkDfUyzNEHFGPf--pxcgIH360gyRHEfvL_qL6P3UHQKlp1oD954aGt4bxoTRAsXpokqfHFWau9N18CybawzYbXxsLYOTuxKO90FON8GI48bIui2NUHDmek-_CU4r0Xr9dVvHYK36cNy8pTM5o_Pk3KWyLRAJFGVFCTNFBmjrKgyRFMpBBEKV1nOaJVmdaGkRFgRldZRkZRoUmAWZ0zljJEhuDnd3Tr7udM-8LXduejdc4ILlsd3xzhStydKOuu90zXfOrMR7sAx4sf8eMyPH_OLaHJC96bVh385viiXP_w3G5hy2w
Cites_doi 10.1364/OFC.2014.Th3E.3
10.1364/OSAC.438524
10.1109/78.852014
10.1109/TSP.2014.2379678
10.1117/12.2647830
10.1109/ICSOS.2017.8357228
10.1109/ECOC48923.2020.9333326
10.1109/JLT.2015.2463719
10.1109/ECOC.2010.5621268
10.1109/TCSI.2004.841573
10.1109/LPT.2013.2276412
10.1117/12.2691100
10.1109/TCOM.1986.1096561
10.1364/OE.19.009868
10.1109/4234.1001665
10.1117/12.3001394
10.1109/JLT.2017.2784804
10.1364/OFC.2020.W1E.1
10.1109/LPT.2012.2232288
10.1109/TIT.1983.1056713
10.1109/ECOC.2018.8535575
10.1109/ECOC.2010.5621462
10.1109/ICTON.2010.5549082
10.1364/JOSAA.19.000567
10.1117/12.2513819
10.1109/JLT.2008.927778
10.1109/ICSOS.2015.7425086
10.1109/ICSOS45490.2019.8978994
10.1109/26.650240
10.1007/978-3-030-16250-4
10.1109/LPT.2015.2457783
10.1109/TCOMM.1994.580247
10.1109/JLT.2009.2021961
10.1364/OFC.2013.OW4B.3
10.1109/JLT.2007.913589
10.1364/OFC.2020.Th2A.38
10.1109/TWC.2007.05270
10.1109/78.143435
10.1364/OFC.2013.OTu2I.7
10.1364/OFC.2013.OTh1F.3
10.1364/OE.461105
10.1117/12.2544050
10.1109/MSP.2011.940413
10.1364/OFC.2017.Th3G.2
10.1002/ett.4460090203
10.1364/ECOC.2011.Tu.6.A.4
10.1109/JPHOT.2019.2956086
10.1109/35.995852
10.1364/CLEO_SI.2020.SW4L.3
10.1364/OE.21.023896
10.1109/ECOC.2008.4729321
10.1364/OE.445400
10.1117/12.2651297
10.1364/AO.57.005095
10.1109/TCOM.1978.1094107
10.1364/OFC.2015.Th3G.4
10.1109/LPT.2007.891893
10.1109/ECOC.2010.5621498
10.1002/9781118591352
10.1109/JLT.2014.2325064
10.1109/26.231921
10.1364/ECOC.2011.We.10.P1.70
10.1364/OE.385370
10.1364/OFC.2021.W6A.17
10.1109/TCOMM.2011.051311.100047
10.1117/12.3001403
10.1364/OE.16.000804
10.1109/ACSSC.1989.1200981
10.1109/26.1476
10.1364/OE.27.015617
10.1109/JLT.2018.2877479
10.1109/JLT.2007.902118
10.1109/ACCESS.2023.3287501
10.1109/JPHOT.2010.2048308
10.1109/JLT.2008.2010511
10.1109/5.720246
10.1364/OE.489594
10.1364/OE.19.009282
ContentType Journal Article
Copyright 2025 German Aerospace Center (DLR). published by John Wiley & Sons Ltd.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 German Aerospace Center (DLR). published by John Wiley & Sons Ltd.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
8FD
FR3
H8D
JQ2
KR7
L7M
DOI 10.1002/sat.1553
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1542-0981
EndPage 250
ExternalDocumentID 10_1002_sat_1553
SAT1553
Genre researchArticle
GrantInformation_xml – fundername: Deutscher Akademischer Austauschdienst
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IN-
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
CITATION
O8X
7SP
8FD
FR3
H8D
JQ2
KR7
L7M
ID FETCH-LOGICAL-c2903-dbca324d38049b4052caa3ad1b4765b24f9dcc01d3d2f765c53e391665b6d7663
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418980300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1542-0973
IngestDate Sat Nov 01 15:12:46 EDT 2025
Sat Nov 29 07:35:52 EST 2025
Wed Apr 30 09:30:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2903-dbca324d38049b4052caa3ad1b4765b24f9dcc01d3d2f765c53e391665b6d7663
Notes Funding
This study was funded by Deutscher Akademischer Austauschdienst.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-2170-4344
0009-0005-3434-9125
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsat.1553
PQID 3196760581
PQPubID 1026343
PageCount 22
ParticipantIDs proquest_journals_3196760581
crossref_primary_10_1002_sat_1553
wiley_primary_10_1002_sat_1553_SAT1553
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of satellite communications and networking
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 31
2013; 25
2002; 19
2013; 21
2000; 48
2019; 11
1986; 34
1988; 36
2021; 29
2023; 12413
1997; 45
2011; 59
2024
2011; 19
1998; 86
2016; 34
2010; 1
2002; 40
2008; 26
2019; 27
2007; 6
2022; 30
1978; 26
2014; 18
2020; 11272
2011; 28
1983; 29
2010; 2
2007; 25
2018; 36
1992; 40
1988
1989; 2
2007; 19
2021; 4
2023; 11
2011
2010
2024; 12877
2002; 6
2008; 16
1993; 41
2009
2008
2009; 27
1994; 42
2015; 27
2023
2022
2021
2020
2015; 63
2019; 10910
2020; 28
2019
2005; 52
2018
2017
2015
2014
2013
2014; 32
1998; 9
2018; 57
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
Fu D. (e_1_2_10_40_1) 2005; 52
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Barrios R. (e_1_2_10_10_1) 2020
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
Tzimpragos G. (e_1_2_10_60_1) 2014; 18
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – volume: 25
  start-page: 2675
  issue: 9
  year: 2007
  end-page: 2692
  article-title: Feedforward Carrier Recovery for Coherent Optical Communications
  publication-title: Journal of Lightwave Technology
– volume: 48
  start-page: 2332
  issue: 8
  year: 2000
  end-page: 2342
  article-title: Analysis of the Frequency‐Domain Block LMS Algorithm
  publication-title: IEEE Transactions on Signal Processing
– start-page: 1
  year: 2014
  end-page: 3
– start-page: 1
  year: 2017
  end-page: 3
– volume: 31
  start-page: 18599
  issue: 11
  year: 2023
  end-page: 18612
  article-title: Time‐Domain Low‐Complexity Clock Recovery for Non‐Integer Oversampled Nyquist Signals With a Small Roll‐Off Factor
  publication-title: Optics Express
– volume: 41
  start-page: 998
  issue: 6
  year: 1993
  end-page: 1008
  article-title: Interpolation in Digital Modems. II. Implementation and Performance
  publication-title: IEEE Transactions on Communications
– volume: 12413
  year: 2023
– year: 2024
– volume: 4
  start-page: 3157
  issue: 12
  year: 2021
  end-page: 3175
  article-title: Hardware Optimization of Dual‐Stage Carrier‐Phase Recovery for Coherent Optical Receivers
  publication-title: OSA Continuum
– volume: 18
  year: 2014
  article-title: A Survey on FEC Codes for 100 G and Beyond Optical Networks
  publication-title: IEEE Communications Surveys and Tutorials
– start-page: 1
  year: 2011
  end-page: 3
– volume: 30
  start-page: 27064
  issue: 15
  year: 2022
  end-page: 27079
  article-title: High Receiver Skew‐Tolerant and Hardware‐Efficient Clock Recovery for Short‐Reach Coherent Transmission
  publication-title: Optics Express
– volume: 10910
  start-page: 189
  year: 2019
  end-page: 204
– start-page: 1
  year: 2020
  end-page: 3
– volume: 27
  start-page: 15617
  issue: 11
  year: 2019
  end-page: 15626
  article-title: Low‐Complexity Carrier Phase Recovery Based on Principal Component Analysis for Square‐QAM Modulation Formats
  publication-title: Optics Express
– start-page: Th2A.38
  year: 2020
– start-page: 1
  year: 2009
  end-page: 2
– volume: 32
  start-page: 2973
  issue: 17
  year: 2014
  end-page: 2980
  article-title: Multistage Carrier Phase Estimation Algorithms for Phase Noise Mitigation in 64‐Quadrature Amplitude Modulation Optical Systems
  publication-title: Journal of Lightwave Technology
– volume: 45
  start-page: 1613
  issue: 12
  year: 1997
  end-page: 1621
  article-title: Robust Frequency and Timing Synchronization for OFDM
  publication-title: IEEE Transactions on Communications
– volume: 28
  start-page: 5058
  issue: 4
  year: 2020
  end-page: 5068
  article-title: Real Time Low‐Complexity Adaptive Channel Equalization for Coherent Optical Transmission Systems
  publication-title: Optics Express
– start-page: 1
  year: 2015
  end-page: 7
– volume: 27
  start-page: 901
  issue: 7
  year: 2009
  end-page: 914
  article-title: Phase Estimation Methods for Optical Coherent Detection Using Digital Signal Processing
  publication-title: Journal of Lightwave Technology
– volume: 9
  start-page: 103
  issue: 2
  year: 1998
  end-page: 116
  article-title: Feedforward Frequency Estimation for PSK: A Tutorial Review
  publication-title: European Transactions on Telecommunications
– start-page: 160
  year: 2017
  end-page: 165
– year: 2022
– volume: 16
  start-page: 804
  issue: 2
  year: 2008
  end-page: 817
  article-title: Digital Filters for Coherent Optical Receivers
  publication-title: Optics Express
– start-page: 1
  year: 2008
  end-page: 2
– volume: 40
  start-page: 58
  issue: 4
  year: 2002
  end-page: 66
  article-title: Frequency Domain Equalization for Single‐Carrier Broadband Wireless Systems
  publication-title: IEEE Communications Magazine
– volume: 21
  start-page: 23896
  issue: 20
  year: 2013
  end-page: 23906
  article-title: Simple Full‐Range Carrier Frequency Offset Estimation for High Speed CO‐OFDM
  publication-title: Optics Express
– volume: 19
  start-page: 9868
  issue: 10
  year: 2011
  end-page: 9880
  article-title: Performance Analyses of Polarization Demultiplexing Based on Constant‐Modulus Algorithm in Digital Coherent Optical Receivers
  publication-title: Optics Express
– volume: 36
  start-page: 605
  issue: 5
  year: 1988
  end-page: 612
  article-title: Digital Filter and Square Timing Recovery
  publication-title: IEEE Transactions on Communications
– start-page: 1
  year: 2013
  end-page: 3
– volume: 34
  start-page: 423
  issue: 5
  year: 1986
  end-page: 429
  article-title: A BPSK/QPSK Timing‐Error Detector for Sampled Receivers
  publication-title: IEEE Transactions on Communications
– volume: 2
  start-page: 387
  issue: 3
  year: 2010
  end-page: 403
  article-title: Data‐Aided Versus Blind Single‐Carrier Coherent Receivers
  publication-title: IEEE Photonics Journal
– volume: 6
  start-page: 205
  issue: 5
  year: 2002
  end-page: 207
  article-title: A New Non‐Data‐Aided Feedforward Symbol Timing Estimator Using Two Samples per Symbol
  publication-title: IEEE Communications Letters
– volume: 25
  start-page: 179
  issue: 2
  year: 2013
  end-page: 182
  article-title: Accurate Two‐Stage Frequency Offset Estimation for Coherent Optical Systems
  publication-title: IEEE Photonics Technology Letters
– volume: 27
  start-page: 3042
  issue: 15
  year: 2009
  end-page: 3049
  article-title: Blind Equalization and Carrier Phase Recovery in a 16‐QAM Optical Coherent System
  publication-title: Journal of Lightwave Technology
– volume: 2
  start-page: 663
  year: 1989
  end-page: 669
– volume: 86
  start-page: 1927
  issue: 10
  year: 1998
  end-page: 1950
  article-title: Blind Equalization Using the Constant Modulus Criterion: A Review
  publication-title: Proceedings of the IEEE
– year: 2019
– volume: 59
  start-page: 1966
  issue: 7
  year: 2011
  end-page: 1974
  article-title: Pilot‐Aided Carrier Recovery in the Presence of Phase Noise
  publication-title: IEEE Transactions on Communications
– start-page: 1
  year: 2020
  end-page: 4
– volume: 1
  start-page: 1
  year: 2010
  end-page: 3
– volume: 25
  start-page: 1797
  issue: 18
  year: 2013
  end-page: 1800
  article-title: Impact of Loop Delay on the Performance of Gardner Timing Recovery
  publication-title: IEEE Photonics Technology Letters
– volume: 63
  start-page: 673
  issue: 3
  year: 2015
  end-page: 683
  article-title: A Fast Algorithm With Less Operations for Length‐ DFTs
  publication-title: IEEE Transactions on Signal Processing
– volume: 36
  start-page: 1492
  issue: 8
  year: 2018
  end-page: 1497
  article-title: Hardware‐Efficient Adaptive Equalization and Carrier Phase Recovery for 100‐Gb/s/ ‐Based Coherent WDM‐PON Systems
  publication-title: Journal of Lightwave Technology
– volume: 27
  start-page: 989
  issue: 8
  year: 2009
  end-page: 999
  article-title: Hardware‐Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for ‐QAM Constellations
  publication-title: Journal of Lightwave Technology
– start-page: 1
  year: 2010
  end-page: 3
– volume: 26
  start-page: 517
  issue: 5
  year: 1978
  end-page: 523
  article-title: Passband Timing Recovery in an All‐Digital Modem Receiver
  publication-title: IEEE Transactions on Communications
– start-page: 1
  year: 2023
  end-page: 5
– volume: 19
  start-page: 567
  issue: 3
  year: 2002
  end-page: 571
  article-title: Optimum Divergence Angle of a Gaussian Beam Wave in the Presence of Random Jitter in Free‐Space Laser Communication Systems
  publication-title: Journal of the Optical Society of America
– volume: 52
  start-page: 338
  issue: 2
  year: 2005
  end-page: 349
  article-title: Trigonometric Polynomial Interpolation for Timing Recovery
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– start-page: 1
  year: 2015
  end-page: 3
– volume: 11
  start-page: 63598
  year: 2023
  end-page: 63611
  article-title: Modulation and Signal Processing for LEO‐LEO Optical Inter‐Satellite Links
  publication-title: IEEE Access
– volume: 29
  start-page: 43136
  issue: 26
  year: 2021
  end-page: 43147
  article-title: Joint Estimation of Dynamic Polarization and Carrier Phase With Pilot‐Based Adaptive Equalizer in PDM‐64 QAM Transmission System
  publication-title: Optics Express
– volume: 6
  start-page: 575
  issue: 2
  year: 2007
  end-page: 582
  article-title: On the Cramer‐Rao Bound for Carrier Frequency Estimation in the Presence of Phase Noise
  publication-title: IEEE Transactions on Wireless Communications
– volume: 42
  start-page: 1391
  issue: 234
  year: 1994
  end-page: 1399
  article-title: The Modified Cramer‐Rao bound and Its Application to Synchronization Problems
  publication-title: IEEE Transactions on Communications
– volume: 11272
  start-page: 149
  year: 2020
  end-page: 157
– volume: 12877
  year: 2024
– start-page: 1
  year: 2010
  end-page: 4
– year: 2020
  article-title: Link Budget Assessment for GEO Feeder Links Based on Optical Technology
  publication-title: International Journal of Satellite Communications and Networking
– start-page: 1
  year: 2015
  end-page: 5
– start-page: 1
  year: 2021
  end-page: 3
– year: 2020
– year: 2023
– volume: 34
  start-page: 157
  issue: 1
  year: 2016
  end-page: 179
  article-title: Fundamentals of Coherent Optical Fiber Communications
  publication-title: Journal of Lightwave Technology
– start-page: 1
  year: 2020
  end-page: 2
– volume: 40
  start-page: 1633
  issue: 7
  year: 1992
  end-page: 1642
  article-title: A Variable Step Size LMS Algorithm
  publication-title: IEEE Transactions on Signal Processing
– volume: 36
  start-page: 5728
  issue: 24
  year: 2018
  end-page: 5737
  article-title: Low‐Complexity Real‐Time Receiver for Coherent Nyquist‐FDM Signals
  publication-title: Journal of Lightwave Technology
– volume: 57
  start-page: 5095
  issue: 18
  year: 2018
  end-page: 5101
  article-title: Demonstration of 40 GBaud Intradyne Transmission Through Worst‐Case Atmospheric Turbulence Conditions for Geostationary Satellite Uplink
  publication-title: Applied Optics
– start-page: 2641
  year: 1988
  end-page: 2645 vol.3
– volume: 29
  start-page: 543
  issue: 4
  year: 1983
  end-page: 551
  article-title: Nonlinear Estimation of PSK‐Modulated Carrier Phase With Application to Burst Digital Transmission
  publication-title: IEEE Transactions on Information Theory
– volume: 19
  start-page: 366
  issue: 6
  year: 2007
  end-page: 368
  article-title: Frequency Estimation in Intradyne Reception
  publication-title: IEEE Photonics Technology Letters
– volume: 28
  start-page: 140
  issue: 3
  year: 2011
  end-page: 144
  article-title: Sampling Rate Conversion in the Frequency Domain [DSP Tips and Tricks]
  publication-title: IEEE Signal Processing Magazine
– start-page: 1
  year: 2018
  end-page: 3
– volume: 27
  start-page: 2230
  issue: 21
  year: 2015
  end-page: 2233
  article-title: Performance and Complexity of Digital Clock Recovery for Nyquist UDWDM‐PON in Real Time
  publication-title: IEEE Photonics Technology Letters
– volume: 19
  start-page: 9282
  issue: 10
  year: 2011
  end-page: 9295
  article-title: Parallel Implementation of All‐Digital Timing Recovery for High‐Speed and Real‐Time Optical Coherent Receivers
  publication-title: Optics Express
– volume: 11
  start-page: 1
  issue: 6
  year: 2019
  end-page: 11
  article-title: All‐Digital Timing Recovery for Free Space Optical Communication Signals With a Large Dynamic Range and Low OSNR
  publication-title: IEEE Photonics Journal
– volume: 26
  start-page: 1817
  issue: 13
  year: 2008
  end-page: 1822
  article-title: Evaluation of Sensitivity of the Digital Coherent Receiver
  publication-title: Journal of Lightwave Technology
– year: 2013
– ident: e_1_2_10_44_1
– ident: e_1_2_10_26_1
  doi: 10.1364/OFC.2014.Th3E.3
– ident: e_1_2_10_59_1
  doi: 10.1364/OSAC.438524
– ident: e_1_2_10_88_1
  doi: 10.1109/78.852014
– ident: e_1_2_10_38_1
  doi: 10.1109/TSP.2014.2379678
– ident: e_1_2_10_11_1
  doi: 10.1117/12.2647830
– ident: e_1_2_10_8_1
  doi: 10.1109/ICSOS.2017.8357228
– ident: e_1_2_10_62_1
  doi: 10.1109/ECOC48923.2020.9333326
– ident: e_1_2_10_64_1
  doi: 10.1109/JLT.2015.2463719
– ident: e_1_2_10_23_1
  doi: 10.1109/ECOC.2010.5621268
– volume: 52
  start-page: 338
  issue: 2
  year: 2005
  ident: e_1_2_10_40_1
  article-title: Trigonometric Polynomial Interpolation for Timing Recovery
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2004.841573
– ident: e_1_2_10_22_1
  doi: 10.1109/LPT.2013.2276412
– ident: e_1_2_10_12_1
  doi: 10.1117/12.2691100
– ident: e_1_2_10_30_1
  doi: 10.1109/TCOM.1986.1096561
– ident: e_1_2_10_87_1
  doi: 10.1364/OE.19.009868
– ident: e_1_2_10_37_1
  doi: 10.1109/4234.1001665
– ident: e_1_2_10_14_1
  doi: 10.1117/12.3001394
– ident: e_1_2_10_43_1
– ident: e_1_2_10_77_1
  doi: 10.1109/JLT.2017.2784804
– ident: e_1_2_10_17_1
  doi: 10.1364/OFC.2020.W1E.1
– ident: e_1_2_10_66_1
  doi: 10.1109/LPT.2012.2232288
– ident: e_1_2_10_51_1
  doi: 10.1109/TIT.1983.1056713
– ident: e_1_2_10_5_1
  doi: 10.1109/ECOC.2018.8535575
– ident: e_1_2_10_67_1
  doi: 10.1109/ECOC.2010.5621462
– ident: e_1_2_10_21_1
  doi: 10.1109/ICTON.2010.5549082
– ident: e_1_2_10_7_1
  doi: 10.1364/JOSAA.19.000567
– ident: e_1_2_10_3_1
  doi: 10.1117/12.2513819
– year: 2020
  ident: e_1_2_10_10_1
  article-title: Link Budget Assessment for GEO Feeder Links Based on Optical Technology
  publication-title: International Journal of Satellite Communications and Networking
– ident: e_1_2_10_50_1
  doi: 10.1109/JLT.2008.927778
– ident: e_1_2_10_63_1
  doi: 10.1109/ICSOS.2015.7425086
– ident: e_1_2_10_9_1
  doi: 10.1109/ICSOS45490.2019.8978994
– ident: e_1_2_10_69_1
  doi: 10.1109/26.650240
– ident: e_1_2_10_16_1
  doi: 10.1007/978-3-030-16250-4
– ident: e_1_2_10_25_1
  doi: 10.1109/LPT.2015.2457783
– ident: e_1_2_10_72_1
  doi: 10.1109/TCOMM.1994.580247
– ident: e_1_2_10_86_1
  doi: 10.1109/JLT.2009.2021961
– ident: e_1_2_10_83_1
  doi: 10.1364/OFC.2013.OW4B.3
– ident: e_1_2_10_13_1
  doi: 10.1109/JLT.2007.913589
– ident: e_1_2_10_75_1
  doi: 10.1364/OFC.2020.Th2A.38
– ident: e_1_2_10_45_1
– ident: e_1_2_10_71_1
  doi: 10.1109/TWC.2007.05270
– ident: e_1_2_10_91_1
  doi: 10.1109/78.143435
– ident: e_1_2_10_24_1
  doi: 10.1364/OFC.2013.OTu2I.7
– ident: e_1_2_10_48_1
– ident: e_1_2_10_19_1
  doi: 10.1364/OFC.2013.OTh1F.3
– ident: e_1_2_10_32_1
  doi: 10.1364/OE.461105
– ident: e_1_2_10_41_1
– ident: e_1_2_10_47_1
– ident: e_1_2_10_80_1
  doi: 10.1117/12.2544050
– ident: e_1_2_10_39_1
  doi: 10.1109/MSP.2011.940413
– ident: e_1_2_10_2_1
– ident: e_1_2_10_76_1
  doi: 10.1364/OFC.2017.Th3G.2
– ident: e_1_2_10_68_1
  doi: 10.1002/ett.4460090203
– ident: e_1_2_10_20_1
  doi: 10.1364/ECOC.2011.Tu.6.A.4
– ident: e_1_2_10_29_1
  doi: 10.1109/JPHOT.2019.2956086
– ident: e_1_2_10_81_1
  doi: 10.1109/35.995852
– ident: e_1_2_10_4_1
  doi: 10.1364/CLEO_SI.2020.SW4L.3
– ident: e_1_2_10_46_1
– ident: e_1_2_10_70_1
  doi: 10.1364/OE.21.023896
– ident: e_1_2_10_79_1
  doi: 10.1109/ECOC.2008.4729321
– ident: e_1_2_10_84_1
  doi: 10.1364/OE.445400
– ident: e_1_2_10_6_1
  doi: 10.1117/12.2651297
– ident: e_1_2_10_18_1
  doi: 10.1364/AO.57.005095
– ident: e_1_2_10_33_1
  doi: 10.1109/TCOM.1978.1094107
– ident: e_1_2_10_34_1
  doi: 10.1364/OFC.2015.Th3G.4
– ident: e_1_2_10_61_1
  doi: 10.1109/LPT.2007.891893
– ident: e_1_2_10_65_1
– ident: e_1_2_10_56_1
  doi: 10.1109/ECOC.2010.5621498
– volume: 18
  year: 2014
  ident: e_1_2_10_60_1
  article-title: A Survey on FEC Codes for 100 G and Beyond Optical Networks
  publication-title: IEEE Communications Surveys and Tutorials
– ident: e_1_2_10_90_1
  doi: 10.1002/9781118591352
– ident: e_1_2_10_28_1
  doi: 10.1109/ICTON.2010.5549082
– ident: e_1_2_10_52_1
  doi: 10.1109/JLT.2014.2325064
– ident: e_1_2_10_42_1
  doi: 10.1109/26.231921
– ident: e_1_2_10_57_1
  doi: 10.1364/ECOC.2011.We.10.P1.70
– ident: e_1_2_10_78_1
  doi: 10.1364/OE.385370
– ident: e_1_2_10_53_1
  doi: 10.1364/OFC.2021.W6A.17
– ident: e_1_2_10_58_1
  doi: 10.1109/TCOMM.2011.051311.100047
– ident: e_1_2_10_15_1
  doi: 10.1117/12.3001403
– ident: e_1_2_10_74_1
  doi: 10.1364/OE.16.000804
– ident: e_1_2_10_89_1
  doi: 10.1109/ACSSC.1989.1200981
– ident: e_1_2_10_36_1
  doi: 10.1109/26.1476
– ident: e_1_2_10_55_1
  doi: 10.1364/OE.27.015617
– ident: e_1_2_10_35_1
  doi: 10.1109/JLT.2018.2877479
– ident: e_1_2_10_49_1
  doi: 10.1109/JLT.2007.902118
– ident: e_1_2_10_73_1
  doi: 10.1109/ACCESS.2023.3287501
– ident: e_1_2_10_82_1
  doi: 10.1109/JPHOT.2010.2048308
– ident: e_1_2_10_54_1
  doi: 10.1109/JLT.2008.2010511
– ident: e_1_2_10_85_1
  doi: 10.1109/5.720246
– ident: e_1_2_10_27_1
  doi: 10.1364/OE.489594
– ident: e_1_2_10_31_1
  doi: 10.1364/OE.19.009282
SSID ssj0026051
Score 2.3684328
Snippet ABSTRACT Coherent optical satellite links enable high‐throughput communication and high accuracy ranging to and between satellites. Due to the ever‐increasing...
Coherent optical satellite links enable high‐throughput communication and high accuracy ranging to and between satellites. Due to the ever‐increasing demand...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 229
SubjectTerms Aerospace environments
Algorithms
Carrier frequencies
Complexity
Demultiplexing
Digital signal processing
Equalization
Error correction
Integrated circuits
Links
optical satellite communications
Optics
Polarization
Recovery
Satellite communications
Satellite networks
Satellites
Signal processing
Signal reconstruction
Subsystems
Synchronism
Wavelength division multiplexing
Title Review and Analysis of Digital Signal Processing Algorithms for Coherent Optical Satellite Links
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsat.1553
https://www.proquest.com/docview/3196760581
Volume 43
WOSCitedRecordID wos001418980300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1542-0981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026051
  issn: 1542-0973
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oeNCDbyOKZE2Mtyrdtls4EpF4IEgEEm51X8UmWgit_n53-gA8mJh4atJ2mmZ2Zveb2Z1vAG5MiEwF85RFJdWW60pmcYVn3D1HCsZ56OmsULjvDwat6bQ9LE5VYi1Mzg-xSrihZ2TzNTo4F8n9mjQ04ekdNr3ZhqptOz5aNHWHq2DLwPScK9WlFlLSlMSzTXpfSv5citb4chOlZstM7-A_P3gI-wW4JJ3cGo5gS8fHsLdBOXgCr_lmAOGxIiUhCZmHpBvNsH0IGUUz_ERRP2BESOd9Nl9G6dtHQgzAJVjPgYxO5HmRpcHJiGeknqkmGNcmpzDpPY4fnqyiy4IlabvpWEpIblCVclomWBAGv1HJucOVLVyfeYK6YVtJ2bSVo2ho7kjP0Vita54x5RvAcgaVeB7rcyCOlCHnminGqcvCULT80OPCZm1hUKl2a3BdKjxY5GQaQU6bTAOjrQC1VYN6ORJB4U5JgPOEjxu4dg1uM53_Kh-MOmO8Xvz1xUvYpdjTN8us1KGSLj_1FezIrzRKlo3MqBpQ7b70Jv1vZ-nSLw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gmqgH30YUdU2Mtwpst1uIJ6ISjIgkYMKt7qtIokBo9fe701LAg4mJpyZtp2lmd3a-md35BuDShshUck87VFHjMKa4IzSecfdcJbkQoWeSQuGW325X-_1aJwc3WS1Myg8xT7ihZSTrNRo4JqRLC9bQSMTX2PVmBVaZdUp4no-yzjzasjg9JUtl1EFOmox5tkxLmeRPX7QAmMswNfEzje1__eEObM3gJamn82EXcma0B5tLpIP78JpuBxAx0iSjJCHjkNwNB9hAhHSHA_zErILAipD6-2A8HcZvHxGxEJdgRQdyOpHnSZIIJ12R0HrGhmBkGx3AS-O-d9t0Zn0WHEVrZdfRUgmLq7RbteGCtAiOKiFcoSuS-dyTlIU1rVS5ol1NQ3tHea7Bel37jGvfQpZDyI_GI3MExFUqFMJwzQVlPAxl1Q89ISu8Ji0uNawAF5nGg0lKpxGkxMk0sNoKUFsFKGZDEcwMKgpwpfBxC7dSgKtE6b_KB916D6_Hf33xHNabvadW0HpoP57ABsUOv0mepQj5ePppTmFNfcXDaHqWzLBvRnTUcw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBb7FadQXxFttsNpsWT8VaFEsttEJvcT9rQdvSRH-_u5umrQdB8BRIMiFMdnbfzOa9AbgyKTLmNJQeFlh5hAjqMWn_cQ8DwSljOlSOKNyK2u1qv1_rrMBtzoXJ9CHmBTcbGW6-tgGuJlKXF6qhCUtvbNebVVgjYeSiEpPOPNsyOD0TSyXYs5o0ufJsBZdzy59r0QJgLsNUt840d_71hruwPYOXqJ6Nhz1YUaN92FoSHTyA12w7ALGRRLkkCRpr1BgObAMR1B0O7CNmDAJjgurvg_F0mL59JMhAXGQZHVbTCT1PXCEcdZmT9UwVspltcggvzfve3YM367PgCVyrBJ7kghlcJYOqSRe4QXBYMBYw6XMS0ZBjomtSiIovA4m1OSPCQFm-rrlGZWQgyxEURuOROgYUCKEZU1RShgnVmlcjHTLu0xo3uFSRIlzmHo8nmZxGnAkn49h4K7beKkIp_xTxLKCS2M4Ukd3C9Ytw7Zz-q33crffs8eSvN17ARqfRjFuP7adT2MS2wa8rs5SgkE4_1Rmsi690mEzP3QD7BhI10-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+and+Analysis+of+Digital+Signal+Processing+Algorithms+for+Coherent+Optical+Satellite+Links&rft.jtitle=International+journal+of+satellite+communications+and+networking&rft.au=Valjus%2C+Carl&rft.au=Wolf%2C+Raphael&rft.au=Poliak%2C+Juraj&rft.date=2025-06-01&rft.issn=1542-0973&rft.eissn=1542-0981&rft.volume=43&rft.issue=3&rft.spage=229&rft.epage=250&rft_id=info:doi/10.1002%2Fsat.1553&rft.externalDBID=10.1002%252Fsat.1553&rft.externalDocID=SAT1553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-0973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-0973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-0973&client=summon