Tactile Object Recognition With Recurrent Neural Networks Through a Perceptive Soft Gripper

Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The wo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 10; číslo 7; s. 7023 - 7030
Hlavní autoři: Donato, Enrico, Pelliccia, David, Hosseinzadeh, Matin, Amiri, Mahmood, Falotico, Egidio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The work focuses on soft grippers, which facilitate adaptation to objects of varying shapes and sizes thanks to passive finger compliance. Our model successfully identifies over sixteen heterogeneous objects. Findings underscore the significance of sensory multi-modality over single. We highlight how spatial distribution and sensory signal dynamics influence overall estimation accuracy, and what the minimal grasp set is to achieve certain recognition.
AbstractList Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The work focuses on soft grippers, which facilitate adaptation to objects of varying shapes and sizes thanks to passive finger compliance. Our model successfully identifies over sixteen heterogeneous objects. Findings underscore the significance of sensory multi-modality over single. We highlight how spatial distribution and sensory signal dynamics influence overall estimation accuracy, and what the minimal grasp set is to achieve certain recognition.
Author Amiri, Mahmood
Falotico, Egidio
Pelliccia, David
Hosseinzadeh, Matin
Donato, Enrico
Author_xml – sequence: 1
  givenname: Enrico
  orcidid: 0000-0002-8844-5279
  surname: Donato
  fullname: Donato, Enrico
  email: enrico.donato@santannapisa.it
  organization: BRAin-Inspired Robotics (BRAIR) Lab, The BioRobotics Institute, Pontedera (PI), Italy
– sequence: 2
  givenname: David
  orcidid: 0009-0001-3791-168X
  surname: Pelliccia
  fullname: Pelliccia, David
  organization: Department of Computer Science, University of Pisa, Pisa, Italy
– sequence: 3
  givenname: Matin
  orcidid: 0009-0004-7521-895X
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Matin
  organization: Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
– sequence: 4
  givenname: Mahmood
  orcidid: 0000-0003-1720-0060
  surname: Amiri
  fullname: Amiri, Mahmood
  organization: Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
– sequence: 5
  givenname: Egidio
  orcidid: 0000-0001-8060-8080
  surname: Falotico
  fullname: Falotico, Egidio
  organization: BRAin-Inspired Robotics (BRAIR) Lab, The BioRobotics Institute, Pontedera (PI), Italy
BookMark eNpNkM1LAzEQxYNUsNbePXgIeN41H5vs7rEUrUKxUisePIT9mLSpdbMmWcX_3i0t6OkNw3szvN85GjS2AYQuKYkpJfnNfDmJGWEi5iJlCWMnaMh4mkY8lXLwbz5DY--3hBAqWMpzMURvq6IKZgd4UW6hCngJlV03Jhjb4FcTNvtF5xw0AT9C54pdL-HbunePVxtnu_UGF_gJXAVtMF-An60OeOZM24K7QKe62HkYH3WEXu5uV9P7aL6YPUwn86hiWR6iIksYVFDkpCaCMQpUawmZ7PuwhJeZ0FlNSklLqVmaQF2D4DWFRJecl5TXfISuD3dbZz878EFtbeea_qXijIpcSEFk7yIHV-Ws9w60ap35KNyPokTtKaqeotpTVEeKfeTqEDEA8GenhOQ0E_wX6zFvwg
CODEN IRALC6
Cites_doi 10.1109/LRA.2021.3098803
10.1089/soro.2021.0056
10.1007/978-1-4302-5990-9_3
10.1002/advs.201800541
10.1007/s10462-020-09838-1
10.1109/tnnls.2024.3446171
10.1109/MCS.2023.3253421
10.1109/ROBIO.2013.6739518
10.1007/s12369-021-00761-1
10.1007/978-3-540-39964-3_62
10.1016/j.mechatronics.2017.11.002
10.1007/s43154-021-00065-2
10.1089/soro.2020.0172
10.1089/soro.2021.0105
10.1016/s0169-7161(04)24011-1
10.1109/LRA.2017.2716445
10.1002/adma.201707035
10.1002/aisy.202400344
10.3389/frobt.2021.619390
10.1126/scirobotics.aav1488
10.1109/TASE.2022.3228255
10.1109/JSEN.2023.3337419
10.1038/s41467-024-50616-2
10.1109/LRA.2022.3151261
10.1109/ICRA.2012.6224872
10.1089/soro.2020.0190
10.1038/s41467-024-54327-6
10.1007/978-981-15-6876-3_16
10.1109/ICRA48506.2021.9561287
10.1109/IROS51168.2021.9636059
10.1016/j.eswa.2019.05.028
10.1126/scirobotics.aax5425
10.1109/JSEN.2015.2432127
10.1177/17298806221095974
10.1109/ICRA.2015.7139744
10.1007/0-387-25465-X_9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2025.3572422
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 7030
ExternalDocumentID 10_1109_LRA_2025_3572422
11009185
Genre orig-research
GrantInformation_xml – fundername: FONDAZIONE PISA - RICERCA SCIENTIFICA E TECNOLOGICA
  grantid: J83C24000530007
– fundername: European Union's Horizon 2020 Research
  grantid: 863212
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-a842ecea90d05221e1ff6e86025243b85f8d0b61b6f274edde53d1e4fb33b13d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502469600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 22 13:41:01 EST 2025
Thu Nov 27 00:49:32 EST 2025
Wed Nov 26 07:22:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-a842ecea90d05221e1ff6e86025243b85f8d0b61b6f274edde53d1e4fb33b13d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8844-5279
0009-0001-3791-168X
0000-0001-8060-8080
0009-0004-7521-895X
0000-0003-1720-0060
OpenAccessLink https://ieeexplore.ieee.org/document/11009185
PQID 3215956506
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_11009185
crossref_primary_10_1109_LRA_2025_3572422
proquest_journals_3215956506
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
(ref38) 2023
ref1
ref17
ref16
ref19
ref18
Donato (ref2) 2025
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/LRA.2021.3098803
– ident: ref18
  doi: 10.1089/soro.2021.0056
– ident: ref32
  doi: 10.1007/978-1-4302-5990-9_3
– ident: ref15
  doi: 10.1002/advs.201800541
– ident: ref33
  doi: 10.1007/s10462-020-09838-1
– ident: ref13
  doi: 10.1109/tnnls.2024.3446171
– ident: ref8
  doi: 10.1109/MCS.2023.3253421
– ident: ref23
  doi: 10.1109/ROBIO.2013.6739518
– ident: ref3
  doi: 10.1007/s12369-021-00761-1
– ident: ref31
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref21
  doi: 10.1016/j.mechatronics.2017.11.002
– ident: ref17
  doi: 10.1007/s43154-021-00065-2
– ident: ref14
  doi: 10.1089/soro.2020.0172
– ident: ref25
  doi: 10.1089/soro.2021.0105
– ident: ref34
  doi: 10.1016/s0169-7161(04)24011-1
– ident: ref6
  doi: 10.1109/LRA.2017.2716445
– ident: ref4
  doi: 10.1002/adma.201707035
– ident: ref9
  doi: 10.1002/aisy.202400344
– ident: ref10
  doi: 10.3389/frobt.2021.619390
– year: 2025
  ident: ref2
  article-title: Sensorimotor control strategies for tactile robotics
– ident: ref12
  doi: 10.1126/scirobotics.aav1488
– ident: ref11
  doi: 10.1109/TASE.2022.3228255
– ident: ref16
  doi: 10.1109/JSEN.2023.3337419
– ident: ref22
  doi: 10.1038/s41467-024-50616-2
– ident: ref28
  doi: 10.1109/LRA.2022.3151261
– ident: ref24
  doi: 10.1109/ICRA.2012.6224872
– ident: ref19
  doi: 10.1089/soro.2020.0190
– year: 2023
  ident: ref38
  article-title: Product catalogue
– ident: ref20
  doi: 10.1038/s41467-024-54327-6
– ident: ref36
  doi: 10.1007/978-981-15-6876-3_16
– ident: ref29
  doi: 10.1109/ICRA48506.2021.9561287
– ident: ref37
  doi: 10.1109/IROS51168.2021.9636059
– ident: ref35
  doi: 10.1016/j.eswa.2019.05.028
– ident: ref5
  doi: 10.1126/scirobotics.aax5425
– ident: ref26
  doi: 10.1109/JSEN.2015.2432127
– ident: ref1
  doi: 10.1177/17298806221095974
– ident: ref27
  doi: 10.1109/ICRA.2015.7139744
– ident: ref30
  doi: 10.1007/0-387-25465-X_9
SSID ssj0001527395
Score 2.2963276
Snippet Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7023
SubjectTerms Classification algorithms
Fingers
Grippers
Long short term memory
multi-modal integration
Object recognition
Recurrent neural networks
Robot sensing systems
Sensors
soft gripper
Soft robotics
Spatial distribution
Tactile sensing
Training
Title Tactile Object Recognition With Recurrent Neural Networks Through a Perceptive Soft Gripper
URI https://ieeexplore.ieee.org/document/11009185
https://www.proquest.com/docview/3215956506
Volume 10
WOSCitedRecordID wos001502469600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGnkUUSuWBhSFtnMROPFaohQFKVYqoxBDFyVlUQm3V18hvx3YSFYQY2KIotqK75O6-8913ANeUGrcZUIemjNnUjROlgXCQR8JTXERSKTtsIuz3o_FYDIpmddsLg4i2-Axb5tKe5WezdG1SZW1Dbya0g6lAJQx53qy1TagYKjHByqNIV7Qfhh0NAD3W8lmoPZH3w_XYWSq_DLD1Kr3Df77PERwU4SPp5Po-hh2cnsD-N1LBU3gbmV6FDyRP0uRYyLAsEZpNyetk9W5u5KRMxDBz6N36eSn4kozyoT0kIYOi3mWD5FkbanKnbcscFzV46XVHt_dOMULBSTWSWjlJFHiYYiLczNWRFkWqFEczd4p5gS8jpqLMlZxKrjQ8RW3rmJ9RDJT0fUn9zD-D6nQ2xXMgoZKY6DVKJKnGkEqoLEtdgTIUnCnG63BTSjee50wZsUUYroi1JmKjibjQRB1qRprb5wpB1qFR6iMu_qVl7OuoRKM45vKLP5Zdwp7ZPa-ibUB1tVjjFeymm9VkuWhC5fGz27QfyxdOvr4f
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1oNVEPftZYrboHLx6oLLDAHhtjrbFiU2ts4oGwMBubmLZpaX-_uwtNNcaDN0JYIDMwM2925g3AFaXabXrUoiljJnVjhanHLfRD7kifh0JKM2wiiKJwMODdslnd9MIgoik-w4Y-NHv52Tid61TZjaY348rBrMMG8zzHLtq1VikVTSbG2XIz0uY3nV5TQUCHNVwWKF_k_HA-ZprKLxNs_Epr759vtA-7ZQBJmoXGD2ANR4ew841W8Aje-7pb4RPJs9BZFtJbFgmNR-RtmH_oEwUtE9HcHOpuUVEMPiP9YmwPSUi3rHhZIHlRpprcK-sywWkVXlt3_du2VQ5RsFKFpXIrCT0HU0y4ndkq1qJIpfRRT55ijueKkMkws4VPhS8VQEVl7ZibUfSkcF1B3cw9hspoPMITIIEUmKg1kiepQpGSyyxLbY4i4D6TzK_B9VK68aTgyogNxrB5rDQRa03EpSZqUNXSXF1XCrIG9aU-4vJvmsWuiksUjmO2f_rHskvYavefOnHnIXo8g239pKKmtg6VfDrHc9hMF_lwNr0wn8wX2XjANQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tactile+Object+Recognition+With+Recurrent+Neural+Networks+Through+a+Perceptive+Soft+Gripper&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Donato%2C+Enrico&rft.au=Pelliccia%2C+David&rft.au=Hosseinzadeh%2C+Matin&rft.au=Amiri%2C+Mahmood&rft.date=2025-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=7&rft.spage=7023&rft.epage=7030&rft_id=info:doi/10.1109%2FLRA.2025.3572422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3572422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon