Falcon: Addressing Stragglers in Heterogeneous Parameter Server Via Multiple Parallelism

The parameter server architecture has shown promising performance advantages when handling deep learning (DL) applications. One crucial issue in this regard is the presence of stragglers, which significantly retards DL training progress. Previous solutions for solving stragglers may not fully exploi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers Jg. 70; H. 1; S. 139 - 155
Hauptverfasser: Zhou, Qihua, Guo, Song, Lu, Haodong, Li, Li, Guo, Minyi, Sun, Yanfei, Wang, Kun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9340, 1557-9956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The parameter server architecture has shown promising performance advantages when handling deep learning (DL) applications. One crucial issue in this regard is the presence of stragglers, which significantly retards DL training progress. Previous solutions for solving stragglers may not fully exploit the computation resource of the cluster as evidenced by our experiments, especially in the heterogeneous environment. This motivates us to design a heterogeneity-aware parameter server paradigm that addresses stragglers and accelerates DL training from the perspective of computation parallelism. We introduce a novel methodology named straggler projection to give a comprehensive inspection of stragglers and reveal practical guidelines to solve this problem in two aspects: (1) controlling each worker's training speed via elastic training parallelism control and (2) transferring blocked tasks from stragglers to pioneers to fully utilize the computation resource. Following these guidelines, we propose the abstraction of parallelism as an infrastructure and design the Elastic-Parallelism Synchronous Parallel (EPSP) algorithm to handle distributed training and parameter synchronization, supporting both enforced- and slack-synchronization schemes. The whole idea has been implemented into a prototype called <inline-formula><tex-math notation="LaTeX">{\sf Falcon}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">Falcon</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2974461.gif"/> </inline-formula> which effectively accelerates the DL training speed with the presence of stragglers. Evaluation under various benchmarks with baseline comparison demonstrates the superiority of our system. Specifically, <inline-formula><tex-math notation="LaTeX">{\sf Falcon}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">Falcon</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq2-2974461.gif"/> </inline-formula> reduces the training convergence time, by up to 61.83, 55.19, 38.92, and 23.68 percent shorter than FlexRR, Sync-opt, ConSGD, and DynSGD, respectively.
AbstractList The parameter server architecture has shown promising performance advantages when handling deep learning (DL) applications. One crucial issue in this regard is the presence of stragglers, which significantly retards DL training progress. Previous solutions for solving stragglers may not fully exploit the computation resource of the cluster as evidenced by our experiments, especially in the heterogeneous environment. This motivates us to design a heterogeneity-aware parameter server paradigm that addresses stragglers and accelerates DL training from the perspective of computation parallelism. We introduce a novel methodology named straggler projection to give a comprehensive inspection of stragglers and reveal practical guidelines to solve this problem in two aspects: (1) controlling each worker's training speed via elastic training parallelism control and (2) transferring blocked tasks from stragglers to pioneers to fully utilize the computation resource. Following these guidelines, we propose the abstraction of parallelism as an infrastructure and design the Elastic-Parallelism Synchronous Parallel (EPSP) algorithm to handle distributed training and parameter synchronization, supporting both enforced- and slack-synchronization schemes. The whole idea has been implemented into a prototype called [Formula Omitted] which effectively accelerates the DL training speed with the presence of stragglers. Evaluation under various benchmarks with baseline comparison demonstrates the superiority of our system. Specifically, [Formula Omitted] reduces the training convergence time, by up to 61.83, 55.19, 38.92, and 23.68 percent shorter than FlexRR, Sync-opt, ConSGD, and DynSGD, respectively.
The parameter server architecture has shown promising performance advantages when handling deep learning (DL) applications. One crucial issue in this regard is the presence of stragglers, which significantly retards DL training progress. Previous solutions for solving stragglers may not fully exploit the computation resource of the cluster as evidenced by our experiments, especially in the heterogeneous environment. This motivates us to design a heterogeneity-aware parameter server paradigm that addresses stragglers and accelerates DL training from the perspective of computation parallelism. We introduce a novel methodology named straggler projection to give a comprehensive inspection of stragglers and reveal practical guidelines to solve this problem in two aspects: (1) controlling each worker's training speed via elastic training parallelism control and (2) transferring blocked tasks from stragglers to pioneers to fully utilize the computation resource. Following these guidelines, we propose the abstraction of parallelism as an infrastructure and design the Elastic-Parallelism Synchronous Parallel (EPSP) algorithm to handle distributed training and parameter synchronization, supporting both enforced- and slack-synchronization schemes. The whole idea has been implemented into a prototype called <inline-formula><tex-math notation="LaTeX">{\sf Falcon}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">Falcon</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2974461.gif"/> </inline-formula> which effectively accelerates the DL training speed with the presence of stragglers. Evaluation under various benchmarks with baseline comparison demonstrates the superiority of our system. Specifically, <inline-formula><tex-math notation="LaTeX">{\sf Falcon}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">Falcon</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq2-2974461.gif"/> </inline-formula> reduces the training convergence time, by up to 61.83, 55.19, 38.92, and 23.68 percent shorter than FlexRR, Sync-opt, ConSGD, and DynSGD, respectively.
Author Zhou, Qihua
Li, Li
Sun, Yanfei
Guo, Song
Lu, Haodong
Wang, Kun
Guo, Minyi
Author_xml – sequence: 1
  givenname: Qihua
  orcidid: 0000-0002-2052-638X
  surname: Zhou
  fullname: Zhou, Qihua
  email: kimizqh@foxmail.com
  organization: School of Automation and School of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China
– sequence: 2
  givenname: Song
  orcidid: 0000-0001-9831-2202
  surname: Guo
  fullname: Guo, Song
  email: song.guo@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Haodong
  surname: Lu
  fullname: Lu, Haodong
  email: ihaodonglu@gmail.com
  organization: School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China
– sequence: 4
  givenname: Li
  surname: Li
  fullname: Li, Li
  email: lilijp@sjtu.edu.cn
  organization: School of Software of Shanghai, Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Minyi
  surname: Guo
  fullname: Guo, Minyi
  email: myguo@sjtu.edu.cn
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Yanfei
  orcidid: 0000-0003-0085-1545
  surname: Sun
  fullname: Sun, Yanfei
  email: sunyanfei@njupt.edu.cn
  organization: School of Automation and School of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 7
  givenname: Kun
  orcidid: 0000-0002-9099-2781
  surname: Wang
  fullname: Wang, Kun
  email: wangk@ucla.edu
  organization: Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
BookMark eNp9kEFLw0AQhRepYFs9e_AS8Jx2drPZdL2VYK1QUWgVb2GzmYQt26TuJoL_3tQWDx48vWHmvXnwjcigbmok5JrChFKQ0006YcBgwmTCuaBnZEjjOAmljMWADAHoLJQRhwsy8n4LAIKBHJL3hbK6qe-CeVE49N7UVbBunaoqi84Hpg6W2KJrKqyx6XzwopzaHTbBGt1nL29GBU-dbc3e4s_VWrTG7y7Jeamsx6uTjsnr4n6TLsPV88NjOl-Fms1kG-ZSUVZKzIHlOeQi0lRDyWmCEZc5FwWNUSRAWRHpflalzpNS6YiVPAaRzKIxuT3-3bvmo0PfZtumc3VfmTEuJE9EFNPeNT26tGu8d1hme2d2yn1lFLIDvmyTZgd82Qlfn4j_JLRpVWuauqdj7D-5m2POIOJvi-yBS0ajb11Pfn0
CODEN ITCOB4
CitedBy_id crossref_primary_10_3390_s21155124
crossref_primary_10_1109_TMC_2024_3416312
crossref_primary_10_1109_TPDS_2022_3228733
crossref_primary_10_1007_s11227_023_05508_5
crossref_primary_10_1007_s11227_022_04466_8
crossref_primary_10_1016_j_comcom_2025_108262
crossref_primary_10_1016_j_parco_2024_103092
crossref_primary_10_1016_j_heliyon_2023_e23567
crossref_primary_10_1109_ACCESS_2025_3535085
crossref_primary_10_1109_MC_2021_3099211
crossref_primary_10_26599_BDMA_2022_9020046
crossref_primary_10_1109_TCC_2021_3062398
crossref_primary_10_1109_TMC_2025_3533591
crossref_primary_10_1109_TNET_2024_3441039
crossref_primary_10_1109_TNSE_2021_3083263
crossref_primary_10_1109_TPDS_2021_3051059
crossref_primary_10_1007_s11227_022_04422_6
crossref_primary_10_1109_JIOT_2022_3182394
crossref_primary_10_1109_JSAC_2021_3118402
crossref_primary_10_1002_ett_4962
crossref_primary_10_1155_2021_9446653
Cites_doi 10.1109/CVPR.2016.308
10.1145/2987550.2987586
10.1145/2391229.2391236
10.1145/2723372.2737792
10.1109/IPDPS.2018.00060
10.1109/TC.2019.2931716
10.14778/2732977.2733001
10.1109/ICDCS.2019.00028
10.1093/nsr/nwx018
10.1109/COMST.2018.2857922
10.1145/2987550.2987554
10.1145/1807167.1807184
10.1109/TBDATA.2015.2472014
10.1145/1048935.1050204
10.1145/3068335
10.1145/3187009.3177734
10.1145/3035918.3035933
10.1145/2623330.2623612
10.1145/3055399.3055448
10.1145/3267809.3275463
10.14778/1920841.1920931
10.1145/2640087.2644155
10.1145/2785956.2787481
10.1145/2391229.2391254
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2020.2974461
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 155
ExternalDocumentID 10_1109_TC_2020_2974461
9000921
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1003500
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20191381
  funderid: 10.13039/501100004608
– fundername: The General Research Fund of the Research Grants Council of Hong Kong
  grantid: PolyU 152221/19E
– fundername: Jiangsu Key Research and Development Program
  grantid: BE2019742
– fundername: National Natural Science Foundation of China
  grantid: 61872310; 61772286; 61872195; 61872240; 61832006; 61572262; 61802208
  funderid: 10.13039/501100001809
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-b9a12f9eb02bb0b63c1c0f417e349b46d15e67012d3cd15afcb7fac32f4506783
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597781200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sun Nov 30 05:17:11 EST 2025
Tue Nov 18 21:37:43 EST 2025
Sat Nov 29 01:35:41 EST 2025
Wed Aug 27 02:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-b9a12f9eb02bb0b63c1c0f417e349b46d15e67012d3cd15afcb7fac32f4506783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0085-1545
0000-0002-9099-2781
0000-0001-9831-2202
0000-0002-2052-638X
PQID 2469476351
PQPubID 85452
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TC_2020_2974461
crossref_primary_10_1109_TC_2020_2974461
proquest_journals_2469476351
ieee_primary_9000921
PublicationCentury 2000
PublicationDate 2021-Jan.-1
2021-1-1
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
abadi (ref4) 2016
ref18
(ref45) 0
(ref26) 0
ref46
dipietro (ref40) 2017; abs 1702 7805
ref48
ref42
hsieh (ref6) 2017
ref49
chen (ref15) 2016; abs 1604 981
ref8
ref7
dean (ref16) 2012
zinkevich (ref43) 2010
ref3
niu (ref44) 2011
ref5
ref34
ref37
krizhevsky (ref22) 2012
ref36
ref30
ref33
ref32
ananthanarayanan (ref14) 2013
li (ref2) 2014
ref1
wang (ref20) 2018
ref38
chilimbi (ref10) 2014
dipietro (ref39) 2017; 1702 7805
cui (ref9) 2014
(ref47) 0
ref24
stoica (ref31) 2017; abs 1712 5855
ref21
ref28
ref27
ref29
simonyan (ref23) 2014
ester (ref41) 1996
ananthanarayanan (ref17) 2010
zhang (ref19) 2017
ho (ref11) 2013
ousterhout (ref35) 2015
(ref25) 0
References_xml – ident: ref24
  doi: 10.1109/CVPR.2016.308
– start-page: 1106
  year: 2012
  ident: ref22
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 693
  year: 2011
  ident: ref44
  article-title: HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proc Int Conf Neural Inf Process
– year: 2014
  ident: ref23
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– start-page: 571
  year: 2014
  ident: ref10
  article-title: Project adam: Building an efficient and scalable deep learning training system
  publication-title: Proc 11th USENIX Conf Operating Syst Des Implementation
– ident: ref18
  doi: 10.1145/2987550.2987586
– ident: ref32
  doi: 10.1145/2391229.2391236
– ident: ref36
  doi: 10.1145/2723372.2737792
– volume: 1702 7805
  year: 2017
  ident: ref39
  article-title: Analyzing and exploiting NARX recurrent neural networks for long-term dependencies
– start-page: 185
  year: 2013
  ident: ref14
  article-title: Effective straggler mitigation: Attack of the clones
  publication-title: Proc 10th USENIX Conf Netw Syst Des Implementation
– volume: abs 1712 5855
  year: 2017
  ident: ref31
  article-title: A berkeley view of systems challenges for AI
  publication-title: CoRR
– start-page: 181
  year: 2017
  ident: ref19
  article-title: Poseidon: An efficient communication architecture for distributed deep learning on GPU clusters
  publication-title: Proc USENIX Conf USENIX Annu Tech Conf
– volume: abs 1702 7805
  year: 2017
  ident: ref40
  article-title: Revisiting NARX recurrent neural networks for long-term dependencies
  publication-title: CoRR
– ident: ref30
  doi: 10.1109/IPDPS.2018.00060
– ident: ref46
  doi: 10.1109/TC.2019.2931716
– start-page: 293
  year: 2015
  ident: ref35
  article-title: Making sense of performance in data analytics frameworks
  publication-title: Proc 12th USENIX Conf Netw Syst Des Implementation
– ident: ref42
  doi: 10.14778/2732977.2733001
– ident: ref49
  doi: 10.1109/ICDCS.2019.00028
– ident: ref27
  doi: 10.1093/nsr/nwx018
– start-page: 1223
  year: 2013
  ident: ref11
  article-title: More effective distributed ml via a stale synchronous parallel parameter server
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 265
  year: 2010
  ident: ref17
  article-title: Reining in the outliers in map-reduce clusters using mantri
  publication-title: Proc USENIX Conf Operating Syst Des Implementation
– ident: ref7
  doi: 10.1109/COMST.2018.2857922
– ident: ref13
  doi: 10.1145/2987550.2987554
– ident: ref21
  doi: 10.1145/1807167.1807184
– start-page: 19
  year: 2014
  ident: ref2
  article-title: Communication efficient distributed machine learning with the parameter server
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref3
  doi: 10.1109/TBDATA.2015.2472014
– ident: ref48
  doi: 10.1145/1048935.1050204
– ident: ref37
  doi: 10.1145/3068335
– ident: ref5
  doi: 10.1145/3187009.3177734
– start-page: 265
  year: 2016
  ident: ref4
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc USENIX Conf Operating Syst Des Implementation
– ident: ref8
  doi: 10.1145/3035918.3035933
– start-page: 2595
  year: 2010
  ident: ref43
  article-title: Parallelized stochastic gradient descent
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref28
  doi: 10.1145/2623330.2623612
– ident: ref29
  doi: 10.1145/3055399.3055448
– start-page: 629
  year: 2017
  ident: ref6
  article-title: Gaia: Geo-distributed machine learning approaching LAN speeds
  publication-title: Proc 10th USENIX Conf Netw Syst Des Implementation
– year: 0
  ident: ref25
  article-title: Fashion MNIST dataset
– year: 0
  ident: ref26
  article-title: CIFAR-10 dataset
– ident: ref38
  doi: 10.1145/3267809.3275463
– ident: ref34
  doi: 10.14778/1920841.1920931
– year: 0
  ident: ref47
  article-title: Microsoft Azure
– start-page: 226
  year: 1996
  ident: ref41
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
– ident: ref1
  doi: 10.1145/2640087.2644155
– ident: ref12
  doi: 10.1145/2785956.2787481
– ident: ref33
  doi: 10.1145/2391229.2391254
– start-page: 1223
  year: 2012
  ident: ref16
  article-title: Large scale distributed deep networks
  publication-title: Proc Int Conf Neural Inf Process
– volume: abs 1604 981
  year: 2016
  ident: ref15
  article-title: Revisiting distributed synchronous SGD
  publication-title: CoRR
– start-page: 4243
  year: 2018
  ident: ref20
  article-title: BML: A high-performance, low-cost gradient synchronization algorithm for DML training
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 37
  year: 2014
  ident: ref9
  article-title: Exploiting bounded staleness to speed up big data analytics
  publication-title: Proc USENIX Conf USENIX Annu Tech Conf
– year: 0
  ident: ref45
  article-title: PyTorch
SSID ssj0006209
Score 2.4470477
Snippet The parameter server architecture has shown promising performance advantages when handling deep learning (DL) applications. One crucial issue in this regard is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms Algorithms
Computation
Computational modeling
Computer architecture
Convergence
Design parameters
Distributed deep learning
Guidelines
Heterogeneity
heterogeneous environment
Inspection
Machine learning
Parallel processing
parameter server
Servers
straggler
Synchronism
Task analysis
Training
Title Falcon: Addressing Stragglers in Heterogeneous Parameter Server Via Multiple Parallelism
URI https://ieeexplore.ieee.org/document/9000921
https://www.proquest.com/docview/2469476351
Volume 70
WOSCitedRecordID wos000597781200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4B4lAO5ZEiAgH50EMP3cSvrDG3KCLiAuKQotxWfkaRthuUR38_tuNEVC0HbpZ2vFrt5_HM2N_MAHz3Xt1q5mlhFbYFJ1YWmgtZGCNEMFBOYaxSswnx9HQ7mcjnPfi5y4VxziXymevGYbrLt3OzjkdlvdjgUsas8X0hyk2u1m7XLbd0DhIUmHGcy_gQLHvjYYgDKe7S4DvzkvxlgVJLlX_24WRcRsef-6wT-JqdSDTYoH4Ke645g-NtgwaU9fUMjt5VG2zBZKTi7dMdGlib2K_NFMXitNNpHXxANGvQQ-TGzMOScvP1Ej2rSNxKL4y0yAV6mSn0mAmI6Wldu3q2_P0Nfo3ux8OHIjdWKEyIr1aFlopQL53GVGusS2aIwZ4T4RiXmpeW9F0pgumyzISx8kYLrwyjnvejdWPncNDMG3cBKLhHmkoaxKXk3EtpWfSpJCOs75kmbehuf3ZlctXx2PyirlL0gWU1HlYRnSqj04Yfuwmvm4IbH4u2Ihg7sYxDGzpbNKuskMuK8lLyWHyPXP5_1hV8oZGukk5XOnCwWqzdNRyaP6vZcnGT1tobAKbQ3w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hQKI98CxqIKU-cODQDX5lF_eGokZBDRGHgHJb-RlFWjYoD34_tuNEVKWH3izteLXaz-OZsb-ZAbh0Tt4o5mhmJDYZJ0Zkihci07oovIGyEmMZm00Ug8HNaCQetuDHJhfGWhvJZ7YVhvEu30z1MhyVXYcGlyJkje-0Oad4la212XfzNaGDeBVmHKdCPgSL62HHR4IUt6j3nnlO_rBBsanKXztxNC_dg__7sEPYT24kul3hfgRbtj6Gg3WLBpQ09hg-v6s3eAKjrgz3Tz_RrTGR_1qPUShPOx5X3gtEkxr1Ajtm6heVnS7n6EEG6lZ8YSBGztDTRKL7REGMT6vKVpP58xd47P4adnpZaq2QaR9hLTIlJKFOWIWpUljlTBONHSeFZVwonhvStnnhjZdh2o-l06pwUjPqeDvYN3YK2_W0tl8BeQdJUUG9uBCcOyEMC16VYIS1HVOkAa31zy51qjse2l9UZYw_sCiHnTKgUyZ0GnC1mfCyKrnxb9GTAMZGLOHQgOYazTKp5LykPBc8lN8jZx_P-g57veF9v-zfDX6fwycayCvxrKUJ24vZ0n6DXf26mMxnF3HdvQEIf9Qm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Falcon%3A+Addressing+Stragglers+in+Heterogeneous+Parameter+Server+Via+Multiple+Parallelism&rft.jtitle=IEEE+transactions+on+computers&rft.au=Zhou%2C+Qihua&rft.au=Guo%2C+Song&rft.au=Lu%2C+Haodong&rft.au=Li%2C+Li&rft.date=2021-01-01&rft.pub=IEEE&rft.issn=0018-9340&rft.volume=70&rft.issue=1&rft.spage=139&rft.epage=155&rft_id=info:doi/10.1109%2FTC.2020.2974461&rft.externalDocID=9000921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon