A Stochastic Computational Multi-Layer Perceptron with Backward Propagation

Stochastic computation has recently been proposed for implementing artificial neural networks with reduced hardware and power consumption, but at a decreased accuracy and processing speed. Most existing implementations are based on pre-training such that the weights are predetermined for neurons at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computers Ročník 67; číslo 9; s. 1273 - 1286
Hlavní autoři: Yidong Liu, Siting Liu, Yanzhi Wang, Lombardi, Fabrizio, Jie Han
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9340, 1557-9956
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stochastic computation has recently been proposed for implementing artificial neural networks with reduced hardware and power consumption, but at a decreased accuracy and processing speed. Most existing implementations are based on pre-training such that the weights are predetermined for neurons at different layers, thus these implementations lack the ability to update the values of the network parameters. In this paper, a stochastic computational multi-layer perceptron (SC-MLP) is proposed by implementing the backward propagation algorithm for updating the layer weights. Using extended stochastic logic (ESL), a reconfigurable stochastic computational activation unit (SCAU) is designed to implement different types of activation functions such as the tanh and the rectifier function. A triple modular redundancy (TMR) technique is employed for reducing the random fluctuations in stochastic computation. A probability estimator (PE) and a divider based on the TMR and a binary search algorithm are further proposed with progressive precision for reducing the required stochastic sequence length. Therefore, the latency and energy consumption of the SC-MLP are significantly reduced. The simulation results show that the proposed design is capable of implementing both the training and inference processes. For the classification of nonlinearly separable patterns, at a slight loss of accuracy by 1.32-1.34 percent, the proposed design requires only 28.5-30.1 percent of the area and 18.9-23.9 percent of the energy consumption incurred by a design using floating point arithmetic. Compared to a fixed-point implementation, the SC-MLP consumes a smaller area (40.7-45.5 percent) and a lower energy consumption (38.0-51.0 percent) with a similar processing speed and a slight drop of accuracy by 0.15-0.33 percent. The area and the energy consumption of the proposed design is from 80.7-87.1 percent and from 71.9-93.1 percent, respectively, of a binarized neural network (BNN), with a similar accuracy.
AbstractList Stochastic computation has recently been proposed for implementing artificial neural networks with reduced hardware and power consumption, but at a decreased accuracy and processing speed. Most existing implementations are based on pre-training such that the weights are predetermined for neurons at different layers, thus these implementations lack the ability to update the values of the network parameters. In this paper, a stochastic computational multi-layer perceptron (SC-MLP) is proposed by implementing the backward propagation algorithm for updating the layer weights. Using extended stochastic logic (ESL), a reconfigurable stochastic computational activation unit (SCAU) is designed to implement different types of activation functions such as the tanh and the rectifier function. A triple modular redundancy (TMR) technique is employed for reducing the random fluctuations in stochastic computation. A probability estimator (PE) and a divider based on the TMR and a binary search algorithm are further proposed with progressive precision for reducing the required stochastic sequence length. Therefore, the latency and energy consumption of the SC-MLP are significantly reduced. The simulation results show that the proposed design is capable of implementing both the training and inference processes. For the classification of nonlinearly separable patterns, at a slight loss of accuracy by 1.32-1.34 percent, the proposed design requires only 28.5-30.1 percent of the area and 18.9-23.9 percent of the energy consumption incurred by a design using floating point arithmetic. Compared to a fixed-point implementation, the SC-MLP consumes a smaller area (40.7-45.5 percent) and a lower energy consumption (38.0-51.0 percent) with a similar processing speed and a slight drop of accuracy by 0.15-0.33 percent. The area and the energy consumption of the proposed design is from 80.7-87.1 percent and from 71.9-93.1 percent, respectively, of a binarized neural network (BNN), with a similar accuracy.
Author Yanzhi Wang
Jie Han
Siting Liu
Lombardi, Fabrizio
Yidong Liu
Author_xml – sequence: 1
  surname: Yidong Liu
  fullname: Yidong Liu
  email: yidong1@ualberta.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
– sequence: 2
  surname: Siting Liu
  fullname: Siting Liu
  email: siting2@ualberta.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
– sequence: 3
  surname: Yanzhi Wang
  fullname: Yanzhi Wang
  email: ywang393@syr.edu
  organization: Electr. Eng. & Comput. Sci. Dept., Syracuse Univ., Syracuse, NY, USA
– sequence: 4
  givenname: Fabrizio
  surname: Lombardi
  fullname: Lombardi, Fabrizio
  email: lombardi@ece.neu.edu
  organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
– sequence: 5
  surname: Jie Han
  fullname: Jie Han
  email: jhan8@ualberta.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
BookMark eNp9kD1PwzAQhi1UJNrCzMASiTnt2U7ieCwRX6KISpQ5chyHuqRxsB1V_fekBDEwoBtuuPe5Oz0TNGpMoxC6xDDDGPh8nc0I4HRGUswIZSdojOOYhZzHyQiNoR-FnEZwhibObQEgIcDH6GkRvHojN8J5LYPM7NrOC69NI-rguau9DpfioGywUlaq1lvTBHvtN8GNkB97YctgZU0r3r-Rc3Raidqpi58-RW93t-vsIVy-3D9mi2UoScp9yFkKZV-MM04Yq2haxhwkgGKVSmKqiliVMlEyKooSFI5ARBQKXpWEYpxgOkXXw97Wms9OOZ9vTWf7j11OMGaYkP5Cn5oPKWmNc1ZVeWv1TthDjiE_GsvXWX40lv8Y64n4DyH1IMNboet_uKuB00qp3yspxb17Sr8Ajdh5VQ
CODEN ITCOB4
CitedBy_id crossref_primary_10_1080_1448837X_2023_2206598
crossref_primary_10_1109_ACCESS_2023_3329984
crossref_primary_10_1038_s41467_024_55220_y
crossref_primary_10_3390_electronics14091845
crossref_primary_10_1007_s00521_021_06617_z
crossref_primary_10_1007_s13389_022_00299_6
crossref_primary_10_1109_JETCAS_2023_3244183
crossref_primary_10_1109_TCAD_2018_2858363
crossref_primary_10_1088_1361_6528_ade243
crossref_primary_10_1038_s41598_023_34146_3
crossref_primary_10_1016_j_rineng_2025_104979
crossref_primary_10_3390_app10248968
crossref_primary_10_1109_TC_2021_3056992
crossref_primary_10_3390_electronics10232985
crossref_primary_10_1016_j_adhoc_2024_103539
crossref_primary_10_1016_j_asoc_2023_110166
crossref_primary_10_1007_s10489_021_02362_x
crossref_primary_10_1109_JETCAS_2018_2852705
crossref_primary_10_1109_JIOT_2023_3339623
crossref_primary_10_1007_s10586_025_05237_9
crossref_primary_10_1016_j_engappai_2019_09_003
crossref_primary_10_1109_TCSI_2023_3245022
crossref_primary_10_1109_JIOT_2025_3563942
crossref_primary_10_1109_TC_2022_3186628
crossref_primary_10_1109_TNNLS_2020_3009047
crossref_primary_10_48084_etasr_10499
crossref_primary_10_1109_ACCESS_2022_3140646
crossref_primary_10_1109_JIOT_2020_3004469
crossref_primary_10_1109_MCAS_2020_3005483
crossref_primary_10_1109_JETCAS_2023_3243950
crossref_primary_10_1007_s10922_024_09878_w
crossref_primary_10_1049_iet_sen_2018_5046
crossref_primary_10_1109_TVLSI_2019_2920152
crossref_primary_10_1109_TC_2018_2885044
crossref_primary_10_1109_TC_2020_2991177
crossref_primary_10_1109_JIOT_2020_3007130
crossref_primary_10_1109_TCAD_2019_2897631
crossref_primary_10_1007_s40722_023_00282_1
crossref_primary_10_1109_TCYB_2021_3124235
crossref_primary_10_1049_ell2_12045
crossref_primary_10_1109_TCSI_2021_3103926
crossref_primary_10_1109_ACCESS_2019_2946298
crossref_primary_10_1109_TCSI_2022_3168286
crossref_primary_10_1109_ACCESS_2021_3059482
crossref_primary_10_3390_sym16121701
crossref_primary_10_1109_ACCESS_2022_3212791
crossref_primary_10_1109_ACCESS_2019_2915335
crossref_primary_10_1109_TNNLS_2023_3265533
crossref_primary_10_3390_sym11101308
crossref_primary_10_1016_j_buildenv_2021_108243
crossref_primary_10_1109_MDAT_2021_3063356
crossref_primary_10_1109_JETCAS_2023_3328875
crossref_primary_10_1109_MNANO_2022_3208757
crossref_primary_10_1007_s10586_020_03183_2
crossref_primary_10_1109_TNANO_2024_3373499
Cites_doi 10.1109/TVLSI.2017.2654298
10.1145/3061639.3062258
10.7873/DATE.2015.0377
10.1109/12.954505
10.1109/ISCAS.2009.5118213
10.1007/978-1-4899-5841-9_2
10.1109/ICASSP.2013.6638947
10.1145/2897937.2898011
10.1145/3037697.3037746
10.1109/TC.2012.231
10.1145/2744769.2747932
10.1109/TNNLS.2015.2413754
10.1109/MWSCAS.2015.7282118
10.1007/BF00194907
10.1145/3020078.3021744
10.1109/TNN.2003.816058
10.1109/12.954506
10.1145/2742060.2743758
10.1109/5.726791
10.1109/TC.2010.202
10.1109/CISS.2015.7086904
10.1109/TVLSI.2016.2535313
10.1016/j.microrel.2015.11.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2018.2817237
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 1286
ExternalDocumentID 10_1109_TC_2018_2817237
8319953
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada
  grantid: RES0025211
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-9780d0d07979277f38d590c00e7fe653eb5edc6ec4bbd0e140a430b9fd2311613
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441420700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sun Jun 29 13:14:45 EDT 2025
Tue Nov 18 20:57:53 EST 2025
Sat Nov 29 01:35:40 EST 2025
Wed Aug 27 06:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-9780d0d07979277f38d590c00e7fe653eb5edc6ec4bbd0e140a430b9fd2311613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0004-3804
0000-0002-8849-4994
0000-0003-0505-8183
0000-0003-3152-3245
PQID 2117122780
PQPubID 85452
PageCount 14
ParticipantIDs crossref_primary_10_1109_TC_2018_2817237
ieee_primary_8319953
crossref_citationtrail_10_1109_TC_2018_2817237
proquest_journals_2117122780
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ioffe (ref18) 2015
ref11
hubara (ref19) 2016
ref10
ref2
ref17
glorot (ref16) 2011
courbariaux (ref20) 2015
netzer (ref15) 2011
haykin (ref1) 2009
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/TVLSI.2017.2654298
– ident: ref7
  doi: 10.1145/3061639.3062258
– ident: ref8
  doi: 10.7873/DATE.2015.0377
– ident: ref5
  doi: 10.1109/12.954505
– ident: ref28
  doi: 10.1109/ISCAS.2009.5118213
– ident: ref4
  doi: 10.1007/978-1-4899-5841-9_2
– ident: ref17
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref12
  doi: 10.1145/2897937.2898011
– ident: ref13
  doi: 10.1145/3037697.3037746
– ident: ref25
  doi: 10.1109/TC.2012.231
– ident: ref29
  doi: 10.1145/2744769.2747932
– ident: ref9
  doi: 10.1109/TNNLS.2015.2413754
– ident: ref24
  doi: 10.1109/MWSCAS.2015.7282118
– start-page: 315
  year: 2011
  ident: ref16
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc 14th Int Conf Artif Intell Statist
– ident: ref2
  doi: 10.1007/BF00194907
– ident: ref21
  doi: 10.1145/3020078.3021744
– ident: ref3
  doi: 10.1109/TNN.2003.816058
– ident: ref6
  doi: 10.1109/12.954506
– ident: ref26
  doi: 10.1145/2742060.2743758
– start-page: 3123
  year: 2015
  ident: ref20
  article-title: BinaryConnect: Training deep neural networks with binary weights during propagations
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/5.726791
– start-page: 4107
  year: 2016
  ident: ref19
  article-title: Binarized neural networks
  publication-title: Proc 30th Conf Neural Inf Process Syst
– year: 2011
  ident: ref15
  article-title: Reading digits in natural images with unsupervised feature learning
  publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning
– ident: ref23
  doi: 10.1109/TC.2010.202
– ident: ref11
  doi: 10.1109/CISS.2015.7086904
– start-page: 448
  year: 2015
  ident: ref18
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– year: 2009
  ident: ref1
  publication-title: Neural Networks and Learning Machines
– ident: ref27
  doi: 10.1109/TVLSI.2016.2535313
– ident: ref22
  doi: 10.1016/j.microrel.2015.11.017
SSID ssj0006209
Score 2.5045512
Snippet Stochastic computation has recently been proposed for implementing artificial neural networks with reduced hardware and power consumption, but at a decreased...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1273
SubjectTerms Accuracy
Activation
Artificial neural networks
Backpropagation
binary search
Biological neural networks
Computation
Computer simulation
Energy consumption
Fixed point arithmetic
Floating point arithmetic
Hardware
Mathematical analysis
multi-layer perceptron
Multilayer perceptrons
neural network
Neural networks
Neurons
Power consumption
probability estimator
Propagation
Rectifiers
Redundancy
Search algorithms
Stochastic computation
Training
Tunneling magnetoresistance
Variation
Title A Stochastic Computational Multi-Layer Perceptron with Backward Propagation
URI https://ieeexplore.ieee.org/document/8319953
https://www.proquest.com/docview/2117122780
Volume 67
WOSCitedRecordID wos000441420700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAHUdCIounBgwcXCt3dtkckEhMNIRETbpvtS00MGFj8_bbdQkjUg9nLHmY2m06n8-jMNwDXOsVxzmRuNc2wKNbG6pwgcWRckoE4xLFE-GETdDxmsxmfVOB22wujtfbFZ7rjXv1dvlrItUuVdRlxDcWkClVK07JXa3vqpptyjp5VYBLjAOPTw7w7HboSLtbpM2ut3cDzHQvkR6r8OIe9cRnV__dbR3AYnEg0KKV-DBU9b0B9M6ABBX1twMEO2mATHgfouVjIt9xBM6OSOqQCke_DjZ5y64CjSVnrslzMkcvSojuX4rMbCU2WNsJ-9Swn8DK6nw4fojBLIZI2pCoiBzSk7EM55X1KDWEq4VhirKnRaUK0SLSSqZaxEAprG3blMcGCG2UdQOsVklOozRdzfQbIaJmkVPGkn8jYMMUlE0YwkRvcM4qmLehs1jeTAWjczbv4yHzAgXk2HWZOIFkQSAtutgyfJcbG36RNt_5bsrD0LWhvBJgFHVxlNrSlPdfpi89_57qAffftsmKsDbViudaXsCe_ivfV8spvr28ioM0A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurBt1ifOXjw4Na02d0kRy2KYi0FK3hbNi8VpJXa-vvNZNMiqAfZyx4y7JLJJDOTme8DOLE5TUuhS29pTiSpdd7mFEsTh0kGhohjmQpkE7zbFU9PsjcHZ7NeGGttKD6zDXwNd_lmqCeYKjsXDBuK2TwsIHNW7Naa7bv5tKCj6U2YpTQC-TSpPO-3sYhLNFrCn9dIef7tDAqkKj924nC8XK_978fWYTW6keSi0vsGzNnBJqxNKRpItNhNWPmGN7gFdxfkYTzULyWCM5NqdEwGktCJm3RK74KTXlXtMhoOCOZpySUm-fxSIr2Rj7Gfg8g2PF5f9ds3SWRTSLQPqsYJQg0Z_3DJZYtzx4TJJNWUWu5snjGrMmt0bnWqlKHWB15lyqiSzngX0PuFbAdqg-HA7gJxVmc5NzJrZTp1wkgtlFNClY42neF5HRrT-S10hBpHxou3IoQcVBb9doEKKaJC6nA6E3ivUDb-HrqF8z8bFqe-DgdTBRbRCj8KH9zyJvb60r3fpY5h6aZ_3yk6t927fVjG71T1YwdQG48m9hAW9ef49WN0FJbaF_ne0Ek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Computational+Multi-Layer+Perceptron+with+Backward+Propagation&rft.jtitle=IEEE+transactions+on+computers&rft.au=Liu%2C+Yidong&rft.au=Liu%2C+Siting&rft.au=Wang%2C+Yanzhi&rft.au=Lombardi%2C+Fabrizio&rft.date=2018-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=67&rft.issue=9&rft.spage=1273&rft_id=info:doi/10.1109%2FTC.2018.2817237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon