Fast Encoding Algorithms for Reed-Solomon Codes With Between Four and Seven Parity Symbols

This article describes a fast Reed-Solomon encoding algorithm with four and seven parity symbols in between. First, we show that the syndrome of Reed-Solomon codes can be computed via the Reed-Muller transform. Based on this result, the fast encoding algorithm is then derived. Analysis shows that th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computers Ročník 69; číslo 5; s. 699 - 705
Hlavní autoři: Yu, Leilei, Lin, Zhichang, Lin, Sian-Jheng, Han, Yunghsiang S., Yu, Nenghai
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9340, 1557-9956
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article describes a fast Reed-Solomon encoding algorithm with four and seven parity symbols in between. First, we show that the syndrome of Reed-Solomon codes can be computed via the Reed-Muller transform. Based on this result, the fast encoding algorithm is then derived. Analysis shows that the proposed approach asymptotically requires 3 XORs per data bit, representing an improvement over previous algorithms. The simulation demonstrates that the performance of the proposed approach improves with the increase of code length and is superior to other methods. In particular, when the parity number is 5, the proposed approach is about two times faster than other cutting-edge methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2019.2963827