Regional Weather Variable Predictions by Machine Learning With Near-Surface Observational and Atmospheric Numerical Data

Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This article presents a novel machine learning (ML) model, ca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 21
Main Authors: Zhang, Yihe, Turney, Bryce, Sigdel, Purushottam, Yuan, Xu, Rappin, Eric, Lago, Adrian L., Kimball, Sytske, Chen, Li, Darby, Paul, Peng, Lu, Aygun, Sercan, Tu, Yazhou, Hassan Najafi, M., Tzeng, Nian-Feng
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This article presents a novel machine learning (ML) model, called Micro-Macro (MiMa), that integrates both near-surface observational data from Kentucky Mesonet stations (collected every 5 min, known as Micro data) and hourly atmospheric numerical outputs (termed as Macro data) for fine-resolution weather forecasting. The MiMa model employs an encoder-decoder transformer structure, with two encoders for processing multivariate data from both datasets and a decoder for forecasting weather variables over short time horizons. Each instance of the MiMa model, called a modelet, predicts the values of a specific weather parameter at an individual mesonet station. The approach is extended with Regional MiMa (Re-MiMa) modelets, which are designed to predict weather variables at ungauged locations by training on multivariate data from a few representative stations in a region, tagged with their elevations. Re-MiMa can provide highly accurate predictions across an entire region, even in areas without observational stations. Experimental results show that MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations, marking a significant advancement in weather forecasting accuracy and applicability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2025.3541545