A Competing Risks Model With Multiply Censored Reliability Data Under Multivariate Weibull Distributions

A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on reliability Ročník 68; číslo 2; s. 462 - 475
Hlavní autoři: Fan, Tsai-Hung, Wang, Yi-Fu, Ju, She-Kai
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9529, 1558-1721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we consider a competing risks model with <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> failure modes and whose lifetimes follow a joint <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-variate Marshall-Olkin Weibull distribution, when the data are multiply censored. Normally, each observation contains the failure time as well as the failure mode. In practice, however, it is common to have masked data in which the component that causes failure of the system is not observed. We apply the maximum likelihood approach via expectation-maximization algorithm, along with the missing information principle, to estimate the parameters and the standard errors of the maximum likelihood estimates. Statistical inference on the model parameters, the mean time to failure, and the quantiles of the failure time of the system as well as of the components are all developed. The proposed method is evaluated by a simulation study and also applied to two two-component real datasets successfully.
AbstractList A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we consider a competing risks model with <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> failure modes and whose lifetimes follow a joint <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-variate Marshall-Olkin Weibull distribution, when the data are multiply censored. Normally, each observation contains the failure time as well as the failure mode. In practice, however, it is common to have masked data in which the component that causes failure of the system is not observed. We apply the maximum likelihood approach via expectation-maximization algorithm, along with the missing information principle, to estimate the parameters and the standard errors of the maximum likelihood estimates. Statistical inference on the model parameters, the mean time to failure, and the quantiles of the failure time of the system as well as of the components are all developed. The proposed method is evaluated by a simulation study and also applied to two two-component real datasets successfully.
A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series system fails if any of its components fail. As these components are all part of the same system, they may be correlated. In this paper, we consider a competing risks model with [Formula Omitted] failure modes and whose lifetimes follow a joint [Formula Omitted]-variate Marshall–Olkin Weibull distribution, when the data are multiply censored. Normally, each observation contains the failure time as well as the failure mode. In practice, however, it is common to have masked data in which the component that causes failure of the system is not observed. We apply the maximum likelihood approach via expectation–maximization algorithm, along with the missing information principle, to estimate the parameters and the standard errors of the maximum likelihood estimates. Statistical inference on the model parameters, the mean time to failure, and the quantiles of the failure time of the system as well as of the components are all developed. The proposed method is evaluated by a simulation study and also applied to two two-component real datasets successfully.
Author Ju, She-Kai
Wang, Yi-Fu
Fan, Tsai-Hung
Author_xml – sequence: 1
  givenname: Tsai-Hung
  orcidid: 0000-0003-0361-2267
  surname: Fan
  fullname: Fan, Tsai-Hung
  email: thfanncu@gmail.com
  organization: Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan
– sequence: 2
  givenname: Yi-Fu
  orcidid: 0000-0002-9347-0583
  surname: Wang
  fullname: Wang, Yi-Fu
  email: ifwang027@gmail.com
  organization: Department of Mathematics, National Chung Cheng University, Chiayi, Taiwan
– sequence: 3
  givenname: She-Kai
  surname: Ju
  fullname: Ju, She-Kai
  email: roger770109@gmail.com
  organization: Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan
BookMark eNp9kM1rAjEQxUOxULU999BLoOfVfGx2k6Nov0ApiOJxiZvZGht3bRIL_vddUXrooaeZB-83w3s91KmbGhC6p2RAKVHDxXzACFUDpkguqLxCXSqETGjOaAd1CaEyUYKpG9QLYdvKNFWyizYjPG52e4i2_sBzGz4DnjUGHF7ZuMGzg4t27454DHVoPBg8B2f12jobj3iio8bL2oA_G7-1tzoCXoFdH5zDExuib9domzrcoutKuwB3l9lHy-enxfg1mb6_vI1H06RkUsWkUoKCyHjJWp0xKQ3POKUpNbnOgFeCrStVcmOEWXOj8jIttZal1LxNneuU99Hj-e7eN18HCLHYNgdfty8LxriQLOc5bV3Ds6v0TQgeqmLv7U77Y0FJcaqzWMyLU53Fpc6WEH-I0kZ9iha9tu4f7uHMWQD4_SJzQjLK-A-N-oRV
CODEN IERQAD
CitedBy_id crossref_primary_10_1515_eqc_2022_0029
crossref_primary_10_3390_e24050589
crossref_primary_10_1002_qre_3478
crossref_primary_10_3390_sym17071044
crossref_primary_10_1002_qre_2650
crossref_primary_10_1007_s00180_023_01444_3
crossref_primary_10_1080_02664763_2021_2003760
crossref_primary_10_1080_03610918_2020_1855449
crossref_primary_10_1002_asmb_70030
crossref_primary_10_1016_j_ress_2021_108103
crossref_primary_10_1016_j_ress_2021_108136
crossref_primary_10_1080_16843703_2023_2193773
crossref_primary_10_3390_sym15020485
crossref_primary_10_3390_math11061461
crossref_primary_10_1007_s11595_023_2739_8
crossref_primary_10_1007_s42081_021_00142_y
crossref_primary_10_1080_02664763_2024_2315458
crossref_primary_10_1016_j_energy_2021_121776
crossref_primary_10_1002_qre_2890
crossref_primary_10_3390_en16010062
crossref_primary_10_1080_02664763_2022_2052821
crossref_primary_10_1080_03610918_2022_2039199
crossref_primary_10_1093_biomet_asac067
crossref_primary_10_3390_math10203907
Cites_doi 10.1016/j.csda.2008.11.009
10.1109/TR.1984.5221828
10.1177/0962280215604510
10.1111/j.2517-6161.1982.tb01203.x
10.2307/2528828
10.1080/00401706.1974.10489147
10.1080/00401706.2012.707579
10.2307/2291285
10.1016/0047-259X(78)90064-7
10.1016/S0096-3003(03)00688-X
10.1515/jem-2015-0005
10.2307/2282907
10.1109/24.9880
10.2307/2532041
10.1109/TR.2016.2515589
10.1109/TR.2014.2337813
10.1109/24.510806
10.1002/0471722065
10.1016/j.csda.2012.05.004
10.1016/S0167-7152(99)00160-1
10.1191/0962280203sm335ra
10.1002/9780470191613
10.1093/biomet/45.3-4.504
10.1007/s00180-018-0804-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2019.2907518
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 475
ExternalDocumentID 10_1109_TR_2019_2907518
8700612
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 107-2118-M-194-002
  funderid: 10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 105-2118-M008-003-MY2
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c289t-f951e563c2c286288d3631141d7a6e3f52bf9c3dd5db3d97c4caa8c8a30757a43
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470826100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9529
IngestDate Mon Jun 30 10:17:25 EDT 2025
Sat Nov 29 01:54:35 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Aug 27 06:03:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-f951e563c2c286288d3631141d7a6e3f52bf9c3dd5db3d97c4caa8c8a30757a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0361-2267
0000-0002-9347-0583
PQID 2235827371
PQPubID 85456
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TR_2019_2907518
proquest_journals_2235827371
crossref_primary_10_1109_TR_2019_2907518
ieee_primary_8700612
PublicationCentury 2000
PublicationDate 2019-June
2019-6-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
huster (ref30) 1989; 45
ref15
fan (ref29) 2013
ref31
meeker (ref20) 1998
ref10
ref2
ref1
ref17
ref19
duchateau (ref16) 2008
ref18
mukhopadhyay (ref6) 1993
ref24
ref23
ref26
ref25
ref22
ref21
morgenstern (ref14) 1956; 8
ref28
ref8
ref7
ref9
ref4
lee (ref27) 1974
ref3
ref5
nelsen (ref11) 2006
References_xml – ident: ref23
  doi: 10.1016/j.csda.2008.11.009
– ident: ref2
  doi: 10.1109/TR.1984.5221828
– ident: ref18
  doi: 10.1177/0962280215604510
– ident: ref24
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– year: 2006
  ident: ref11
  publication-title: An Introduction to Copulas
– ident: ref1
  doi: 10.2307/2528828
– ident: ref22
  doi: 10.1080/00401706.1974.10489147
– ident: ref17
  doi: 10.1080/00401706.2012.707579
– ident: ref5
  doi: 10.2307/2291285
– ident: ref8
  doi: 10.1016/0047-259X(78)90064-7
– ident: ref9
  doi: 10.1016/S0096-3003(03)00688-X
– volume: 8
  start-page: 234
  year: 1956
  ident: ref14
  article-title: Einfache beispiele zweidimensionaler verteilungen
  publication-title: Mitteilungsblatt für Mathematishe Statistik
– ident: ref19
  doi: 10.1515/jem-2015-0005
– ident: ref21
  doi: 10.2307/2282907
– ident: ref3
  doi: 10.1109/24.9880
– volume: 45
  start-page: 145
  year: 1989
  ident: ref30
  article-title: Modelling paired survival data with covariates
  publication-title: Biometrics
  doi: 10.2307/2532041
– ident: ref15
  doi: 10.1109/TR.2016.2515589
– year: 2013
  ident: ref29
  article-title: Reliability analysis of two-component series system under Marshall-Olkin bivariate Weibull lifetime distribution
– ident: ref10
  doi: 10.1109/TR.2014.2337813
– year: 1993
  ident: ref6
– ident: ref4
  doi: 10.1109/24.510806
– ident: ref26
  doi: 10.1002/0471722065
– ident: ref25
  doi: 10.1016/j.csda.2012.05.004
– ident: ref7
  doi: 10.1016/S0167-7152(99)00160-1
– ident: ref12
  doi: 10.1191/0962280203sm335ra
– year: 1998
  ident: ref20
  publication-title: Statistical Methods for Reliability Data
– ident: ref28
  doi: 10.1002/9780470191613
– year: 2008
  ident: ref16
  publication-title: The Frailty Model
– start-page: 291
  year: 1974
  ident: ref27
  article-title: Results on failure time and pattern for the series system
  publication-title: Reliability and Biometry Statistical Analysis of Lifelength
– ident: ref31
  doi: 10.1093/biomet/45.3-4.504
– ident: ref13
  doi: 10.1007/s00180-018-0804-0
SSID ssj0014498
Score 2.38174
Snippet A competing risks model is composed of more than one failure mode that naturally arises when reliability systems are made of two or more components. A series...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 462
SubjectTerms Algorithms
Component reliability
Computer simulation
Data models
Economic models
Expectation–maximization (EM) algorithm
Exponential distribution
Failure modes
Failure times
Fans
Marshall–Olkin Weibull distribution
masked data
Mathematical models
Maximum likelihood estimates
Maximum likelihood estimation
Mean time to failure
multiply censored life test
Multivariate analysis
Parameter estimation
Quantiles
Reliability
series system
Silicon
Statistical analysis
Statistical inference
Weibull distribution
Title A Competing Risks Model With Multiply Censored Reliability Data Under Multivariate Weibull Distributions
URI https://ieeexplore.ieee.org/document/8700612
https://www.proquest.com/docview/2235827371
Volume 68
WOSCitedRecordID wos000470826100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-1721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014498
  issn: 0018-9529
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGXgVRXvLAwEBKYydxPaIWxAJCVVG7RY7tiIqqRU1aqf-es2OqSsDAFku-JMr5zvfFd_cBXGujck1NFmQmTIJId1ggjGKIeXiG4YcUiWk7sgn-8tIZjcTrFtyua2GMMS75zLTspTvL1zO1sL_K7nBt2R25BjXOk6pWa31iEEXCe1004JgK38YnbIu7Qd-mcIkWRSAYW3aPjR3IUar88MNuc3nc_99rHcCeDyLJfaX1Q9gy0yPY3Wgt2ID3e9J1ITGOSH9cfBTE0p5NyHBcvpPnKo1wRbqIYvFxmtjU5Kpl94r0ZCmJI0SqJi4RT2NISoZmnCFiJT3bbNfzZBXH8Pb4MOg-BZ5VIVAIrsogx5jKxAlTFMeWbFizhCEqCjWXiWF5TLNcKKZ1rDOmBVeRkrKjOhK9QcxlxE6gPp1NzSkQ084pSiiOGC5C45ehVCKnLGIY50iaN6H1_aVT5VuOW-aLSeqgR1ukg35qVZN61TThZi3wWXXb-Htqw2piPc0roQkX36pMvTUWKXX1wJzx8Ox3qXPYsfeuUsAuoF7OF-YSttWyHBfzK7fQvgA86tFz
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwtYrrMwcPHuxum_SxOcquougusqzoraRJyhZlFVsF_72TNC4L6sFbAwkp_ZKZ-ZrJfAAnSstcUZ15mQ5iL1Qd5nEtGXKeJMPwQ_BY-1ZsIhkMOo-P_G4OzqZ3YbTWNvlMt8yjPctXL_Ld_Cpr49oyHnkeFqMwpH59W2t6ZhCG3Nld3MIR5a6QT-Dz9mhokrh4iyIVjIy-x4wPsqIqPyyxdS-X6_97sQ1Yc2EkOa9x34Q5PdmC1Znigg0Yn5OuDYqxRYZF-VQSI3z2TB6Kakz6dSLhJ-kij8XpFDHJyXXR7k_SE5UgVhKp7viBjBqDUvKgiww5K-mZcrtOKavchvvLi1H3ynO6Cp5EelV5OUZVOoqZpNg2csOKxQx5UaASEWuWRzTLuWRKRSpjiicylEJ0ZEegPYgSEbIdWJi8TPQuEO3nFEfIBFkcQhKJQEieUxYyjHQEzZvQ-v7SqXRFx432xXNqyYfP09EwNdCkDpomnE4HvNb1Nv7u2jBITLs5EJpw8A1l6vZjmVJ7IzhhSbD3-6hjWL4a9W_T2-vBzT6smHnqhLADWKje3vUhLMmPqijfjuyi-wJKKNS6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Competing+Risks+Model+With+Multiply+Censored+Reliability+Data+Under+Multivariate+Weibull+Distributions&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Fan%2C+Tsai-Hung&rft.au=Wang%2C+Yi-Fu&rft.au=Ju%2C+She-Kai&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=68&rft.issue=2&rft.spage=462&rft.epage=475&rft_id=info:doi/10.1109%2FTR.2019.2907518&rft.externalDocID=8700612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon