Guest Editorial Introduction to the Special Issue on Anomaly Detection in Emerging Data-Driven Applications: Theory, Algorithms, and Applications

We are delighted to present this special issue on Anomaly Detection in Emerging Data-Driven Applications: Theory, Algorithms, and Applications. Anomaly detection plays an important part of knowledge and data engineering, such as cybersecurity, fintech, healthcare, public security and AI safety. Howe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 35; číslo 12; s. 11982 - 11983
Hlavní autoři: Li, Jianxin, He, Lifang, Peng, Hao, Cui, Peng, Aggarwal, Charu C., Yu, Philip S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We are delighted to present this special issue on Anomaly Detection in Emerging Data-Driven Applications: Theory, Algorithms, and Applications. Anomaly detection plays an important part of knowledge and data engineering, such as cybersecurity, fintech, healthcare, public security and AI safety. However, large amounts of data have been generated through different types of objects, and it brings new challenges for anomaly detection research. The purpose of this special issue is to provide a forum for researchers and practitioners to present their latest research findings and engineering experiences in the theoretical foundations, empirical studies, and novel applications.
Bibliografie:SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2023.3301582