A multidisciplinary and integrative review of the structural genome and epigenome of Capsicum L. species
Main conclusion We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and phy...
Uložené v:
| Vydané v: | Planta Ročník 261; číslo 4; s. 82 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0032-0935, 1432-2048, 1432-2048 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Main conclusion
We revised and integrated the genomic and epigenomic data into a comparative
Capsicum
ideogram, evidencing the advances and future perspectives.
Capsicum
L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the
Capsicum
“omics”. In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through
Capsicum
studies allows us to know the 2
n
= 2
x
= 24 and 2
n
= 2
x
= 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition,
Capsicum
“omics” diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this,
Capsicum
provides several opportunities for “omics”, ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate
Capsicum
data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the
Capsicum
genome and epigenome, as well as the outcomes of these similarities and differences. |
|---|---|
| AbstractList | We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum "omics". In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum "omics" diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for "omics", ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences.MAIN CONCLUSIONWe revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum "omics". In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum "omics" diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for "omics", ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences. Main conclusion We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum “omics”. In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2 n = 2 x = 24 and 2 n = 2 x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum “omics” diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for “omics”, ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences. Main conclusionWe revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum “omics”. In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum “omics” diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for “omics”, ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences. We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum "omics". In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum "omics" diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for "omics", ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences. MAIN CONCLUSION: We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum “omics”. In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum “omics” diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for “omics”, ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences. |
| ArticleNumber | 82 |
| Author | de Almeida, Breno Machado Clarindo, Wellington Ronildo |
| Author_xml | – sequence: 1 givenname: Breno Machado surname: de Almeida fullname: de Almeida, Breno Machado email: breno.m.almeida@ufv.br organization: Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa – sequence: 2 givenname: Wellington Ronildo orcidid: 0000-0002-8826-8620 surname: Clarindo fullname: Clarindo, Wellington Ronildo email: well.clarindo@ufv.br organization: Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40057910$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtr3DAUhUVJaSbT_IEuiqCbbJxePWzJyzDkBQPdtGsjyXcmCrbsSnaG_PtoMpMUumgXF0noO1e655yRkzAEJOQLg0sGoL4nAMnLAvYlq1IUuw9kwaTgBQepT8gCIO-hFuUpOUvpESBfKvWJnEqAUtUMFuThivZzN_nWJ-fHzgcTn6kJLfVhwm00k39CGvHJ444OGzo9IE1TnN00R9PRLYahx1ceR388ZWxlxuTd3NP1JU0jOo_pM_m4MV3C8-O6JL9urn-u7or1j9v71dW6cFzXUyG4a1Fao62u8mdLw5S2UhhwrmWWcyalsqISpay4dW1dW9ZW1nKLjNdWc7EkF4e-Yxx-z5imps-jYdeZgMOcGsEBuJZKV_9HmSorzars2pJ8-wt9HOYY8iCvlFSM8TJTX4_UbHtsmzH6PvvZvNmdAX4AXBxSirh5Rxg0-0ybQ6YN7GufabPLInEQpQyHLcY_b_9D9QLRZaMm |
| Cites_doi | 10.3897/PHYTOKEYS.140.47071 10.1111/ddi.13008 10.1038/nrg2165 10.1093/aob/mcw079 10.3389/fpls.2021.791303 10.1093/hr/uhac210 10.1038/s41467-023-41251-4 10.1038/nature08670 10.1093/aob/mcab042 10.1101/gr.275270.121 10.1007/s00299-008-0539-4 10.1186/s12864-020-6618-9 10.1093/bib/bbw096 10.1126/science.1251788 10.1186/s13059-017-1341-9 10.1093/aob/mcy066 10.1126/science.1178534 10.1007/s10059-009-0025-z 10.1080/11263504.2023.2166619 10.1186/s13100-018-0117-4 10.1371/journal.pone.0210510 10.1007/s13258-019-00832-8 10.1093/nar/30.1.325 10.1111/TPJ.14705 10.1073/pnas.2104315118 10.1093/bioinformatics/btt403 10.3390/ijms19041028 10.1371/journal.pgen.1009768 10.1186/s13100-019-0153-8 10.1038/s41598-018-23761-0 10.1146/annurev-genet-040620-022145 10.3389/fpls.2019.00513 10.3835/plantgenome2017.08.0068 10.3389/fgene.2023.1101401 10.1007/s00299-011-1135-6 10.1038/s41467-020-15809-5 10.3390/plants10061105 10.1093/dnares/dsac052 10.1038/nature06148 10.1111/tpj.12565 10.1126/science.220.4601.1049 10.1105/tpc.111.088682 10.1590/2175-7860202172062 10.1016/j.pbi.2021.102140 10.1371/journal.pone.0183341 10.1186/s12864-021-08212-x 10.1080/11263504.2019.1674403 10.1073/pnas.85.17.6419 10.1111/tpj.13170 10.1038/35048692 10.1266/ggs.74.149 10.1111/j.1095-8339.2006.00503.x 10.1590/1984-70332022V22N1A03 10.1111/pbi.12894 10.3897/PHYTOKEYS.167.57751 10.1038/s41580-021-00362-w 10.3389/fpls.2021.683681 10.3389/fpls.2023.1189038 10.1016/j.plantsci.2019.110181 10.1139/gen-2015-0099 10.1038/ncomms6269 10.1007/s10577-021-09663-4 10.1038/s41467-022-31112-x 10.1002/cyto.a.24499 10.3389/fpls.2022.1011565 10.20900/cbgg20200001 10.1016/J.TIG.2022.02.009 10.3389/fpls.2021.815589 10.1073/pnas.1010814108 10.1590/0103-8478cr20210559 10.1038/s41467-024-48643-0 10.1186/1471-2164-8-360 10.3389/fpls.2021.787590 10.1093/nar/gkq1061 10.3389/fpls.2020.01100 10.1111/tpj.16208 10.1101/gad.2008511 10.1038/ng.475 10.1186/s13059-020-01998-1 10.1038/s41586-023-06062-z 10.1007/BF00991526 10.3897/phytokeys.200.71667 10.1146/annurev-arplant-070221-050044 10.1186/1471-2164-15-312 10.3389/FPLS.2022.984702/BIBTEX 10.1038/s42003-021-02152-8 10.1007/s10722-019-00801-w 10.1111/j.1601-5223.1964.tb01953.x 10.1590/1984-70332018V18N2A23 10.1111/PBI.12513 10.1600/036364405775097905 10.1111/tpj.14721 10.1038/s41467-022-34053-7 10.1111/j.1365-313X.2009.03923.x 10.1038/s41438-017-0011-0 10.1139/gen-2022-0083 10.1016/j.molp.2022.12.010 10.1093/emboj/cdg443 10.1007/s00299-020-02554-8 10.1093/plphys/kiab524 10.17660/ACTAHORTIC.2007.745.5 10.1371/journal.pgen.1000733 10.1038/nature12211 10.1007/s10059-000-0018-4 10.1371/JOURNAL.PONE.0209792 10.3389/fgene.2022.1030536 10.1186/1471-2229-7-24 10.1590/0001-37652301620140616 10.1038/ng.2877 10.1093/molbev/msx116 10.1101/GR.130740.111 10.17957/IJAB/15.0303 10.1111/j.1365-313X.2011.04851.x 10.1073/pnas.1400975111 10.3390/ijms20153837 10.1186/s12915-023-01560-y 10.1093/plcell/koac305 10.1038/s41597-024-02965-2 10.1038/nature07723 10.1016/j.scienta.2018.04.060 10.1038/ng.3008 10.3390/ijms20225675 10.1038/s41598-017-16399-x 10.1186/1759-8753-2-4 10.1534/g3.111.000398 10.1038/nature10625 10.1371/journal.pbio.3000582 10.1007/s10709-011-9550-8 10.1038/s41588-018-0158-0 10.1371/journal.pone.0133962 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TM 8FD FR3 K9. P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1007/s00425-025-04653-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Ecology Forestry Botany Education |
| EISSN | 1432-2048 |
| EndPage | 82 |
| ExternalDocumentID | 40057910 10_1007_s00425_025_04653_w |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 001 funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 001 |
| GroupedDBID | -Y2 -~C .86 06C 06D 0R~ 0VY 123 199 1SB 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~F 2~H 30V 36B 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DATOO DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M1P M4Y M7P MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P0- P19 P2P PF- PHGZT PQQKQ PROAC PSQYO PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT YLTOR Z45 ZCG ZMTXR ZOVNA ~EX AAYXX ABBRH ABFSG ABRTQ ABUFD ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR BANNL CITATION PHGZM PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TM 8FD FR3 K9. P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c289t-32cde4ba8b864375a178b43a0ccd1b221447b3635462bcd99b1d6bb2be129b823 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440020000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-0935 1432-2048 |
| IngestDate | Fri Sep 05 17:14:24 EDT 2025 Wed Oct 01 13:44:54 EDT 2025 Wed Nov 05 04:10:24 EST 2025 Mon Sep 15 04:48:08 EDT 2025 Sat Nov 29 08:06:19 EST 2025 Fri Mar 28 01:22:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Cytogenomics Genome evolution Pepper Sequencing Karyotype Mobile elements |
| Language | English |
| License | 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c289t-32cde4ba8b864375a178b43a0ccd1b221447b3635462bcd99b1d6bb2be129b823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8826-8620 |
| PMID | 40057910 |
| PQID | 3175471125 |
| PQPubID | 54047 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3200284786 proquest_miscellaneous_3175681614 proquest_journals_3175471125 pubmed_primary_40057910 crossref_primary_10_1007_s00425_025_04653_w springer_journals_10_1007_s00425_025_04653_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | An International Journal of Plant Biology |
| PublicationTitle | Planta |
| PublicationTitleAbbrev | Planta |
| PublicationTitleAlternate | Planta |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | A Sookdeo (4653_CR109) 2018; 9 T Heitkam (4653_CR46) 2014; 79 R Schöpflin (4653_CR102) 2022; 13 P Neumann (4653_CR82) 2011; 2 LDV Martins (4653_CR79) 2018; 18 IS Abreu (4653_CR1) 2008; 27 MA Scaldaferro (4653_CR95) 2020; 154 X Su (4653_CR114) 2021; 22 L Concia (4653_CR20) 2020; 21 X Li (4653_CR69) 2023; 21 4653_CR40 S Serfraz (4653_CR104) 2021; 12 P Youn-Kyu (4653_CR131) 1999; 74 Y Liu (4653_CR71) 2020; 18 GE Barboza (4653_CR12) 2020; 140 JK Kwon (4653_CR61) 2009; 27 4653_CR116 GE Barboz (4653_CR10) 2019; 14 R Deanna (4653_CR25) 2022; 12 Y-L Cao (4653_CR17) 2021; 4 S Jung (4653_CR54) 2019; 287 L Wu (4653_CR127) 2019; 20 FA Guzmán (4653_CR41) 2020; 67 W Chen (4653_CR19) 2024; 15 4653_CR9 K Han (4653_CR42) 2018; 16 R Nunez-Vazquez (4653_CR83) 2022; 13 KR Richert-Pöggeler (4653_CR93) 2003; 22 NS Catlin (4653_CR18) 2022; 65 4653_CR4 S Orozco-Arias (4653_CR85) 2019; 20 MV Almeida (4653_CR6) 2022; 38 H-Y Lee (4653_CR63) 2020; 11 J He (4653_CR44) 2023; 1 NM Springer (4653_CR110) 2018; 50 L Sun (4653_CR115) 2020; 11 GE Barboza (4653_CR13) 2020; 167 H Staňkova (4653_CR112) 2016; 14 GE Barboza (4653_CR14) 2022; 200 W Tang (4653_CR118) 2023; 14 M Foroozani (4653_CR33) 2022; 73 JD Lobaton (4653_CR76) 2018; 11 B Nystedt (4653_CR84) 2013; 497 A Kögler (4653_CR59) 2020; 103 MA Scaldaferro (4653_CR97) 2016; 59 M Lescot (4653_CR65) 2002; 30 C Staginnus (4653_CR111) 2007; 7 T Heitkam (4653_CR47) 2020; 103 YK Park (4653_CR86) 2000; 10 MA Scaldaferro (4653_CR94) 2019; 154 EJ Sliwinska (4653_CR107) 2022; 101 P Wlodzimierz (4653_CR126) 2023; 618 GE Barboza (4653_CR11) 2005; 30 M Dupeyron (4653_CR29) 2019; 10 A Doležalová (4653_CR28) 2022; 12 T Wenke (4653_CR123) 2011; 23 R De Assis (4653_CR22) 2020; 21 4653_CR92 S Kumar (4653_CR60) 2017; 34 AH Paterson (4653_CR88) 2009; 457 M Scaldaferro (4653_CR96) 2023; 157 SI Diop (4653_CR27) 2018; 8 A Khan (4653_CR55) 2018; 8 T Wicker (4653_CR125) 2007; 8 N Hartig (4653_CR43) 2023; 115 Y Liu (4653_CR72) 2021; 31 C De Tomás (4653_CR21) 2022; 13 AN Egan (4653_CR30) 2019; 14 R De Assis (4653_CR23) 2023; 66 W Diao (4653_CR26) 2018; 19 AM Hulse-Kemp (4653_CR49) 2018; 5 AV Amosova (4653_CR8) 2021; 10 International Wheat Genome Sequencing Consortium (IWGSC) (4653_CR50) 2014; 345 L Feitoza (4653_CR31) 2011; 139 N Schmidt (4653_CR98) 2021; 128 4653_CR81 BM Almeida (4653_CR5) 2022; 22 CC García (4653_CR36) 2022; 13 Y Borovsky (4653_CR16) 2022; 12 M Park (4653_CR87) 2012; 69 S Liu (4653_CR73) 2009; 20 JN Wells (4653_CR122) 2020; 54 E Gogvadze (4653_CR39) 2007; 8 AM Yañez-Santos (4653_CR128) 2021; 29 N Jiang (4653_CR53) 2011; 108 L Feitoza (4653_CR32) 2017; 12 ADW Geering (4653_CR37) 2014; 5 M Mehra (4653_CR80) 2015; 10 S Huang (4653_CR48) 2009; 41 Y Liao (4653_CR70) 2022; 13 SD Tanksley (4653_CR119) 1988; 85 CK Khoury (4653_CR56) 2020; 26 P Tripodi (4653_CR121) 2021; 118 I Jerkovic (4653_CR52) 2021; 22 The Arabidopsis Genome Initiative (4653_CR120) 2000; 408 D Zavallo (4653_CR132) 2020; 39 BMD Almeida (4653_CR7) 2023; 53 4653_CR78 4653_CR77 MC Stitzer (4653_CR113) 2021; 17 MM Praça-Fontes (4653_CR90) 2011; 30 S Kim (4653_CR57) 2014; 46 KM Seibt (4653_CR103) 2016; 86 Y Li (4653_CR68) 2022; 188 F Liu (4653_CR74) 2023; 14 C Llorens (4653_CR75) 2010; 39 H Tang (4653_CR117) 2014; 15 JI Sohn (4653_CR108) 2018; 19 TJ Wheeler (4653_CR124) 2013; 29 K Shirasawa (4653_CR105) 2023; 30 C Qin (4653_CR91) 2014; 111 ND Young (4653_CR130) 2011; 480 X Yang (4653_CR129) 2023; 16 PM Aguilera (4653_CR2) 2016; 88 T Heitkam (4653_CR45) 2009; 59 O Jaillon (4653_CR51) 2007; 449 P Belletti (4653_CR15) 1998; 209 VBR Lachagari (4653_CR62) 2019; 10 PM Aguilera (4653_CR3) 2021; 72 DW Galbraith (4653_CR34) 1983; 220 PS Schnable (4653_CR101) 2009; 326 M Grabiele (4653_CR38) 2018; 238 CC García (4653_CR35) 2016; 118 A Levan (4653_CR66) 1964; 52 J Schmutz (4653_CR100) 2010; 463 J Schmutz (4653_CR99) 2014; 46 TB De Souza (4653_CR24) 2018; 122 J Li (4653_CR67) 2012; 22 J-H Lee (4653_CR64) 2022; 9 HC Zhou (4653_CR133) 2019; 41 N Sierro (4653_CR106) 2024; 11 S Kim (4653_CR58) 2017; 18 MT Pozzobon (4653_CR89) 2006; 151 |
| References_xml | – volume: 140 start-page: 125 year: 2020 ident: 4653_CR12 publication-title: PhytoKeys doi: 10.3897/PHYTOKEYS.140.47071 – volume: 26 start-page: 209 year: 2020 ident: 4653_CR56 publication-title: Divers Distrib doi: 10.1111/ddi.13008 – volume: 8 start-page: 973 year: 2007 ident: 4653_CR125 publication-title: Nat Rev Genet doi: 10.1038/nrg2165 – volume: 118 start-page: 35 year: 2016 ident: 4653_CR35 publication-title: Ann Bot doi: 10.1093/aob/mcw079 – volume: 12 start-page: 1 year: 2022 ident: 4653_CR28 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.791303 – volume: 9 start-page: 1 year: 2022 ident: 4653_CR64 publication-title: Horticulture Research doi: 10.1093/hr/uhac210 – volume: 14 start-page: 1 year: 2023 ident: 4653_CR74 publication-title: Nat Commun doi: 10.1038/s41467-023-41251-4 – volume: 463 start-page: 178 year: 2010 ident: 4653_CR100 publication-title: Nature doi: 10.1038/nature08670 – volume: 128 start-page: 281 year: 2021 ident: 4653_CR98 publication-title: Ann Bot doi: 10.1093/aob/mcab042 – volume: 31 start-page: 1409 year: 2021 ident: 4653_CR72 publication-title: Genome Res doi: 10.1101/gr.275270.121 – volume: 27 start-page: 1227 year: 2008 ident: 4653_CR1 publication-title: Plant Cell Rep doi: 10.1007/s00299-008-0539-4 – volume: 21 start-page: 1 year: 2020 ident: 4653_CR22 publication-title: BMC Genomics doi: 10.1186/s12864-020-6618-9 – volume: 19 start-page: 23 year: 2018 ident: 4653_CR108 publication-title: Brief Bioinform doi: 10.1093/bib/bbw096 – volume: 345 year: 2014 ident: 4653_CR50 publication-title: Science doi: 10.1126/science.1251788 – volume: 18 start-page: 1 year: 2017 ident: 4653_CR58 publication-title: Genome Biol doi: 10.1186/s13059-017-1341-9 – volume: 122 start-page: 279 year: 2018 ident: 4653_CR24 publication-title: Ann Bot doi: 10.1093/aob/mcy066 – volume: 326 start-page: 1112 year: 2009 ident: 4653_CR101 publication-title: Science doi: 10.1126/science.1178534 – volume: 27 start-page: 205 year: 2009 ident: 4653_CR61 publication-title: Mol Cells doi: 10.1007/s10059-009-0025-z – volume: 157 start-page: 584 year: 2023 ident: 4653_CR96 publication-title: Plant Biosyst doi: 10.1080/11263504.2023.2166619 – volume: 9 start-page: 1 year: 2018 ident: 4653_CR109 publication-title: Mob DNA doi: 10.1186/s13100-018-0117-4 – volume: 14 start-page: 1 year: 2019 ident: 4653_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0210510 – volume: 41 start-page: 1001 year: 2019 ident: 4653_CR133 publication-title: Genes and Genomics doi: 10.1007/s13258-019-00832-8 – volume: 30 start-page: 325 year: 2002 ident: 4653_CR65 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.325 – volume: 103 start-page: 32 year: 2020 ident: 4653_CR47 publication-title: Plant J doi: 10.1111/TPJ.14705 – volume: 118 start-page: 1 year: 2021 ident: 4653_CR121 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2104315118 – volume: 29 start-page: 2487 year: 2013 ident: 4653_CR124 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt403 – volume: 19 start-page: 1 year: 2018 ident: 4653_CR26 publication-title: Int J Mol Sci doi: 10.3390/ijms19041028 – volume: 17 start-page: 1 year: 2021 ident: 4653_CR113 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1009768 – volume: 10 start-page: 1 year: 2019 ident: 4653_CR29 publication-title: Mob DNA doi: 10.1186/s13100-019-0153-8 – volume: 8 start-page: 1 year: 2018 ident: 4653_CR55 publication-title: Sci Rep doi: 10.1038/s41598-018-23761-0 – volume: 54 start-page: 539 year: 2020 ident: 4653_CR122 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-040620-022145 – volume: 10 start-page: 1 year: 2019 ident: 4653_CR62 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00513 – volume: 11 start-page: 1 year: 2018 ident: 4653_CR76 publication-title: The Plant Genome doi: 10.3835/plantgenome2017.08.0068 – ident: 4653_CR77 doi: 10.3389/fgene.2023.1101401 – volume: 30 start-page: 2303 year: 2011 ident: 4653_CR90 publication-title: Plant Cell Rep doi: 10.1007/s00299-011-1135-6 – volume: 11 start-page: 1 year: 2020 ident: 4653_CR115 publication-title: Nat Commun doi: 10.1038/s41467-020-15809-5 – volume: 10 start-page: 1 year: 2021 ident: 4653_CR8 publication-title: Plants doi: 10.3390/plants10061105 – volume: 30 start-page: 1 year: 2023 ident: 4653_CR105 publication-title: DNA Res doi: 10.1093/dnares/dsac052 – volume: 449 start-page: 463 year: 2007 ident: 4653_CR51 publication-title: Nature doi: 10.1038/nature06148 – volume: 79 start-page: 385 year: 2014 ident: 4653_CR46 publication-title: Plant J doi: 10.1111/tpj.12565 – volume: 220 start-page: 1049 year: 1983 ident: 4653_CR34 publication-title: Science doi: 10.1126/science.220.4601.1049 – volume: 23 start-page: 3117 year: 2011 ident: 4653_CR123 publication-title: Plant Cell doi: 10.1105/tpc.111.088682 – volume: 72 start-page: 1 year: 2021 ident: 4653_CR3 publication-title: Rodriguesia doi: 10.1590/2175-7860202172062 – volume: 65 start-page: 1 year: 2022 ident: 4653_CR18 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2021.102140 – volume: 12 start-page: 1 year: 2017 ident: 4653_CR32 publication-title: PLoS ONE doi: 10.1371/journal.pone.0183341 – volume: 22 start-page: 1 year: 2021 ident: 4653_CR114 publication-title: BMC Genomics doi: 10.1186/s12864-021-08212-x – volume: 154 start-page: 685 year: 2020 ident: 4653_CR95 publication-title: Plant Biosyst doi: 10.1080/11263504.2019.1674403 – volume: 85 start-page: 6419 year: 1988 ident: 4653_CR119 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.85.17.6419 – volume: 86 start-page: 268 year: 2016 ident: 4653_CR103 publication-title: Plant J doi: 10.1111/tpj.13170 – volume: 408 start-page: 796 year: 2000 ident: 4653_CR120 publication-title: Nature doi: 10.1038/35048692 – volume: 74 start-page: 49 year: 1999 ident: 4653_CR131 publication-title: Genes Genet Syst doi: 10.1266/ggs.74.149 – volume: 151 start-page: 259 year: 2006 ident: 4653_CR89 publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.2006.00503.x – volume: 22 start-page: 1 year: 2022 ident: 4653_CR5 publication-title: Crop Breed Appl Biotechno doi: 10.1590/1984-70332022V22N1A03 – volume: 16 start-page: 1546 year: 2018 ident: 4653_CR42 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12894 – volume: 167 start-page: 13 year: 2020 ident: 4653_CR13 publication-title: PhytoKeys doi: 10.3897/PHYTOKEYS.167.57751 – volume: 22 start-page: 511 year: 2021 ident: 4653_CR52 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-021-00362-w – volume: 12 start-page: 1 year: 2021 ident: 4653_CR104 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.683681 – volume: 14 start-page: 1 year: 2023 ident: 4653_CR118 publication-title: Front Plant Sci doi: 10.3389/fpls.2023.1189038 – volume: 154 start-page: 685 year: 2019 ident: 4653_CR94 publication-title: Plant Biosyst - Int J Dealing Aspects Plant Biol doi: 10.1080/11263504.2019.1674403 – volume: 287 start-page: 110181 year: 2019 ident: 4653_CR54 publication-title: Plant Science doi: 10.1016/j.plantsci.2019.110181 – volume: 59 start-page: 95 year: 2016 ident: 4653_CR97 publication-title: Genome doi: 10.1139/gen-2015-0099 – volume: 5 start-page: 1 year: 2014 ident: 4653_CR37 publication-title: Nat Commun doi: 10.1038/ncomms6269 – volume: 29 start-page: 261 year: 2021 ident: 4653_CR128 publication-title: Chromosome Res doi: 10.1007/s10577-021-09663-4 – volume: 13 start-page: 1 year: 2022 ident: 4653_CR70 publication-title: Nat Commun doi: 10.1038/s41467-022-31112-x – volume: 101 start-page: 749 year: 2022 ident: 4653_CR107 publication-title: Application-based guidelines for best practices in plant flow cytometry doi: 10.1002/cyto.a.24499 – volume: 13 start-page: 1 year: 2022 ident: 4653_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.1011565 – ident: 4653_CR92 doi: 10.20900/cbgg20200001 – volume: 38 start-page: 529 year: 2022 ident: 4653_CR6 publication-title: Trends Genet doi: 10.1016/J.TIG.2022.02.009 – volume: 12 start-page: 1 year: 2022 ident: 4653_CR16 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.815589 – volume: 108 start-page: 1537 year: 2011 ident: 4653_CR53 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1010814108 – volume: 53 start-page: 1 year: 2023 ident: 4653_CR7 publication-title: Ciência Rural doi: 10.1590/0103-8478cr20210559 – volume: 15 start-page: 1 year: 2024 ident: 4653_CR19 publication-title: Nat Commun doi: 10.1038/s41467-024-48643-0 – volume: 8 start-page: 1 year: 2007 ident: 4653_CR39 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-360 – volume: 12 start-page: 1 year: 2022 ident: 4653_CR25 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.787590 – volume: 39 start-page: 1 year: 2010 ident: 4653_CR75 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1061 – volume: 11 start-page: 1 year: 2020 ident: 4653_CR63 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.01100 – volume: 115 start-page: 52 year: 2023 ident: 4653_CR43 publication-title: Plant J doi: 10.1111/tpj.16208 – ident: 4653_CR78 doi: 10.1101/gad.2008511 – volume: 41 start-page: 1275 year: 2009 ident: 4653_CR48 publication-title: Nat Genet doi: 10.1038/ng.475 – volume: 21 start-page: 1 year: 2020 ident: 4653_CR20 publication-title: Genome Biol doi: 10.1186/s13059-020-01998-1 – volume: 618 start-page: 557 year: 2023 ident: 4653_CR126 publication-title: Nature doi: 10.1038/s41586-023-06062-z – volume: 209 start-page: 85 year: 1998 ident: 4653_CR15 publication-title: Plant Syst Evol doi: 10.1007/BF00991526 – volume: 200 start-page: 1 year: 2022 ident: 4653_CR14 publication-title: PhytoKeys doi: 10.3897/phytokeys.200.71667 – volume: 73 start-page: 149 year: 2022 ident: 4653_CR33 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-070221-050044 – volume: 15 start-page: 1 year: 2014 ident: 4653_CR117 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-312 – volume: 13 start-page: 1 year: 2022 ident: 4653_CR83 publication-title: Front Plant Sci doi: 10.3389/FPLS.2022.984702/BIBTEX – volume: 4 start-page: 1 year: 2021 ident: 4653_CR17 publication-title: Commun Biol doi: 10.1038/s42003-021-02152-8 – volume: 67 start-page: 569 year: 2020 ident: 4653_CR41 publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-019-00801-w – volume: 52 start-page: 201 year: 1964 ident: 4653_CR66 publication-title: Heriditas doi: 10.1111/j.1601-5223.1964.tb01953.x – volume: 18 start-page: 161 year: 2018 ident: 4653_CR79 publication-title: Crop Breed Appl Biotechnol doi: 10.1590/1984-70332018V18N2A23 – volume: 14 start-page: 1523 year: 2016 ident: 4653_CR112 publication-title: Plant Biotechnol J doi: 10.1111/PBI.12513 – volume: 30 start-page: 863 year: 2005 ident: 4653_CR11 publication-title: Syst Bot doi: 10.1600/036364405775097905 – volume: 103 start-page: 443 year: 2020 ident: 4653_CR59 publication-title: Plant J doi: 10.1111/tpj.14721 – ident: 4653_CR40 – volume: 13 start-page: 1 year: 2022 ident: 4653_CR102 publication-title: Nat Commun doi: 10.1038/s41467-022-34053-7 – volume: 59 start-page: 872 year: 2009 ident: 4653_CR45 publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03923.x – volume: 5 start-page: 1 year: 2018 ident: 4653_CR49 publication-title: Horticul Res doi: 10.1038/s41438-017-0011-0 – volume: 66 start-page: 269 year: 2023 ident: 4653_CR23 publication-title: Genome doi: 10.1139/gen-2022-0083 – volume: 16 start-page: 314 year: 2023 ident: 4653_CR129 publication-title: Mol Plant doi: 10.1016/j.molp.2022.12.010 – volume: 22 start-page: 4836 year: 2003 ident: 4653_CR93 publication-title: EMBO J doi: 10.1093/emboj/cdg443 – volume: 39 start-page: 1161 year: 2020 ident: 4653_CR132 publication-title: Plant Cell Rep doi: 10.1007/s00299-020-02554-8 – volume: 188 start-page: 955 year: 2022 ident: 4653_CR68 publication-title: Plant Physiol doi: 10.1093/plphys/kiab524 – ident: 4653_CR81 doi: 10.17660/ACTAHORTIC.2007.745.5 – volume: 20 start-page: 1 year: 2009 ident: 4653_CR73 publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1000733 – volume: 497 start-page: 579 year: 2013 ident: 4653_CR84 publication-title: Nature doi: 10.1038/nature12211 – volume: 10 start-page: 18 year: 2000 ident: 4653_CR86 publication-title: Mol Cells doi: 10.1007/s10059-000-0018-4 – volume: 14 start-page: 1 issue: 1 year: 2019 ident: 4653_CR10 publication-title: PLoS ONE doi: 10.1371/JOURNAL.PONE.0209792 – volume: 13 start-page: 1 year: 2022 ident: 4653_CR36 publication-title: Front Genet doi: 10.3389/fgene.2022.1030536 – volume: 7 start-page: 1 year: 2007 ident: 4653_CR111 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-7-24 – volume: 88 start-page: 117 year: 2016 ident: 4653_CR2 publication-title: An Acad Bras Ciênc doi: 10.1590/0001-37652301620140616 – volume: 46 start-page: 270 year: 2014 ident: 4653_CR57 publication-title: Nat Genet doi: 10.1038/ng.2877 – volume: 34 start-page: 1812 year: 2017 ident: 4653_CR60 publication-title: Mol Biol Evol doi: 10.1093/molbev/msx116 – volume: 22 start-page: 870 year: 2012 ident: 4653_CR67 publication-title: Genome Res doi: 10.1101/GR.130740.111 – ident: 4653_CR4 doi: 10.17957/IJAB/15.0303 – ident: 4653_CR9 – volume: 69 start-page: 1018 year: 2012 ident: 4653_CR87 publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04851.x – volume: 111 start-page: 5135 year: 2014 ident: 4653_CR91 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1400975111 – volume: 20 start-page: 1 year: 2019 ident: 4653_CR85 publication-title: Int J Mol Sci doi: 10.3390/ijms20153837 – volume: 21 start-page: 1 year: 2023 ident: 4653_CR69 publication-title: BMC Biol doi: 10.1186/s12915-023-01560-y – volume: 1 start-page: 351 year: 2023 ident: 4653_CR44 publication-title: Plant Cell doi: 10.1093/plcell/koac305 – volume: 11 start-page: 1 year: 2024 ident: 4653_CR106 publication-title: Sci Data doi: 10.1038/s41597-024-02965-2 – volume: 457 start-page: 551 year: 2009 ident: 4653_CR88 publication-title: Nature doi: 10.1038/nature07723 – volume: 238 start-page: 391 year: 2018 ident: 4653_CR38 publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.04.060 – volume: 46 start-page: 707 year: 2014 ident: 4653_CR99 publication-title: Nat Genet doi: 10.1038/ng.3008 – volume: 20 start-page: 1 year: 2019 ident: 4653_CR127 publication-title: Int J Mol Sci doi: 10.3390/ijms20225675 – volume: 8 start-page: 1 year: 2018 ident: 4653_CR27 publication-title: Sci Rep doi: 10.1038/s41598-017-16399-x – volume: 2 start-page: 1 year: 2011 ident: 4653_CR82 publication-title: Mob DNA doi: 10.1186/1759-8753-2-4 – ident: 4653_CR116 doi: 10.1534/g3.111.000398 – volume: 480 start-page: 520 year: 2011 ident: 4653_CR130 publication-title: Nature doi: 10.1038/nature10625 – volume: 18 start-page: 1 year: 2020 ident: 4653_CR71 publication-title: PLoS Biol doi: 10.1371/journal.pbio.3000582 – volume: 139 start-page: 305 year: 2011 ident: 4653_CR31 publication-title: Genetica doi: 10.1007/s10709-011-9550-8 – volume: 50 start-page: 1282 year: 2018 ident: 4653_CR110 publication-title: Nat Genet doi: 10.1038/s41588-018-0158-0 – volume: 10 start-page: 1 year: 2015 ident: 4653_CR80 publication-title: PLoS ONE doi: 10.1371/journal.pone.0133962 |
| SSID | ssj0014377 |
| Score | 2.4590526 |
| SecondaryResourceType | review_article |
| Snippet | Main conclusion
We revised and integrated the genomic and epigenomic data into a comparative
Capsicum
ideogram, evidencing the advances and future... We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L.... Main conclusionWe revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives.... MAIN CONCLUSION: We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 82 |
| SubjectTerms | Agriculture Agronomy Amino acids Biomedical and Life Sciences Capsicum Capsicum - genetics Chromosomes Chromosomes, Plant - genetics DNA Ecology education Epigenetics epigenome Epigenome - genetics Epigenomics Forestry Gene mapping Gene sequencing Genome Size Genome, Plant - genetics Genomes genomics Histones Karyotype Karyotypes karyotyping Life Sciences Mapping Physical mapping Plant Sciences Review Similarity Taxonomic revision Taxonomy Whole genome sequencing |
| Title | A multidisciplinary and integrative review of the structural genome and epigenome of Capsicum L. species |
| URI | https://link.springer.com/article/10.1007/s00425-025-04653-w https://www.ncbi.nlm.nih.gov/pubmed/40057910 https://www.proquest.com/docview/3175471125 https://www.proquest.com/docview/3175681614 https://www.proquest.com/docview/3200284786 |
| Volume | 261 |
| WOSCitedRecordID | wos001440020000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1432-2048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014377 issn: 0032-0935 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xQFE5QLuFkkJXrtRb6ypxvIlzXFa76gGtEH1ob5Ede1sOJCuWh_rvO-M8oKKtBIdIiTJKRvaM5xuN5zPA-0QtMI5hWuKUNVxqK3hW0GaaRBRD4niy2rPrn6SzmZrPs9OmKWzV7nZvS5J-pe6a3bx9cTp-NSRSMH7bgw0Md4rc8ezL9652IOO0ZsqMBacyX9Mq8_dv_BmOHmDMB_VRH3amu09T-AXsNDCTjWq7eAlrruzD9ujHZUO14fqweVwhMPzVh2cTz1yNd1t0UCed_vYKfo6Y32t4v2uX6dKyll8CV0lW972wasEQRrKaipZoPBgxv144L--W580Tio31Eq3i-oKdfGLU44lp-h58m06-jj_z5lQGXmBydsVjUVgnjVZGUdFvqKNUGRnrsChsZARRsKUmRhwjE2EKm2UmsokxwjiEFkaJeB_Wy6p0B8CGGeZHNlzoTBKQk2qIA6VNlhiZCvxJAB_aycmXNflG3tEs-9HNQ7podPPbAI7a-csbR1zlBI8w_iKMC-Bd9xpdiOoiunTVdS2TKIS-8j8ytJkFI7lKAnhd20ankvQdvVEYwMfWEO4U-Le-bx4nfgjPRW1LPIyOYB3n1L2FzeLm6nx1OYBeOlcD7wi_ASrs_80 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RoDwO0G4fhFJwpd7AVeJ4E-e4IBCoywpRWnGL7NgLHMiuWB7qv2fGeQCCVmoPkRJllIzssecbzcxngK-JGqIfw7DEKWu41FbwrKBimkQUXeJ4stqz6_fTwUCdnmZHdVPYpKl2b1KSfqdum928fXE6fjUkUjB-9wpmJHosKuQ7_vGrzR3IOK2YMmPBKc1Xt8q8_I2n7ugZxnyWH_VuZ2_5_xR-A0s1zGS9yi7ewpQrO7DYO7uqqTZcB2a3RwgMf3fg9a5nrsa7OTqok05_ewfnPeZrDR937TJdWtbwS-Auyaq-FzYaMoSRrKKiJRoPRsyvl87Lu_FF_YRiO3qMVnFzyfrfGPV4Ypj-Hn7u7Z7s7PP6VAZeYHB2zWNRWCeNVkZR0q-ro1QZGeuwKGxkBFGwpSZGHCMTYQqbZSayiTHCOIQWRon4A0yXo9KtAOtmGB_ZcKgzSUBOqi4OlDZZYmQq8CcBbDaTk48r8o28pVn2o5uHdNHo5ncBrDXzl9cLcZITPEL_izAugC_ta1xClBfRpRvdVDKJQugr_yJDxSzoyVUSwMfKNlqVpO_ojcIAthpDeFDgz_qu_pv4Bszvnxz28_7B4PsnWBCVXfEwWoNpnF_3GWaL2-uLydW6Xw73KUoB2A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9RAEJ4IAtEHlROwirokvOFKu91rt48ncNF4uZAohLdmt7snPNC7wCHx3zuz21YMSEJ8aNKmk7vJ7mznm8zMNwDbmZqgH8OwxClruNRW8KKiYppMVH3ieLLas-uP8vFYnZwUhze6-H21e5uSDD0NxNJUz3dndrLbNb55W-M0ijUmgjB-vQCPJQ0Nonj923GXR5BpHlgzU8Ep5de0zdz9G3-7plt481au1Lug4fP_V_4FPGvgJxsEe1mFR67uwdPBj4uGgsP1YOnTFAHjrx4sH3hGa7xboQGeNBXuJZwOmK9BvNnNy3RtWcs7gV9PFvph2HTCEF6yQFFL9B6MGGHPnZd3s7PmCcX29Ayt5eqcjT4y6v3E8H0NjoYH3_c-82ZaA68waJvzVFTWSaOVUZQM7OskV0amOq4qmxhB1Gy5SRHfyEyYyhaFSWxmjDAOIYdRIl2HxXpau1fA-gXGTTae6EISwJOqjwulTZEZmQv8kwh22o0qZ4GUo-zol_3qljFdtLrldQSb7V6WzQG9LAk2oV9GeBfBVvcajxblS3TtpldBJlMIieU9MlTkgh5eZRFsBDvpVJK-0zeJI_jQGsUfBf6t7-uHib-HlcP9YTn6Mv76Bp6IYFY8TjZhEbfXvYWl6uf87PLinT8ZvwEmWwq8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multidisciplinary+and+integrative+review+of+the+structural+genome+and+epigenome+of+Capsicum+L.+species&rft.jtitle=Planta&rft.au=de+Almeida%2C+Breno+Machado&rft.au=Clarindo%2C+Wellington+Ronildo&rft.date=2025-04-01&rft.issn=0032-0935&rft.volume=261&rft.issue=4+p.82-82&rft.spage=82&rft.epage=82&rft_id=info:doi/10.1007%2Fs00425-025-04653-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon |