Tactile Object Recognition With Recurrent Neural Networks Through a Perceptive Soft Gripper
Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The wo...
Gespeichert in:
| Veröffentlicht in: | IEEE robotics and automation letters Jg. 10; H. 7; S. 7023 - 7030 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The work focuses on soft grippers, which facilitate adaptation to objects of varying shapes and sizes thanks to passive finger compliance. Our model successfully identifies over sixteen heterogeneous objects. Findings underscore the significance of sensory multi-modality over single. We highlight how spatial distribution and sensory signal dynamics influence overall estimation accuracy, and what the minimal grasp set is to achieve certain recognition. |
|---|---|
| AbstractList | Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The work focuses on soft grippers, which facilitate adaptation to objects of varying shapes and sizes thanks to passive finger compliance. Our model successfully identifies over sixteen heterogeneous objects. Findings underscore the significance of sensory multi-modality over single. We highlight how spatial distribution and sensory signal dynamics influence overall estimation accuracy, and what the minimal grasp set is to achieve certain recognition. |
| Author | Amiri, Mahmood Falotico, Egidio Pelliccia, David Hosseinzadeh, Matin Donato, Enrico |
| Author_xml | – sequence: 1 givenname: Enrico orcidid: 0000-0002-8844-5279 surname: Donato fullname: Donato, Enrico email: enrico.donato@santannapisa.it organization: BRAin-Inspired Robotics (BRAIR) Lab, The BioRobotics Institute, Pontedera (PI), Italy – sequence: 2 givenname: David orcidid: 0009-0001-3791-168X surname: Pelliccia fullname: Pelliccia, David organization: Department of Computer Science, University of Pisa, Pisa, Italy – sequence: 3 givenname: Matin orcidid: 0009-0004-7521-895X surname: Hosseinzadeh fullname: Hosseinzadeh, Matin organization: Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran – sequence: 4 givenname: Mahmood orcidid: 0000-0003-1720-0060 surname: Amiri fullname: Amiri, Mahmood organization: Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran – sequence: 5 givenname: Egidio orcidid: 0000-0001-8060-8080 surname: Falotico fullname: Falotico, Egidio organization: BRAin-Inspired Robotics (BRAIR) Lab, The BioRobotics Institute, Pontedera (PI), Italy |
| BookMark | eNpNkM1LAzEQxYNUsNbePXgIeN41H5vs7rEUrUKxUisePIT9mLSpdbMmWcX_3i0t6OkNw3szvN85GjS2AYQuKYkpJfnNfDmJGWEi5iJlCWMnaMh4mkY8lXLwbz5DY--3hBAqWMpzMURvq6IKZgd4UW6hCngJlV03Jhjb4FcTNvtF5xw0AT9C54pdL-HbunePVxtnu_UGF_gJXAVtMF-An60OeOZM24K7QKe62HkYH3WEXu5uV9P7aL6YPUwn86hiWR6iIksYVFDkpCaCMQpUawmZ7PuwhJeZ0FlNSklLqVmaQF2D4DWFRJecl5TXfISuD3dbZz878EFtbeea_qXijIpcSEFk7yIHV-Ws9w60ap35KNyPokTtKaqeotpTVEeKfeTqEDEA8GenhOQ0E_wX6zFvwg |
| CODEN | IRALC6 |
| Cites_doi | 10.1109/LRA.2021.3098803 10.1089/soro.2021.0056 10.1007/978-1-4302-5990-9_3 10.1002/advs.201800541 10.1007/s10462-020-09838-1 10.1109/tnnls.2024.3446171 10.1109/MCS.2023.3253421 10.1109/ROBIO.2013.6739518 10.1007/s12369-021-00761-1 10.1007/978-3-540-39964-3_62 10.1016/j.mechatronics.2017.11.002 10.1007/s43154-021-00065-2 10.1089/soro.2020.0172 10.1089/soro.2021.0105 10.1016/s0169-7161(04)24011-1 10.1109/LRA.2017.2716445 10.1002/adma.201707035 10.1002/aisy.202400344 10.3389/frobt.2021.619390 10.1126/scirobotics.aav1488 10.1109/TASE.2022.3228255 10.1109/JSEN.2023.3337419 10.1038/s41467-024-50616-2 10.1109/LRA.2022.3151261 10.1109/ICRA.2012.6224872 10.1089/soro.2020.0190 10.1038/s41467-024-54327-6 10.1007/978-981-15-6876-3_16 10.1109/ICRA48506.2021.9561287 10.1109/IROS51168.2021.9636059 10.1016/j.eswa.2019.05.028 10.1126/scirobotics.aax5425 10.1109/JSEN.2015.2432127 10.1177/17298806221095974 10.1109/ICRA.2015.7139744 10.1007/0-387-25465-X_9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2025.3572422 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore : Open Access Journals and Conferences [open access] IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 7030 |
| ExternalDocumentID | 10_1109_LRA_2025_3572422 11009185 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: FONDAZIONE PISA - RICERCA SCIENTIFICA E TECNOLOGICA grantid: J83C24000530007 – fundername: European Union's Horizon 2020 Research grantid: 863212 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD ABAZT JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c289t-a842ecea90d05221e1ff6e86025243b85f8d0b61b6f274edde53d1e4fb33b13d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502469600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sat Nov 22 13:41:01 EST 2025 Thu Nov 27 00:49:32 EST 2025 Wed Nov 26 07:22:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c289t-a842ecea90d05221e1ff6e86025243b85f8d0b61b6f274edde53d1e4fb33b13d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8844-5279 0009-0001-3791-168X 0000-0001-8060-8080 0009-0004-7521-895X 0000-0003-1720-0060 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11009185 |
| PQID | 3215956506 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_11009185 crossref_primary_10_1109_LRA_2025_3572422 proquest_journals_3215956506 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 (ref38) 2023 ref1 ref17 ref16 ref19 ref18 Donato (ref2) 2025 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref7 doi: 10.1109/LRA.2021.3098803 – ident: ref18 doi: 10.1089/soro.2021.0056 – ident: ref32 doi: 10.1007/978-1-4302-5990-9_3 – ident: ref15 doi: 10.1002/advs.201800541 – ident: ref33 doi: 10.1007/s10462-020-09838-1 – ident: ref13 doi: 10.1109/tnnls.2024.3446171 – ident: ref8 doi: 10.1109/MCS.2023.3253421 – ident: ref23 doi: 10.1109/ROBIO.2013.6739518 – ident: ref3 doi: 10.1007/s12369-021-00761-1 – ident: ref31 doi: 10.1007/978-3-540-39964-3_62 – ident: ref21 doi: 10.1016/j.mechatronics.2017.11.002 – ident: ref17 doi: 10.1007/s43154-021-00065-2 – ident: ref14 doi: 10.1089/soro.2020.0172 – ident: ref25 doi: 10.1089/soro.2021.0105 – ident: ref34 doi: 10.1016/s0169-7161(04)24011-1 – ident: ref6 doi: 10.1109/LRA.2017.2716445 – ident: ref4 doi: 10.1002/adma.201707035 – ident: ref9 doi: 10.1002/aisy.202400344 – ident: ref10 doi: 10.3389/frobt.2021.619390 – year: 2025 ident: ref2 article-title: Sensorimotor control strategies for tactile robotics – ident: ref12 doi: 10.1126/scirobotics.aav1488 – ident: ref11 doi: 10.1109/TASE.2022.3228255 – ident: ref16 doi: 10.1109/JSEN.2023.3337419 – ident: ref22 doi: 10.1038/s41467-024-50616-2 – ident: ref28 doi: 10.1109/LRA.2022.3151261 – ident: ref24 doi: 10.1109/ICRA.2012.6224872 – ident: ref19 doi: 10.1089/soro.2020.0190 – year: 2023 ident: ref38 article-title: Product catalogue – ident: ref20 doi: 10.1038/s41467-024-54327-6 – ident: ref36 doi: 10.1007/978-981-15-6876-3_16 – ident: ref29 doi: 10.1109/ICRA48506.2021.9561287 – ident: ref37 doi: 10.1109/IROS51168.2021.9636059 – ident: ref35 doi: 10.1016/j.eswa.2019.05.028 – ident: ref5 doi: 10.1126/scirobotics.aax5425 – ident: ref26 doi: 10.1109/JSEN.2015.2432127 – ident: ref1 doi: 10.1177/17298806221095974 – ident: ref27 doi: 10.1109/ICRA.2015.7139744 – ident: ref30 doi: 10.1007/0-387-25465-X_9 |
| SSID | ssj0001527395 |
| Score | 2.2963276 |
| Snippet | Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7023 |
| SubjectTerms | Classification algorithms Fingers Grippers Long short term memory multi-modal integration Object recognition Recurrent neural networks Robot sensing systems Sensors soft gripper Soft robotics Spatial distribution Tactile sensing Training |
| Title | Tactile Object Recognition With Recurrent Neural Networks Through a Perceptive Soft Gripper |
| URI | https://ieeexplore.ieee.org/document/11009185 https://www.proquest.com/docview/3215956506 |
| Volume | 10 |
| WOSCitedRecordID | wos001502469600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEG3ohCQR5YGAJJHNvxWCEeA5QKikBiiOL4LCqhFrWlI7-dc5KqIMTAFkWJFd3n3Mt33wEcW0dmzApBCOgiSJSUgXE2DmQuXa5CYxXPy2ETqttNn591r25WL3thELEsPsNTf1me5dtR8eFTZWee3kyTgWlAQylZNWstEiqeSkyL-VFkqM9u7jsUAMbilAtFlij-YXrKWSq_FHBpVS7X__k9G7BWu4-sU-G9CUs43ILVb6SC2_DS970Kb8jujM-xsPt5idBoyJ4G01d_oyJlYp6Zg1brVqXgE9avhvawnPXqepcZsgdS1OyKdMs7jnfg8fKif34d1CMUgoIiqWmQp0mMBeY6tCF5WhFGzkn0c6dEnHCTCpfa0MjISEfhKZKuE9xGmDjDuYm45bvQHI6GuAeMIE2l09zpkCfGOI2e6s8pCvhyiYlqwclcutl7xZSRlRFGqDNCIvNIZDUSLdjx0lw8VwuyBe05Hln9L00yTl4JRXEilPt_vHYAK371qoq2Dc3p-AMPYbmYTQeT8RE0bj8vjsrN8gUlc74B |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDzxXXZw5ePFTTpkmbo4gvXFfRFQUPpWkmKMiu7MPf76TtoiIevJXStGW-dl6Z-QZg3zoyY1ZKQkAXQZwoFRhno0DlyuUJNzYReTlsIul00qcnfVs3q5e9MIhYFp_hoT8s9_Jtvxj7VNmRpzfTZGCmYUbGccSrdq2vlIonE9NyshnJ9VH77phCwEgeCpmQLYp-GJ9ymsovFVzalbOlf77RMizWDiQ7rhBfgSnsrcLCN1rBNXju-m6FN2Q3xmdZ2N2kSKjfY4-voxd_oqJlYp6bg-7WqYrBh6xbje1hObutK14-kN2TqmbnpF3ecdCEh7PT7slFUA9RCAqKpUZBnsYRFphrbjn5WiGGzin0k6dkFAuTSpdablRolKMAFUnbSWFDjJ0RwoTCinVo9Po93ABGoKbKaeE0F7ExTqMn-3MJhXy5wjhpwcFEutl7xZWRlTEG1xkhkXkkshqJFjS9NL-uqwXZgu0JHln9Nw0zQX4JxXGSq80_lu3B3EX3up21LztXWzDvn1TV1G5DYzQY4w7MFh-j1-Fgt_xkPgGxj8AX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tactile+Object+Recognition+With+Recurrent+Neural+Networks+Through+a+Perceptive+Soft+Gripper&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Donato%2C+Enrico&rft.au=Pelliccia%2C+David&rft.au=Hosseinzadeh%2C+Matin&rft.au=Amiri%2C+Mahmood&rft.date=2025-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=10&rft.issue=7&rft.spage=7023&rft.epage=7030&rft_id=info:doi/10.1109%2FLRA.2025.3572422&rft.externalDocID=11009185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |