Deep Learning for Human Activity Recognition in Mobile Computing

By leveraging advances in deep learning, challenging pattern recognition problems have been solved in computer vision, speech recognition, natural language processing, and more. Mobile computing has also adopted these powerful modeling approaches, delivering astonishing success in the field's c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer (Long Beach, Calif.) Ročník 51; číslo 5; s. 50 - 59
Hlavní autoři: Plotz, Thomas, Guan, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9162, 1558-0814
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract By leveraging advances in deep learning, challenging pattern recognition problems have been solved in computer vision, speech recognition, natural language processing, and more. Mobile computing has also adopted these powerful modeling approaches, delivering astonishing success in the field's core application domains, including the ongoing transformation of human activity recognition technology through machine learning.
AbstractList By leveraging advances in deep learning, challenging pattern recognition problems have been solved in computer vision, speech recognition, natural language processing, and more. Mobile computing has also adopted these powerful modeling approaches, delivering astonishing success in the field’s core application domains, including the ongoing transformation of human activity recognition technology through machine learning.
Author Plotz, Thomas
Guan, Yu
Author_xml – sequence: 1
  givenname: Thomas
  surname: Plotz
  fullname: Plotz, Thomas
  email: thomas.ploetz@gatech.edu
  organization: Georgia Tech
– sequence: 2
  givenname: Yu
  surname: Guan
  fullname: Guan, Yu
  email: yu.guan@newcastle.ac.uk
  organization: Newcastle University, UK
BookMark eNp9kL1rwzAQxUVJoUnauUMXQWcnOkm25a3B_UghoVDaWciyHBQSyZXlQv77OiR06NDpOO797vHeBI2cdwahWyAzAFLM1-WMEhAzygQA0As0hjQVCRHAR2hMhlNSQEav0KTrtsPKRcrG6OHRmBavjArOug1ufMDLfq8cXuhov2084Hej_cbZaL3D1uG1r-zO4NLv2z4OyDW6bNSuMzfnOUWfz08f5TJZvb28lotVoqkoYsJ1UUFT8ToTea1prfOaMKgzRTVnWa6ZppQIlYMhugbRsDw3AJoNGg6KVGyK7k9_2-C_etNFufV9cIOlpIRnNM-H4INqflLp4LsumEa2we5VOEgg8liTXJfyWJM81zQQ6R9C26iOaWNQdvcPd3firDHm10WwjGecsR-_anSj
CODEN CPTRB4
CitedBy_id crossref_primary_10_3390_s24123944
crossref_primary_10_1109_TMC_2024_3421659
crossref_primary_10_1145_3314399
crossref_primary_10_1177_1550147719842729
crossref_primary_10_1155_2022_1940218
crossref_primary_10_3390_s19143079
crossref_primary_10_3390_electronics10232958
crossref_primary_10_1145_3432227
crossref_primary_10_1080_13854046_2024_2330143
crossref_primary_10_1109_ACCESS_2019_2936620
crossref_primary_10_1177_0954411920953031
crossref_primary_10_1145_3459666
crossref_primary_10_1007_s00521_019_04365_9
crossref_primary_10_1007_s10044_024_01338_0
crossref_primary_10_1109_TMC_2020_3035045
crossref_primary_10_7717_peerj_cs_474
crossref_primary_10_1016_j_compbiomed_2022_105581
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_1007_s42486_022_00124_3
crossref_primary_10_1016_j_jvcir_2019_102681
crossref_primary_10_1109_ACCESS_2021_3074180
crossref_primary_10_3390_s20185114
crossref_primary_10_3389_fcomp_2025_1514933
crossref_primary_10_1088_1361_6501_abb38a
crossref_primary_10_1145_3550299
crossref_primary_10_1016_j_cmpb_2025_108792
crossref_primary_10_1145_3596234
crossref_primary_10_1080_15472450_2025_2515567
crossref_primary_10_3390_s22041476
crossref_primary_10_1145_3717608
crossref_primary_10_3390_s24030742
crossref_primary_10_1016_j_pmcj_2022_101726
crossref_primary_10_1007_s11042_021_11410_0
crossref_primary_10_1016_j_asoc_2022_109363
crossref_primary_10_3390_electronics11193018
crossref_primary_10_4018_IJSKD_299050
crossref_primary_10_1016_j_aei_2020_101177
crossref_primary_10_1145_3508020
crossref_primary_10_1016_j_aei_2021_101374
crossref_primary_10_1016_j_comcom_2020_01_012
crossref_primary_10_2478_amns_2023_2_00120
crossref_primary_10_3390_s20092574
crossref_primary_10_1055_s_0042_1756649
crossref_primary_10_1109_ACCESS_2021_3064031
crossref_primary_10_2478_amns_2024_0017
crossref_primary_10_3390_electronics9091357
crossref_primary_10_3390_s19173731
Cites_doi 10.1109/MPRV.2017.2940968
10.1145/2499621
10.1371/journal.pone.0169649
10.1145/2971763.2971764
10.1109/CIT/IUCC/DASC/PICOM.2015.170
10.1007/s00779-010-0293-9
10.1145/3090076
10.1145/2750858.2807534
10.1038/nature14539
10.3390/s16010115
10.1145/2493988.2494353
10.4108/icst.mobicase.2014.257786
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/MC.2018.2381112
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-0814
EndPage 59
ExternalDocumentID 10_1109_MC_2018_2381112
8364643
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
29F
4.4
41~
5GY
5VS
6IK
85S
97E
9M8
AAJGR
AARMG
AASAJ
AAUTI
AAVXG
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACNCT
ACPVT
ADRHT
AENEX
AETEA
AETIX
AFFNX
AFOGA
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
S10
TAE
TN5
TWZ
UKR
UPT
UQL
VH1
WH7
XJT
XOL
XWC
XZL
YZZ
ZCG
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-4c9b1fb4d687dc2dc7d031d6a2c4367c3c2208a71e0cd18f377e11c331d41a0b3
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433318900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9162
IngestDate Sun Nov 09 05:38:38 EST 2025
Sat Nov 29 06:51:18 EST 2025
Tue Nov 18 22:35:04 EST 2025
Wed Aug 27 02:40:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-4c9b1fb4d687dc2dc7d031d6a2c4367c3c2208a71e0cd18f377e11c331d41a0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2046277238
PQPubID 36684
PageCount 10
ParticipantIDs crossref_primary_10_1109_MC_2018_2381112
ieee_primary_8364643
proquest_journals_2046277238
crossref_citationtrail_10_1109_MC_2018_2381112
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computer (Long Beach, Calif.)
PublicationTitleAbbrev MC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
hammerla (ref6) 0
ref15
ref14
ref11
ref10
lecun (ref13) 2006
ref2
ref1
ref8
ploetz (ref3) 0
ref7
ref9
ref4
ordóñez (ref5) 2016; 16
References_xml – start-page: xx
  year: 0
  ident: ref6
  article-title: Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables
  publication-title: Proc Int'l Joint Conf Artificial Intelligence (IJCAI 16)
– ident: ref9
  doi: 10.1109/MPRV.2017.2940968
– ident: ref2
  doi: 10.1145/2499621
– ident: ref15
  doi: 10.1371/journal.pone.0169649
– ident: ref7
  doi: 10.1145/2971763.2971764
– ident: ref14
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.170
– ident: ref11
  doi: 10.1007/s00779-010-0293-9
– start-page: 1729
  year: 0
  ident: ref3
  article-title: Feature Learning for Activity Recognition in Ubiquitous Computing
  publication-title: Proc 22nd Int'l Joint Conf Artificial Intelligence (IJCAI 11)
– ident: ref8
  doi: 10.1145/3090076
– ident: ref10
  doi: 10.1145/2750858.2807534
– ident: ref1
  doi: 10.1038/nature14539
– year: 2006
  ident: ref13
  article-title: A Tutorial on Energy-Based Learning
  publication-title: Predicting Structured Data
– volume: 16
  start-page: 115
  year: 2016
  ident: ref5
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
  publication-title: SENSORS
  doi: 10.3390/s16010115
– ident: ref12
  doi: 10.1145/2493988.2494353
– ident: ref4
  doi: 10.4108/icst.mobicase.2014.257786
SSID ssj0014853
Score 2.490395
Snippet By leveraging advances in deep learning, challenging pattern recognition problems have been solved in computer vision, speech recognition, natural language...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Analytical models
artificial intelligence
complexity
Computation
Computational modeling
Computer vision
Data mining
Data models
Deep learning
embedded systems
Feature extraction
HAR
Human activity recognition
intelligent systems
Machine learning
mobile
mobile and embedded deep learning
Mobile computing
modeling
Natural language processing
Pattern recognition
Speech recognition
Voice recognition
Title Deep Learning for Human Activity Recognition in Mobile Computing
URI https://ieeexplore.ieee.org/document/8364643
https://www.proquest.com/docview/2046277238
Volume 51
WOSCitedRecordID wos000433318900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014853
  issn: 0018-9162
  databaseCode: RIE
  dateStart: 19700101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4g8aAHUdCIounBgwcXtg_acpOgxIMQYzThtum2XUNiFsLD32-7W4hGPXjrYaZpZjqdPqbfB3DlJhFR0prIGs0iZqWOJCM44pS59JwRJm2Brv8oxmM5mfSeKnCz_QtjrS2Kz2zbN4u3fDPTa39V1pGUM5dBd2BHCF7-1dq-GDAZECexD2BOAowPjnud0cCXcMm2z04Yk28ZqKBU-bEOF8llWPvfsA7hIGwiUb_0-hFUbF6H2oagAYV4rcP-F7TBBtzeWTtHAVD1DbndKiqu8FFflxQS6HlTTTTL0TRHo1nq1gxU9utUjuF1eP8yeIgCgUKk3TlqFTHdS3GWMsOlMJoYLYyLYcMV0YxyoakmJJZKYBtrg2VGhbAYa-pkGFZxSk-gms9yewqIeqCurBvjTHQZTZVSLroymgmluorHWRPaG6MmOqCLe5KL96Q4ZcS9ZDRIvBeS4IUmXG8V5iWwxt-iDW_0rViwdxNaG68lIfCWTo9xIjyT2tnvWuew5_suaxZbUF0t1vYCdvXHarpcXBZz6hN9ysdd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmqgHH6ARRe3BgwcXtg-25SZBDUYgxmDCbdNtu4bELATR32-7W4hGPXjrYWa3mel0-ph-H8CFHURECqMDoxULmBEqEIzgIKLMpueUMGFydP0-Hw7FeNx-LMHV6i2MMSYvPjMN18zv8vVUvbujsqagEbMZdA3WHXOWf621ujNgwmNOYhfCEfFAPjhsNwddV8QlGi4_YUy-5aCcVOXHTJynl7vd_3VsD3b8MhJ1Cr_vQ8lkFdhdUjQgH7EV2P6CN1iF6xtjZshDqr4gu15F-SE-6qiCRAI9LeuJphmaZGgwTeysgYrvWpUDeL67HXV7gadQCJTdSS0CptoJThOmI8G1IlpxbaNYR5IoRiOuqCIkFJJjEyqNRUo5NxgramUYlmFCD6GcTTNzBIg6qK60FeKUtxhNpJQ2vlKacilbMgrTGjSWRo2Vxxd3NBevcb7PCNvxoBs7L8TeCzW4XCnMCmiNv0WrzugrMW_vGtSXXot96L1ZPRYR7rjUjn_XOofN3mjQj_v3w4cT2HL_KSoY61BezN_NKWyoj8XkbX6Wj69PDYLKpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Human+Activity+Recognition+in+Mobile+Computing&rft.jtitle=Computer+%28Long+Beach%2C+Calif.%29&rft.au=Plotz%2C+Thomas&rft.au=Guan%2C+Yu&rft.date=2018-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9162&rft.eissn=1558-0814&rft.volume=51&rft.issue=5&rft.spage=50&rft_id=info:doi/10.1109%2FMC.2018.2381112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9162&client=summon