Edge Intelligence for Autonomous Driving in 6G Wireless System: Design Challenges and Solutions

In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing costs will be introduced to the AVs for processing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications Jg. 28; H. 2; S. 40 - 47
Hauptverfasser: Yang, Bo, Cao, Xuelin, Xiong, Kai, Yuen, Chau, Guan, Yong Liang, Leng, Supeng, Qian, Lijun, Han, Zhu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1284, 1558-0687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing costs will be introduced to the AVs for processing the tasks with the deployed machine learning (ML) model, while the inference accuracy may not be guaranteed. In this context, the advent of edge intelligence (EI) and sixth-generation (6G) wireless networking are expected to pave the way to more reliable and safer autonomous driving by providing multi-access edge computing (MEC) together with ML to AVs in close proximity. To realize this goal, we propose a two-tier EI-empowered autonomous driving framework. In the autonomous-vehicles tier, the autonomous vehicles are deployed with the shallow layers by splitting the trained deep neural network model. In the edge-intelligence tier, an edge server is implemented with the remaining layers (also deep layers) and an appropriately trained multi-task learning (MTL) model. In particular, obtaining the optimal offloading strategy (including the binary offloading decision and the computational resources allocation) can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which is solved via MTL in near-real-time with high accuracy. On another note, an edge-vehicle joint inference is proposed through neural network segmentation to achieve efficient online inference with data privacy-preserving and less communication delay. Experiments demonstrate the effectiveness of the proposed framework, and open research topics are finally listed.
AbstractList In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing costs will be introduced to the AVs for processing the tasks with the deployed machine learning (ML) model, while the inference accuracy may not be guaranteed. In this context, the advent of edge intelligence (EI) and sixth-generation (6G) wireless networking are expected to pave the way to more reliable and safer autonomous driving by providing multi-access edge computing (MEC) together with ML to AVs in close proximity. To realize this goal, we propose a two-tier EI-empowered autonomous driving framework. In the autonomous-vehicles tier, the autonomous vehicles are deployed with the shallow layers by splitting the trained deep neural network model. In the edge-intelligence tier, an edge server is implemented with the remaining layers (also deep layers) and an appropriately trained multi-task learning (MTL) model. In particular, obtaining the optimal offloading strategy (including the binary offloading decision and the computational resources allocation) can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which is solved via MTL in near-real-time with high accuracy. On another note, an edge-vehicle joint inference is proposed through neural network segmentation to achieve efficient online inference with data privacy-preserving and less communication delay. Experiments demonstrate the effectiveness of the proposed framework, and open research topics are finally listed.
Author Qian, Lijun
Xiong, Kai
Leng, Supeng
Yang, Bo
Guan, Yong Liang
Yuen, Chau
Han, Zhu
Cao, Xuelin
Author_xml – sequence: 1
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  email: bo_yang@sutd.edu.sg
  organization: Singapore University of Technology and Design,Singapore
– sequence: 2
  givenname: Xuelin
  surname: Cao
  fullname: Cao, Xuelin
  email: xuelin_cao@sutd.edu.sg
  organization: Singapore University of Technology and Design,Singapore
– sequence: 3
  givenname: Kai
  surname: Xiong
  fullname: Xiong, Kai
  email: xiongkaipai@163.com
  organization: University of Electronic Science and Technology of China (UESTC),China
– sequence: 4
  givenname: Chau
  surname: Yuen
  fullname: Yuen, Chau
  email: yuenchau@sutd.edu.sg
  organization: Singapore University of Technology and Design,Singapore
– sequence: 5
  givenname: Yong Liang
  surname: Guan
  fullname: Guan, Yong Liang
  email: eylguan@ntu.edu.sg
  organization: Nanyang Technological University,Singapore
– sequence: 6
  givenname: Supeng
  surname: Leng
  fullname: Leng, Supeng
  email: spleng@uestc.edu.cn
  organization: University of Electronic Science and Technology of China (UESTC),China
– sequence: 7
  givenname: Lijun
  surname: Qian
  fullname: Qian, Lijun
  email: liqian@pvamu.edu
  organization: Prairie View A&M University, Texas A&M University System,USA
– sequence: 8
  givenname: Zhu
  surname: Han
  fullname: Han, Zhu
  email: zhan2@uh.edu
  organization: University of Houston,USA
BookMark eNp9kD1PwzAQhi1UJNrCzMBiiTmt49hOzFa1pVQqYiioo5WPS3CV2sVOkPrvSdSKgYHpbnife3XPCA2MNYDQfUgmYUjk9HU3nxASTighhEp6hYYh50lARBIP-j0SQUgTdoNG3u-7YCy4GCK1LCrAa9NAXesKTA64tA7P2sYae7Ctxwunv7WpsDZYrPBOO6jBe7w9-QYOT3gBXlcGzz_TugZTgcepKfDW1m2jrfG36LpMaw93lzlGH8_L9_lLsHlbreezTZDTRDYB5SCZKFgRlzwCzkgWZyRjBU_zWOSZhJQWkmdlnjDCIBOMZnFeAhRJwRgpk2iMHs93j85-teAbtbetM12lopwKKaKQ9anpOZU7672DUh2dPqTupEKieouqs6g6OepisSP4HyLXTdq_1rhU1_9wD2dOA8Bvi2QRkSSOfgAzEYFA
CODEN IWCEAS
CitedBy_id crossref_primary_10_1109_JIOT_2023_3348590
crossref_primary_10_1016_j_eng_2025_05_012
crossref_primary_10_1109_TVT_2023_3257048
crossref_primary_10_1016_j_future_2024_07_027
crossref_primary_10_1109_ACCESS_2024_3521579
crossref_primary_10_1109_JIOT_2025_3546701
crossref_primary_10_1109_JIOT_2024_3465553
crossref_primary_10_1109_TVT_2023_3334257
crossref_primary_10_3390_info15090550
crossref_primary_10_1109_ACCESS_2022_3210584
crossref_primary_10_1109_TVT_2023_3306939
crossref_primary_10_1016_j_comnet_2024_111013
crossref_primary_10_1109_MNET_2024_3354209
crossref_primary_10_1364_JOCN_452105
crossref_primary_10_1109_TII_2021_3075444
crossref_primary_10_1061__ASCE_CO_1943_7862_0002187
crossref_primary_10_1360_SSI_2024_0321
crossref_primary_10_1016_j_dcan_2025_07_001
crossref_primary_10_1134_S0361768823100079
crossref_primary_10_1002_ett_4410
crossref_primary_10_1109_ACCESS_2022_3203711
crossref_primary_10_1016_j_comcom_2022_04_006
crossref_primary_10_1109_ACCESS_2024_3429184
crossref_primary_10_1109_JSAC_2022_3143223
crossref_primary_10_3390_s23041963
crossref_primary_10_1016_j_teler_2024_100116
crossref_primary_10_1109_ACCESS_2022_3187745
crossref_primary_10_1109_TITS_2022_3230430
crossref_primary_10_1109_TVT_2022_3203056
crossref_primary_10_1109_TSIPN_2023_3325963
crossref_primary_10_1080_10584587_2024_2322353
crossref_primary_10_1109_ACCESS_2023_3234761
crossref_primary_10_1016_j_comnet_2025_111300
crossref_primary_10_1109_TII_2023_3257308
crossref_primary_10_1016_j_comnet_2023_109872
crossref_primary_10_3390_ai4030039
crossref_primary_10_1016_j_vehcom_2022_100536
crossref_primary_10_1109_COMST_2024_3482978
crossref_primary_10_1109_OJCOMS_2025_3579240
crossref_primary_10_1109_TDSC_2024_3523561
crossref_primary_10_3390_electronics12020366
crossref_primary_10_1016_j_jksuci_2022_03_019
crossref_primary_10_1109_JSAC_2024_3460078
crossref_primary_10_1109_TMC_2023_3343939
crossref_primary_10_3390_s25165119
crossref_primary_10_1007_s11235_025_01325_8
crossref_primary_10_1049_2024_5802816
crossref_primary_10_3390_electronics12061472
crossref_primary_10_1109_TMLCN_2025_3576727
crossref_primary_10_1109_JIOT_2025_3531910
crossref_primary_10_1002_dac_70102
crossref_primary_10_1109_TITS_2021_3052355
crossref_primary_10_1109_ACCESS_2022_3174548
crossref_primary_10_1109_JIOT_2024_3357861
crossref_primary_10_1109_TVT_2023_3253695
crossref_primary_10_1016_j_eswa_2025_127273
crossref_primary_10_1016_j_vehcom_2023_100623
crossref_primary_10_1109_TITS_2022_3232153
crossref_primary_10_1109_TSC_2023_3340672
crossref_primary_10_1109_JSEN_2022_3228768
crossref_primary_10_1109_TITS_2022_3149860
crossref_primary_10_1109_MWC_014_2300277
crossref_primary_10_1016_j_cose_2023_103278
crossref_primary_10_1109_TITS_2024_3486555
crossref_primary_10_1109_TVT_2023_3264504
crossref_primary_10_1109_JSAC_2022_3227027
crossref_primary_10_1109_JIOT_2024_3353793
crossref_primary_10_1109_TITS_2023_3241251
crossref_primary_10_1109_TMC_2022_3199812
crossref_primary_10_1109_TNSE_2021_3103124
crossref_primary_10_1109_TNSM_2025_3561739
crossref_primary_10_3390_math13091540
crossref_primary_10_1109_MNET_2023_3321519
crossref_primary_10_1016_j_future_2024_107572
crossref_primary_10_1109_TMC_2025_3568248
crossref_primary_10_1007_s11276_024_03889_w
crossref_primary_10_1016_j_adhoc_2023_103343
crossref_primary_10_1109_JIOT_2023_3314923
crossref_primary_10_1109_JIOT_2023_3333826
crossref_primary_10_1109_MNET_110_2100301
crossref_primary_10_1109_TVT_2024_3409554
crossref_primary_10_1109_IOTM_001_2200178
crossref_primary_10_1109_TMC_2023_3259394
crossref_primary_10_1109_TIV_2023_3332675
crossref_primary_10_1109_JSAC_2022_3227032
crossref_primary_10_1109_MNET_2024_3468328
crossref_primary_10_1016_j_tcs_2022_06_014
crossref_primary_10_1109_JSTSP_2022_3161786
crossref_primary_10_1109_TMC_2024_3411295
crossref_primary_10_1109_TMC_2024_3438155
Cites_doi 10.1109/TMC.2020.2990630
10.1109/TVT.2020.3029109
10.1109/COMST.2020.2965856
10.1109/TVT.2020.2973651
10.1109/JIOT.2019.2903191
10.1109/TITS.2020.3015210
10.1109/MNET.2019.1800254
10.1109/MWC.2018.1700200
10.1109/TVT.2018.2876804
10.1109/MWC.2019.1800411
10.1109/LWC.2020.2984620
10.1109/COMST.2018.2888904
10.1109/MCOM.001.1900103
10.1109/MCOM.2019.1900271
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/MWC.001.2000292
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0687
EndPage 47
ExternalDocumentID 10_1109_MWC_001_2000292
9430907
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: EARS-1839818,CNS1717454,CNS-1731424,CNS-1702850
  funderid: 10.13039/100000001
– fundername: A*STAR
  grantid: A19D6a0053
  funderid: 10.13039/501100001348
GroupedDBID -~X
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c289t-25e946d4d7f53e540b7b0b4d5ac76cb9ea2d95bfc8404eb642b7cfeed8d440f83
IEDL.DBID RIE
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672740400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1284
IngestDate Mon Jun 30 10:24:03 EDT 2025
Tue Nov 18 20:56:41 EST 2025
Sat Nov 29 03:07:43 EST 2025
Wed Aug 27 02:30:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-25e946d4d7f53e540b7b0b4d5ac76cb9ea2d95bfc8404eb642b7cfeed8d440f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2526963148
PQPubID 75748
PageCount 8
ParticipantIDs crossref_primary_10_1109_MWC_001_2000292
ieee_primary_9430907
proquest_journals_2526963148
crossref_citationtrail_10_1109_MWC_001_2000292
PublicationCentury 2000
PublicationDate 2021-April
2021-4-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE wireless communications
PublicationTitleAbbrev WC-M
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
zhang (ref14) 2020
ref15
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/TMC.2020.2990630
– year: 2020
  ident: ref14
  publication-title: Autonomous unknown-application filtering and labeling for DL-based traffic classifier update
– ident: ref15
  doi: 10.1109/TVT.2020.3029109
– ident: ref4
  doi: 10.1109/COMST.2020.2965856
– ident: ref12
  doi: 10.1109/TVT.2020.2973651
– ident: ref7
  doi: 10.1109/JIOT.2019.2903191
– ident: ref6
  doi: 10.1109/TITS.2020.3015210
– ident: ref8
  doi: 10.1109/MNET.2019.1800254
– ident: ref10
  doi: 10.1109/MWC.2018.1700200
– ident: ref3
  doi: 10.1109/TVT.2018.2876804
– ident: ref9
  doi: 10.1109/MWC.2019.1800411
– ident: ref5
  doi: 10.1109/LWC.2020.2984620
– ident: ref2
  doi: 10.1109/COMST.2018.2888904
– ident: ref13
  doi: 10.1109/MCOM.001.1900103
– ident: ref1
  doi: 10.1109/MCOM.2019.1900271
SSID ssj0017656
Score 2.6629183
Snippet In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms 6G mobile communication
Artificial neural networks
Autonomous vehicles
Computational modeling
Computing costs
Edge computing
Inference
Intelligence
Machine learning
Mixed integer
Mobile computing
Model accuracy
Neural networks
Nonlinear programming
Real time
Resource allocation
Segmentation
Sensor systems
Servers
Vehicles
Wireless communication
Wireless sensor networks
Title Edge Intelligence for Autonomous Driving in 6G Wireless System: Design Challenges and Solutions
URI https://ieeexplore.ieee.org/document/9430907
https://www.proquest.com/docview/2526963148
Volume 28
WOSCitedRecordID wos000672740400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017656
  issn: 1536-1284
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigEGXgVRKMgDAwNp08SJY7aqD0CCigFEtyh-BFWqUtSm_H58ThoVAQNbBluyfLHvvvPd9wFcRSpIgkC5Dg27BqDwRDrC4BAn8SVHhyl4YlVLHtl4HE0m_LkGN1UvjNbaFp_pNn7at3w1lytMlXWQKpxj6_gWY2HRq1W9GLDQKrWaA4y6MhEtaXy6Lu88vfXxwcF2pXjc--aBrKTKj3vYOpfR_v-WdQB7ZRBJeoXVD6GmsyPY3aAWbEA8VO-aPGwQbhITnpLeKscuBgP3yWAxxWQCmWYkvCNYBTsztx4pKMxvycCWdpD-WmxlSZJMkSqLdgyvo-FL_94pxRQcaTBV7niB5jRUVLE08LWJ0wQTrqDGVJKFUnCdeIoHIpUG8VEtDCwRTKbGg0aKUjeN_BOoZ_NMnwJh1ER1Siq_qwSNXI0sj8ynqaJSeB4LmtBeb3AsS6ZxFLyYxRZxuDw2FsFiuri0SBOuqwkfBcnG30MbaIBqWLn3TWitLRiXh3AZe6ieHvoG8J39PuscdjwsUbGFOC2o54uVvoBt-ZlPl4tL-399AXtFzZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VBQkYeBVEoYAHBgbSpo4Tx2xVH7SirRiK6BbFj6BKVYr64Pdju2lUBAxsGWzJ8sW--8533wdwF0o_9n3pOiSoa4DCYuFwjUOc2BPMOEzOYqta0qfDYTges5cCPOS9MEopW3ymqubTvuXLmViZVFnNUIUz0zq-4xOC3XW3Vv5mQAOr1aqPsFGWCUlG5FN3WW3w1jRPDrYvBTP8zQdZUZUfN7F1L52j_y3sGA6zMBI11nY_gYJKT-Fgi1ywBFFbvivU26LcRDpARY3V0vQxaMCPWvOJSSegSYqCJ2TqYKf63kNrEvNH1LLFHai5kVtZoDiVKM-jncFrpz1qdp1MTsERGlUtHewrRgJJJE18T-lIjVPucqKNJWggOFMxlsznidCYjyiugQmnItE-NJSEuEnonUMxnaXqAhAlOq6TQnp1yUnoKsPzSD2SSCI4xtQvQ3WzwZHIuMaN5MU0spjDZZG2iCmnizKLlOE-n_Cxptn4e2jJGCAflu19GSobC0bZMVxE2OinB56GfJe_z7qFve5o0I_6veHzFexjU7Biy3IqUFzOV-oadsXncrKY39h_7QtVUtDb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Intelligence+for+Autonomous+Driving+in+6G+Wireless+System%3A+Design+Challenges+and+Solutions&rft.jtitle=IEEE+wireless+communications&rft.au=Cao%2C+Xuelin&rft.au=Xiong%2C+Kai&rft.au=Chau+Yuen&rft.au=Yong+Liang+Guan&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1284&rft.eissn=1558-0687&rft.volume=28&rft.issue=2&rft.spage=40&rft_id=info:doi/10.1109%2FMWC.001.2000292&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon