Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data

The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspect...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers Vol. 71; no. 1; pp. 1 - 12
Main Authors: Mahmud, Naveed, Haase-Divine, Bennett, MacGillivray, Andrew, El-Araby, Esam
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9340, 1557-9956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspectral Imagery, classical computing systems are held back by enormous readouts of high-resolution data. Due to the multi-dimensionality of the readout data, processing and performing pattern recognition operations for this enormous data are both computationally intensive and time-consuming. In this article, we propose a methodology that utilizes Quantum Haar Transform (QHT) and a modified Grover's search algorithm for time-efficient dimension reduction and dynamic pattern recognition in data sets that are characterized by high spatial resolution and high dimensionality. QHT is performed on the data to reduce its dimensionality at preserved spatial locality, while the modified Grover's search algorithm is used to search for dynamically changing multiple patterns in the reduced data set. By performing search operations on the reduced data set, processing overheads are minimized. Moreover, quantum techniques produce results in less time than classical dimension reduction and search methods. The feasibility of the proposed methodology is verified by emulating the quantum algorithms on classical hardware based on field programmable gate arrays (FPGAs). We present designs of the quantum circuits for multi-dimensional QHT and multi-pattern Grover's search. We also present two emulation techniques and the corresponding hardware architectures for this methodology. A high performance reconfigurable computer (HPRC) was used for the experimental evaluation, and high-resolution images were used as the input data set. Analysis of the methods and implications of the experimental results are discussed.
AbstractList The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspectral Imagery, classical computing systems are held back by enormous readouts of high-resolution data. Due to the multi-dimensionality of the readout data, processing and performing pattern recognition operations for this enormous data are both computationally intensive and time-consuming. In this article, we propose a methodology that utilizes Quantum Haar Transform (QHT) and a modified Grover's search algorithm for time-efficient dimension reduction and dynamic pattern recognition in data sets that are characterized by high spatial resolution and high dimensionality. QHT is performed on the data to reduce its dimensionality at preserved spatial locality, while the modified Grover's search algorithm is used to search for dynamically changing multiple patterns in the reduced data set. By performing search operations on the reduced data set, processing overheads are minimized. Moreover, quantum techniques produce results in less time than classical dimension reduction and search methods. The feasibility of the proposed methodology is verified by emulating the quantum algorithms on classical hardware based on field programmable gate arrays (FPGAs). We present designs of the quantum circuits for multi-dimensional QHT and multi-pattern Grover's search. We also present two emulation techniques and the corresponding hardware architectures for this methodology. A high performance reconfigurable computer (HPRC) was used for the experimental evaluation, and high-resolution images were used as the input data set. Analysis of the methods and implications of the experimental results are discussed.
Author Mahmud, Naveed
Haase-Divine, Bennett
El-Araby, Esam
MacGillivray, Andrew
Author_xml – sequence: 1
  givenname: Naveed
  orcidid: 0000-0001-5570-0547
  surname: Mahmud
  fullname: Mahmud, Naveed
  email: naveed_923@ku.edu
  organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
– sequence: 2
  givenname: Bennett
  surname: Haase-Divine
  fullname: Haase-Divine, Bennett
  email: b.haase-divine@ku.edu
  organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
– sequence: 3
  givenname: Andrew
  orcidid: 0000-0001-7875-2876
  surname: MacGillivray
  fullname: MacGillivray, Andrew
  email: amacgillivray@ku.edu
  organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
– sequence: 4
  givenname: Esam
  orcidid: 0000-0002-4575-1049
  surname: El-Araby
  fullname: El-Araby, Esam
  email: esam@ku.edu
  organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
BookMark eNp9ULFOwzAQtRBItIWZgSUSc9qzHTvOiFKgSJWAtkwMkZvYxVVqF8cZ-HuStmJgYHqnd_fu7r0hOrfOKoRuMIwxhmyyyscECIwp0EQIeoYGmLE0zjLGz9EAAIs4owlcomHTbAGAE8gG6OOtlTa0u2hqdso2xtlooaq2DH2lnY9eZQjK92zpNtYceGOjmdl8xgvVuLo9UMu97DBe7lUZvKyjqQzyCl1oWTfq-oQj9P74sMpn8fzl6Tm_n8clEVmIcfcvqBQDY4lIoBRKc5mkkiuepmu15hTrROKKiq4tZCoZ01pokTFdCcorOkJ3x717775a1YRi61pvu5MF4Rhwigkm3dTkOFV61zRe6WLvzU767wJD0SdYrPKiT7A4Jdgp2B9FaUJv03YWTf2P7vaoM0qp3ysZSThhKf0Bbyl-zA
CODEN ITCOB4
CitedBy_id crossref_primary_10_1007_s11227_023_05433_7
crossref_primary_10_3390_rs17030550
crossref_primary_10_1002_andp_202200531
crossref_primary_10_1109_MIC_2021_3133845
crossref_primary_10_1007_s10462_024_11092_8
crossref_primary_10_1109_TC_2023_3248276
crossref_primary_10_1117_1_JRS_17_046509
crossref_primary_10_1002_qute_202400716
crossref_primary_10_1186_s40537_024_01022_4
crossref_primary_10_1155_2023_6766820
Cites_doi 10.1103/PhysRevA.72.050306
10.1109/SC.2016.73
10.22331/q-2018-08-06-79
10.1038/s41586-019-1197-0
10.1103/PhysRevLett.80.3408
10.1002/que2.19
10.1098/rspa.1992.0167
10.1038/s41598-018-32348-8
10.1137/S0097539795293172
10.1109/MSPEC.2018.8322045
10.1016/j.visres.2015.07.005
10.1145/3295500.3356155
10.1007/s10825-018-1287-5
10.1109/FPT.2004.1393309
10.1038/s41567-018-0124-x
10.1155/2019/1949121
10.1137/050644756
10.1038/s41467-017-01904-7
10.1016/j.cpc.2018.11.005
10.1007/3-540-49208-9_2
10.1155/2016/5718124
10.1088/2058-9565/ab7eeb
10.2172/15002155
10.1109/SOCC46988.2019.1570558150
10.1038/nature13171
10.1117/12.486347
10.1007/978-1-84628-887-6
10.1109/BigData.2018.8622457
10.1057/9781137379283
10.1017/cbo9780511976667
10.1126/science.339.6124.1163
10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
10.1038/s41586-019-1666-5
10.1145/237814.237866
10.1088/0253-6102/67/6/732
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2020.3034883
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 12
ExternalDocumentID 10_1109_TC_2020_3034883
9246257
Genre orig-research
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-13480e710554840c8ef6a47a6e677beb631f4a1d384848a7a55ff8f895fd836d3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sun Nov 30 04:47:35 EST 2025
Tue Nov 18 22:03:06 EST 2025
Sat Nov 29 01:35:42 EST 2025
Wed Aug 27 03:01:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-13480e710554840c8ef6a47a6e677beb631f4a1d384848a7a55ff8f895fd836d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4575-1049
0000-0001-5570-0547
0000-0001-7875-2876
PQID 2610171212
PQPubID 85452
PageCount 12
ParticipantIDs crossref_primary_10_1109_TC_2020_3034883
proquest_journals_2610171212
crossref_citationtrail_10_1109_TC_2020_3034883
ieee_primary_9246257
PublicationCentury 2000
PublicationDate 2022-Jan.-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Kelly (ref7) 2018
ref37
ref14
ref36
ref31
ref30
ref33
Wang (ref9) 2018
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
(ref5) 2020
ref24
ref45
ref26
ref25
Jordan (ref4) 2020
Kisel (ref11) 2020
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
Wickmann (ref15) 2007
ref29
ref8
ref3
Pednault (ref23)
Coles (ref32) 2018
ref40
References_xml – ident: ref31
  doi: 10.1103/PhysRevA.72.050306
– ident: ref42
  doi: 10.1109/SC.2016.73
– ident: ref10
  doi: 10.22331/q-2018-08-06-79
– ident: ref35
  doi: 10.1038/s41586-019-1197-0
– year: 2018
  ident: ref32
  article-title: Quantum algorithm implementations for beginners
– ident: ref29
  doi: 10.1103/PhysRevLett.80.3408
– ident: ref22
  doi: 10.1002/que2.19
– ident: ref3
  doi: 10.1098/rspa.1992.0167
– ident: ref20
  doi: 10.1038/s41598-018-32348-8
– ident: ref1
  doi: 10.1137/S0097539795293172
– ident: ref8
  doi: 10.1109/MSPEC.2018.8322045
– ident: ref45
  doi: 10.1016/j.visres.2015.07.005
– year: 2020
  ident: ref11
  article-title: Track reconstruction and pattern recognition in high-energy physics
– ident: ref37
  doi: 10.1145/3295500.3356155
– year: 2018
  ident: ref9
  article-title: IonQ has the most powerful quantum computers with 79 trapped ion qubits and 160 stored qubits
– ident: ref41
  doi: 10.1007/s10825-018-1287-5
– ident: ref14
  doi: 10.1109/FPT.2004.1393309
– ident: ref24
  doi: 10.1038/s41567-018-0124-x
– ident: ref40
  doi: 10.1155/2019/1949121
– ident: ref39
  doi: 10.1137/050644756
– ident: ref33
  doi: 10.1038/s41467-017-01904-7
– ident: ref38
  doi: 10.1016/j.cpc.2018.11.005
– ident: ref18
  doi: 10.1007/3-540-49208-9_2
– ident: ref26
  doi: 10.1155/2016/5718124
– ident: ref25
  doi: 10.1088/2058-9565/ab7eeb
– ident: ref13
  doi: 10.2172/15002155
– ident: ref23
  article-title: Leveraging secondary storage to simulate deep 54-qubit sycamore circuits
– ident: ref44
  doi: 10.1109/SOCC46988.2019.1570558150
– volume-title: The D-Wave 2000QTM Quantum Computer Technology Overview
  year: 2020
  ident: ref5
– ident: ref34
  doi: 10.1038/nature13171
– ident: ref28
  doi: 10.1117/12.486347
– ident: ref27
  doi: 10.1007/978-1-84628-887-6
– ident: ref30
  doi: 10.1109/BigData.2018.8622457
– ident: ref12
  doi: 10.1057/9781137379283
– ident: ref16
  doi: 10.1017/cbo9780511976667
– year: 2007
  ident: ref15
  article-title: A wavelet approach to dimension reduction and classification of hyperspectral data
– ident: ref17
  doi: 10.1126/science.339.6124.1163
– ident: ref21
  doi: 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
– volume-title: Microsoft Quantum
  year: 2020
  ident: ref4
  article-title: Quantum algorithm zoo
– ident: ref36
  doi: 10.1038/s41586-019-1666-5
– ident: ref2
  doi: 10.1145/237814.237866
– volume-title: Google AI Blog
  year: 2018
  ident: ref7
  article-title: A preview of Bristlecone, Googles new quantum processor
– ident: ref19
  doi: 10.1088/0253-6102/67/6/732
SSID ssj0006209
Score 2.3892417
Snippet The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Circuit design
Computers
Datasets
Dimensionality reduction
Feasibility
Field programmable gate arrays
field-programmable gate arrays (FPGAs)
Haar transformations
Hardware
High resolution
Hyperspectral imaging
Image resolution
Logic gates
Methodology
Pattern recognition
Quantum computers
Quantum computing
Qubit
Reduction
Remote sensing
Search algorithms
Search methods
Spatial resolution
Transforms
Title Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data
URI https://ieeexplore.ieee.org/document/9246257
https://www.proquest.com/docview/2610171212
Volume 71
WOSCitedRecordID wos000730414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0VxAADHwVE-ZIHBgYCSePEzogKiAFVBQpCYogc5yxVgoKg5fdz57oVCBjYIseWIj9_vcv5PYADtqCyRBwiS4dRIigaoypTGFmUDivtrPGekfdXqtvVDw9FrwFHs7swiOiTz_CYH_2__PrFjjlUdkJcgY7rag7mlMond7Vmq24-TedIaAKnMg4yPklcnPQ7xAPbRE_jlIZr-m0H8pYqP9Zhv7lcrPzvs1ZhORwixekE9TVo4LAJK1ODBhHmaxOWvqgNrsPj9Zi6cfwszljRn6Nk4oaFWxkaQWdX0fNam1wakoqofDAUnAoScZh_MkjFrU_Cjti5nsMk4syMzAbcXZz3O5dR8FaILFEsdqCXOkbF9piSoLIaXW6kMjnmSlVY5WnipEnqVNNrbZTJMue000Xmap3mdboJ88OXIW6BqBMrTU3tiNtJRXwzrtqZKxTmsmqbDFtwPO3v0gbhcfa_eCo9AYmLst8pGaAyANSCw1mD14nmxt9V1xmPWbUARQt2p4CWYU6-l8QVWRyI9urt31vtwGKbLzf4AMsuzI_exrgHC_ZjNHh_2_fD7RMVLtJK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BQKI9lGfVUB4-cODQJfvwrr1HFEAgQsQjVEg9rLzesYREQxUSfj8zjhO1anvgtvLa0sqfX9_s-PsADtiCyhJxiCwdRomgaIzqXGFkUTqstbPGe0Z-76l-Xz88lNcL8G1-FwYRffIZHvGj_5ffPNsJh8o6xBXouK4WYSmXMo2nt7Xm624xS-hIaApnMg5CPklcdgZdYoIpEdQ4owGb_bEHeVOVv1Ziv72crb7vw9bgUzhGiuMp7uuwgMMNWJ1ZNIgwYzfg4296g5vw42ZCHTn5KU5Y05_jZOKWpVsZHEGnV3Ht1Ta5NKQVUfnjUHAySMSB_ukwFXc-DTti73oOlIgTMzZbcH92OuieR8FdIbJEstiDXuoYFRtkSgLLanSFkcoUWChVY11kiZMmaTJNr7VRJs-d006XuWt0VjTZZ2gNn4f4BUSTWGkaakfsTipinHGd5q5UWMg6NTm24WjW35UN0uPsgPFUeQoSl9WgWzFAVQCoDYfzBr-mqhv_r7rJeMyrBSjasDMDtAqz8qUitsjyQLRbb_-71T6snA-uelXvon_5FT6kfNXBh1t2oDUeTXAXlu3r-PFltOeH3hsvUtWR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Dimension+Reduction+for+Pattern+Recognition+in+High-Resolution+Spatio-Spectral+Data&rft.jtitle=IEEE+transactions+on+computers&rft.au=Mahmud%2C+Naveed&rft.au=Haase-Divine%2C+Bennett&rft.au=MacGillivray%2C+Andrew&rft.au=El-Araby%2C+Esam&rft.date=2022-01-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTC.2020.3034883&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2020_3034883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon