A Competing Risks Model With Multiply Censored Reliability Data Under Multivariate Weibull Distributions
A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we con...
Uloženo v:
| Vydáno v: | IEEE transactions on reliability Ročník 68; číslo 2; s. 462 - 475 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9529, 1558-1721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we consider a competing risks model with <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> failure modes and whose lifetimes follow a joint <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-variate Marshall-Olkin Weibull distribution, when the data are multiply censored. Normally, each observation contains the failure time as well as the failure mode. In practice, however, it is common to have masked data in which the component that causes failure of the system is not observed. We apply the maximum likelihood approach via expectation-maximization algorithm, along with the missing information principle, to estimate the parameters and the standard errors of the maximum likelihood estimates. Statistical inference on the model parameters, the mean time to failure, and the quantiles of the failure time of the system as well as of the components are all developed. The proposed method is evaluated by a simulation study and also applied to two two-component real datasets successfully. |
|---|---|
| AbstractList | A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we consider a competing risks model with <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> failure modes and whose lifetimes follow a joint <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-variate Marshall-Olkin Weibull distribution, when the data are multiply censored. Normally, each observation contains the failure time as well as the failure mode. In practice, however, it is common to have masked data in which the component that causes failure of the system is not observed. We apply the maximum likelihood approach via expectation-maximization algorithm, along with the missing information principle, to estimate the parameters and the standard errors of the maximum likelihood estimates. Statistical inference on the model parameters, the mean time to failure, and the quantiles of the failure time of the system as well as of the components are all developed. The proposed method is evaluated by a simulation study and also applied to two two-component real datasets successfully. A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we consider a competing risks model with [Formula Omitted] failure modes and whose lifetimes follow a joint [Formula Omitted]-variate Marshall–Olkin Weibull distribution, when the data are multiply censored. Normally, each observation contains the failure time as well as the failure mode. In practice, however, it is common to have masked data in which the component that causes failure of the system is not observed. We apply the maximum likelihood approach via expectation–maximization algorithm, along with the missing information principle, to estimate the parameters and the standard errors of the maximum likelihood estimates. Statistical inference on the model parameters, the mean time to failure, and the quantiles of the failure time of the system as well as of the components are all developed. The proposed method is evaluated by a simulation study and also applied to two two-component real datasets successfully. |
| Author | Ju, She-Kai Wang, Yi-Fu Fan, Tsai-Hung |
| Author_xml | – sequence: 1 givenname: Tsai-Hung orcidid: 0000-0003-0361-2267 surname: Fan fullname: Fan, Tsai-Hung email: thfanncu@gmail.com organization: Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan – sequence: 2 givenname: Yi-Fu orcidid: 0000-0002-9347-0583 surname: Wang fullname: Wang, Yi-Fu email: ifwang027@gmail.com organization: Department of Mathematics, National Chung Cheng University, Chiayi, Taiwan – sequence: 3 givenname: She-Kai surname: Ju fullname: Ju, She-Kai email: roger770109@gmail.com organization: Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan |
| BookMark | eNp9kM1rAjEQxUOxULU999BLoOfVfGx2k6Nov0ApiOJxiZvZGht3bRIL_vddUXrooaeZB-83w3s91KmbGhC6p2RAKVHDxXzACFUDpkguqLxCXSqETGjOaAd1CaEyUYKpG9QLYdvKNFWyizYjPG52e4i2_sBzGz4DnjUGHF7ZuMGzg4t27454DHVoPBg8B2f12jobj3iio8bL2oA_G7-1tzoCXoFdH5zDExuib9domzrcoutKuwB3l9lHy-enxfg1mb6_vI1H06RkUsWkUoKCyHjJWp0xKQ3POKUpNbnOgFeCrStVcmOEWXOj8jIttZal1LxNneuU99Hj-e7eN18HCLHYNgdfty8LxriQLOc5bV3Ds6v0TQgeqmLv7U77Y0FJcaqzWMyLU53Fpc6WEH-I0kZ9iha9tu4f7uHMWQD4_SJzQjLK-A-N-oRV |
| CODEN | IERQAD |
| CitedBy_id | crossref_primary_10_1515_eqc_2022_0029 crossref_primary_10_3390_e24050589 crossref_primary_10_1002_qre_3478 crossref_primary_10_3390_sym17071044 crossref_primary_10_1002_qre_2650 crossref_primary_10_1007_s00180_023_01444_3 crossref_primary_10_1080_02664763_2021_2003760 crossref_primary_10_1080_03610918_2020_1855449 crossref_primary_10_1002_asmb_70030 crossref_primary_10_1016_j_ress_2021_108103 crossref_primary_10_1016_j_ress_2021_108136 crossref_primary_10_1080_16843703_2023_2193773 crossref_primary_10_3390_sym15020485 crossref_primary_10_3390_math11061461 crossref_primary_10_1007_s11595_023_2739_8 crossref_primary_10_1007_s42081_021_00142_y crossref_primary_10_1080_02664763_2024_2315458 crossref_primary_10_1016_j_energy_2021_121776 crossref_primary_10_1002_qre_2890 crossref_primary_10_3390_en16010062 crossref_primary_10_1080_02664763_2022_2052821 crossref_primary_10_1080_03610918_2022_2039199 crossref_primary_10_1093_biomet_asac067 crossref_primary_10_3390_math10203907 |
| Cites_doi | 10.1016/j.csda.2008.11.009 10.1109/TR.1984.5221828 10.1177/0962280215604510 10.1111/j.2517-6161.1982.tb01203.x 10.2307/2528828 10.1080/00401706.1974.10489147 10.1080/00401706.2012.707579 10.2307/2291285 10.1016/0047-259X(78)90064-7 10.1016/S0096-3003(03)00688-X 10.1515/jem-2015-0005 10.2307/2282907 10.1109/24.9880 10.2307/2532041 10.1109/TR.2016.2515589 10.1109/TR.2014.2337813 10.1109/24.510806 10.1002/0471722065 10.1016/j.csda.2012.05.004 10.1016/S0167-7152(99)00160-1 10.1191/0962280203sm335ra 10.1002/9780470191613 10.1093/biomet/45.3-4.504 10.1007/s00180-018-0804-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TR.2019.2907518 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-1721 |
| EndPage | 475 |
| ExternalDocumentID | 10_1109_TR_2019_2907518 8700612 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-2118-M-194-002 funderid: 10.13039/501100004663 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 105-2118-M008-003-MY2 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c289t-f951e563c2c286288d3631141d7a6e3f52bf9c3dd5db3d97c4caa8c8a30757a43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470826100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9529 |
| IngestDate | Mon Jun 30 10:17:25 EDT 2025 Sat Nov 29 01:54:35 EST 2025 Tue Nov 18 22:27:42 EST 2025 Wed Aug 27 06:03:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c289t-f951e563c2c286288d3631141d7a6e3f52bf9c3dd5db3d97c4caa8c8a30757a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0361-2267 0000-0002-9347-0583 |
| PQID | 2235827371 |
| PQPubID | 85456 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TR_2019_2907518 proquest_journals_2235827371 crossref_primary_10_1109_TR_2019_2907518 ieee_primary_8700612 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June 2019-6-00 20190601 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on reliability |
| PublicationTitleAbbrev | TR |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 huster (ref30) 1989; 45 ref15 fan (ref29) 2013 ref31 meeker (ref20) 1998 ref10 ref2 ref1 ref17 ref19 duchateau (ref16) 2008 ref18 mukhopadhyay (ref6) 1993 ref24 ref23 ref26 ref25 ref22 ref21 morgenstern (ref14) 1956; 8 ref28 ref8 ref7 ref9 ref4 lee (ref27) 1974 ref3 ref5 nelsen (ref11) 2006 |
| References_xml | – ident: ref23 doi: 10.1016/j.csda.2008.11.009 – ident: ref2 doi: 10.1109/TR.1984.5221828 – ident: ref18 doi: 10.1177/0962280215604510 – ident: ref24 doi: 10.1111/j.2517-6161.1982.tb01203.x – year: 2006 ident: ref11 publication-title: An Introduction to Copulas – ident: ref1 doi: 10.2307/2528828 – ident: ref22 doi: 10.1080/00401706.1974.10489147 – ident: ref17 doi: 10.1080/00401706.2012.707579 – ident: ref5 doi: 10.2307/2291285 – ident: ref8 doi: 10.1016/0047-259X(78)90064-7 – ident: ref9 doi: 10.1016/S0096-3003(03)00688-X – volume: 8 start-page: 234 year: 1956 ident: ref14 article-title: Einfache beispiele zweidimensionaler verteilungen publication-title: Mitteilungsblatt für Mathematishe Statistik – ident: ref19 doi: 10.1515/jem-2015-0005 – ident: ref21 doi: 10.2307/2282907 – ident: ref3 doi: 10.1109/24.9880 – volume: 45 start-page: 145 year: 1989 ident: ref30 article-title: Modelling paired survival data with covariates publication-title: Biometrics doi: 10.2307/2532041 – ident: ref15 doi: 10.1109/TR.2016.2515589 – year: 2013 ident: ref29 article-title: Reliability analysis of two-component series system under Marshall-Olkin bivariate Weibull lifetime distribution – ident: ref10 doi: 10.1109/TR.2014.2337813 – year: 1993 ident: ref6 – ident: ref4 doi: 10.1109/24.510806 – ident: ref26 doi: 10.1002/0471722065 – ident: ref25 doi: 10.1016/j.csda.2012.05.004 – ident: ref7 doi: 10.1016/S0167-7152(99)00160-1 – ident: ref12 doi: 10.1191/0962280203sm335ra – year: 1998 ident: ref20 publication-title: Statistical Methods for Reliability Data – ident: ref28 doi: 10.1002/9780470191613 – year: 2008 ident: ref16 publication-title: The Frailty Model – start-page: 291 year: 1974 ident: ref27 article-title: Results on failure time and pattern for the series system publication-title: Reliability and Biometry Statistical Analysis of Lifelength – ident: ref31 doi: 10.1093/biomet/45.3-4.504 – ident: ref13 doi: 10.1007/s00180-018-0804-0 |
| SSID | ssj0014498 |
| Score | 2.38174 |
| Snippet | A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 462 |
| SubjectTerms | Algorithms Component reliability Computer simulation Data models Economic models Expectation–maximization (EM) algorithm Exponential distribution Failure modes Failure times Fans Marshall–Olkin Weibull distribution masked data Mathematical models Maximum likelihood estimates Maximum likelihood estimation Mean time to failure multiply censored life test Multivariate analysis Parameter estimation Quantiles Reliability series system Silicon Statistical analysis Statistical inference Weibull distribution |
| Title | A Competing Risks Model With Multiply Censored Reliability Data Under Multivariate Weibull Distributions |
| URI | https://ieeexplore.ieee.org/document/8700612 https://www.proquest.com/docview/2235827371 |
| Volume | 68 |
| WOSCitedRecordID | wos000470826100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-1721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014498 issn: 0018-9529 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGXgVRXvLAwEBKYydxPaIWxAJCVVG7RY7tiIqqRU1aqf-es2OqSsDAFku-JMr5zvfFd_cBXGujck1NFmQmTIJId1ggjGKIeXiG4YcUiWk7sgn-8tIZjcTrFtyua2GMMS75zLTspTvL1zO1sL_K7nBt2R25BjXOk6pWa31iEEXCe1004JgK38YnbIu7Qd-mcIkWRSAYW3aPjR3IUar88MNuc3nc_99rHcCeDyLJfaX1Q9gy0yPY3Wgt2ID3e9J1ITGOSH9cfBTE0p5NyHBcvpPnKo1wRbqIYvFxmtjU5Kpl94r0ZCmJI0SqJi4RT2NISoZmnCFiJT3bbNfzZBXH8Pb4MOg-BZ5VIVAIrsogx5jKxAlTFMeWbFizhCEqCjWXiWF5TLNcKKZ1rDOmBVeRkrKjOhK9QcxlxE6gPp1NzSkQ084pSiiOGC5C45ehVCKnLGIY50iaN6H1_aVT5VuOW-aLSeqgR1ukg35qVZN61TThZi3wWXXb-Htqw2piPc0roQkX36pMvTUWKXX1wJzx8Ox3qXPYsfeuUsAuoF7OF-YSttWyHBfzK7fQvgA86tFz |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwtYrrMwcPHuxum_SxOcquougusqzoraRJyhZlFVsF_72TNC4L6sFbAwkp_ZKZ-ZrJfAAnSstcUZ15mQ5iL1Qd5nEtGXKeJMPwQ_BY-1ZsIhkMOo-P_G4OzqZ3YbTWNvlMt8yjPctXL_Ld_Cpr49oyHnkeFqMwpH59W2t6ZhCG3Nld3MIR5a6QT-Dz9mhokrh4iyIVjIy-x4wPsqIqPyyxdS-X6_97sQ1Yc2EkOa9x34Q5PdmC1Znigg0Yn5OuDYqxRYZF-VQSI3z2TB6Kakz6dSLhJ-kij8XpFDHJyXXR7k_SE5UgVhKp7viBjBqDUvKgiww5K-mZcrtOKavchvvLi1H3ynO6Cp5EelV5OUZVOoqZpNg2csOKxQx5UaASEWuWRzTLuWRKRSpjiicylEJ0ZEegPYgSEbIdWJi8TPQuEO3nFEfIBFkcQhKJQEieUxYyjHQEzZvQ-v7SqXRFx432xXNqyYfP09EwNdCkDpomnE4HvNb1Nv7u2jBITLs5EJpw8A1l6vZjmVJ7IzhhSbD3-6hjWL4a9W_T2-vBzT6smHnqhLADWKje3vUhLMmPqijfjuyi-wJKKNS6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Competing+Risks+Model+With+Multiply+Censored+Reliability+Data+Under+Multivariate+Weibull+Distributions&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Fan%2C+Tsai-Hung&rft.au=Wang%2C+Yi-Fu&rft.au=Ju%2C+She-Kai&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=68&rft.issue=2&rft.spage=462&rft.epage=475&rft_id=info:doi/10.1109%2FTR.2019.2907518&rft.externalDocID=8700612 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |