Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data
The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspect...
Uložené v:
| Vydané v: | IEEE transactions on computers Ročník 71; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9340, 1557-9956 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspectral Imagery, classical computing systems are held back by enormous readouts of high-resolution data. Due to the multi-dimensionality of the readout data, processing and performing pattern recognition operations for this enormous data are both computationally intensive and time-consuming. In this article, we propose a methodology that utilizes Quantum Haar Transform (QHT) and a modified Grover's search algorithm for time-efficient dimension reduction and dynamic pattern recognition in data sets that are characterized by high spatial resolution and high dimensionality. QHT is performed on the data to reduce its dimensionality at preserved spatial locality, while the modified Grover's search algorithm is used to search for dynamically changing multiple patterns in the reduced data set. By performing search operations on the reduced data set, processing overheads are minimized. Moreover, quantum techniques produce results in less time than classical dimension reduction and search methods. The feasibility of the proposed methodology is verified by emulating the quantum algorithms on classical hardware based on field programmable gate arrays (FPGAs). We present designs of the quantum circuits for multi-dimensional QHT and multi-pattern Grover's search. We also present two emulation techniques and the corresponding hardware architectures for this methodology. A high performance reconfigurable computer (HPRC) was used for the experimental evaluation, and high-resolution images were used as the input data set. Analysis of the methods and implications of the experimental results are discussed. |
|---|---|
| AbstractList | The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspectral Imagery, classical computing systems are held back by enormous readouts of high-resolution data. Due to the multi-dimensionality of the readout data, processing and performing pattern recognition operations for this enormous data are both computationally intensive and time-consuming. In this article, we propose a methodology that utilizes Quantum Haar Transform (QHT) and a modified Grover's search algorithm for time-efficient dimension reduction and dynamic pattern recognition in data sets that are characterized by high spatial resolution and high dimensionality. QHT is performed on the data to reduce its dimensionality at preserved spatial locality, while the modified Grover's search algorithm is used to search for dynamically changing multiple patterns in the reduced data set. By performing search operations on the reduced data set, processing overheads are minimized. Moreover, quantum techniques produce results in less time than classical dimension reduction and search methods. The feasibility of the proposed methodology is verified by emulating the quantum algorithms on classical hardware based on field programmable gate arrays (FPGAs). We present designs of the quantum circuits for multi-dimensional QHT and multi-pattern Grover's search. We also present two emulation techniques and the corresponding hardware architectures for this methodology. A high performance reconfigurable computer (HPRC) was used for the experimental evaluation, and high-resolution images were used as the input data set. Analysis of the methods and implications of the experimental results are discussed. |
| Author | Mahmud, Naveed Haase-Divine, Bennett El-Araby, Esam MacGillivray, Andrew |
| Author_xml | – sequence: 1 givenname: Naveed orcidid: 0000-0001-5570-0547 surname: Mahmud fullname: Mahmud, Naveed email: naveed_923@ku.edu organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA – sequence: 2 givenname: Bennett surname: Haase-Divine fullname: Haase-Divine, Bennett email: b.haase-divine@ku.edu organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA – sequence: 3 givenname: Andrew orcidid: 0000-0001-7875-2876 surname: MacGillivray fullname: MacGillivray, Andrew email: amacgillivray@ku.edu organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA – sequence: 4 givenname: Esam orcidid: 0000-0002-4575-1049 surname: El-Araby fullname: El-Araby, Esam email: esam@ku.edu organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA |
| BookMark | eNp9ULFOwzAQtRBItIWZgSUSc9qzHTvOiFKgSJWAtkwMkZvYxVVqF8cZ-HuStmJgYHqnd_fu7r0hOrfOKoRuMIwxhmyyyscECIwp0EQIeoYGmLE0zjLGz9EAAIs4owlcomHTbAGAE8gG6OOtlTa0u2hqdso2xtlooaq2DH2lnY9eZQjK92zpNtYceGOjmdl8xgvVuLo9UMu97DBe7lUZvKyjqQzyCl1oWTfq-oQj9P74sMpn8fzl6Tm_n8clEVmIcfcvqBQDY4lIoBRKc5mkkiuepmu15hTrROKKiq4tZCoZ01pokTFdCcorOkJ3x717775a1YRi61pvu5MF4Rhwigkm3dTkOFV61zRe6WLvzU767wJD0SdYrPKiT7A4Jdgp2B9FaUJv03YWTf2P7vaoM0qp3ysZSThhKf0Bbyl-zA |
| CODEN | ITCOB4 |
| CitedBy_id | crossref_primary_10_1007_s11227_023_05433_7 crossref_primary_10_3390_rs17030550 crossref_primary_10_1002_andp_202200531 crossref_primary_10_1109_MIC_2021_3133845 crossref_primary_10_1007_s10462_024_11092_8 crossref_primary_10_1109_TC_2023_3248276 crossref_primary_10_1117_1_JRS_17_046509 crossref_primary_10_1002_qute_202400716 crossref_primary_10_1186_s40537_024_01022_4 crossref_primary_10_1155_2023_6766820 |
| Cites_doi | 10.1103/PhysRevA.72.050306 10.1109/SC.2016.73 10.22331/q-2018-08-06-79 10.1038/s41586-019-1197-0 10.1103/PhysRevLett.80.3408 10.1002/que2.19 10.1098/rspa.1992.0167 10.1038/s41598-018-32348-8 10.1137/S0097539795293172 10.1109/MSPEC.2018.8322045 10.1016/j.visres.2015.07.005 10.1145/3295500.3356155 10.1007/s10825-018-1287-5 10.1109/FPT.2004.1393309 10.1038/s41567-018-0124-x 10.1155/2019/1949121 10.1137/050644756 10.1038/s41467-017-01904-7 10.1016/j.cpc.2018.11.005 10.1007/3-540-49208-9_2 10.1155/2016/5718124 10.1088/2058-9565/ab7eeb 10.2172/15002155 10.1109/SOCC46988.2019.1570558150 10.1038/nature13171 10.1117/12.486347 10.1007/978-1-84628-887-6 10.1109/BigData.2018.8622457 10.1057/9781137379283 10.1017/cbo9780511976667 10.1126/science.339.6124.1163 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P 10.1038/s41586-019-1666-5 10.1145/237814.237866 10.1088/0253-6102/67/6/732 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TC.2020.3034883 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9956 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TC_2020_3034883 9246257 |
| Genre | orig-research |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX ABUFD CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c289t-13480e710554840c8ef6a47a6e677beb631f4a1d384848a7a55ff8f895fd836d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9340 |
| IngestDate | Sun Nov 30 04:47:35 EST 2025 Tue Nov 18 22:03:06 EST 2025 Sat Nov 29 01:35:42 EST 2025 Wed Aug 27 03:01:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c289t-13480e710554840c8ef6a47a6e677beb631f4a1d384848a7a55ff8f895fd836d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4575-1049 0000-0001-5570-0547 0000-0001-7875-2876 |
| PQID | 2610171212 |
| PQPubID | 85452 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TC_2020_3034883 proquest_journals_2610171212 crossref_citationtrail_10_1109_TC_2020_3034883 ieee_primary_9246257 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-1 2022-1-1 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computers |
| PublicationTitleAbbrev | TC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 Kelly (ref7) 2018 ref37 ref14 ref36 ref31 ref30 ref33 Wang (ref9) 2018 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref5) 2020 ref24 ref45 ref26 ref25 Jordan (ref4) 2020 Kisel (ref11) 2020 ref20 ref42 ref41 ref22 ref44 ref21 ref28 ref27 Wickmann (ref15) 2007 ref29 ref8 ref3 Pednault (ref23) Coles (ref32) 2018 ref40 |
| References_xml | – ident: ref31 doi: 10.1103/PhysRevA.72.050306 – ident: ref42 doi: 10.1109/SC.2016.73 – ident: ref10 doi: 10.22331/q-2018-08-06-79 – ident: ref35 doi: 10.1038/s41586-019-1197-0 – year: 2018 ident: ref32 article-title: Quantum algorithm implementations for beginners – ident: ref29 doi: 10.1103/PhysRevLett.80.3408 – ident: ref22 doi: 10.1002/que2.19 – ident: ref3 doi: 10.1098/rspa.1992.0167 – ident: ref20 doi: 10.1038/s41598-018-32348-8 – ident: ref1 doi: 10.1137/S0097539795293172 – ident: ref8 doi: 10.1109/MSPEC.2018.8322045 – ident: ref45 doi: 10.1016/j.visres.2015.07.005 – year: 2020 ident: ref11 article-title: Track reconstruction and pattern recognition in high-energy physics – ident: ref37 doi: 10.1145/3295500.3356155 – year: 2018 ident: ref9 article-title: IonQ has the most powerful quantum computers with 79 trapped ion qubits and 160 stored qubits – ident: ref41 doi: 10.1007/s10825-018-1287-5 – ident: ref14 doi: 10.1109/FPT.2004.1393309 – ident: ref24 doi: 10.1038/s41567-018-0124-x – ident: ref40 doi: 10.1155/2019/1949121 – ident: ref39 doi: 10.1137/050644756 – ident: ref33 doi: 10.1038/s41467-017-01904-7 – ident: ref38 doi: 10.1016/j.cpc.2018.11.005 – ident: ref18 doi: 10.1007/3-540-49208-9_2 – ident: ref26 doi: 10.1155/2016/5718124 – ident: ref25 doi: 10.1088/2058-9565/ab7eeb – ident: ref13 doi: 10.2172/15002155 – ident: ref23 article-title: Leveraging secondary storage to simulate deep 54-qubit sycamore circuits – ident: ref44 doi: 10.1109/SOCC46988.2019.1570558150 – volume-title: The D-Wave 2000QTM Quantum Computer Technology Overview year: 2020 ident: ref5 – ident: ref34 doi: 10.1038/nature13171 – ident: ref28 doi: 10.1117/12.486347 – ident: ref27 doi: 10.1007/978-1-84628-887-6 – ident: ref30 doi: 10.1109/BigData.2018.8622457 – ident: ref12 doi: 10.1057/9781137379283 – ident: ref16 doi: 10.1017/cbo9780511976667 – year: 2007 ident: ref15 article-title: A wavelet approach to dimension reduction and classification of hyperspectral data – ident: ref17 doi: 10.1126/science.339.6124.1163 – ident: ref21 doi: 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P – volume-title: Microsoft Quantum year: 2020 ident: ref4 article-title: Quantum algorithm zoo – ident: ref36 doi: 10.1038/s41586-019-1666-5 – ident: ref2 doi: 10.1145/237814.237866 – volume-title: Google AI Blog year: 2018 ident: ref7 article-title: A preview of Bristlecone, Googles new quantum processor – ident: ref19 doi: 10.1088/0253-6102/67/6/732 |
| SSID | ssj0006209 |
| Score | 2.3893287 |
| Snippet | The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Circuit design Computers Datasets Dimensionality reduction Feasibility Field programmable gate arrays field-programmable gate arrays (FPGAs) Haar transformations Hardware High resolution Hyperspectral imaging Image resolution Logic gates Methodology Pattern recognition Quantum computers Quantum computing Qubit Reduction Remote sensing Search algorithms Search methods Spatial resolution Transforms |
| Title | Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data |
| URI | https://ieeexplore.ieee.org/document/9246257 https://www.proquest.com/docview/2610171212 |
| Volume | 71 |
| WOSCitedRecordID | wos000730414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006209 issn: 0018-9340 databaseCode: RIE dateStart: 19680101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8aAHq61itUoOHjy4bbbZTbJHqRZPpWqFgodlPxIQtJV--PudSdOiqAdvSzaBJZPJ5M1O3gO4iDWXXJUysJyXAcZbiy4lo8AKlWuZEOGLdWITajDQ43EyrMDV5i6MMcYVn5k2Pbp_-eW0WFKqrINYAY_ragu2lJKru1qbXVeuyzlCdGARcU_jE_KkM-ohDuwiPOUCl6v4FoGcpMqPfdgFl37tf5-1D3v-EMmuV1Y_gIqZ1KG2Fmhg3l_rsPuFbbABz_dLnMblG7shRn_KkrEHIm4l0zA8u7Kh49qkVl9UhO0vE0alIAGl-VeLlD26IuyAlOspTcJuskV2CE_921HvLvDaCkGBEIsU6CPNjSJ5zAgxXqGNlVmkMmmkUrnJpQhtlIWl0PhaZyqLY2u11UlsSy1kKY6gOplOzDGwIku6RvNESBNHppS5CTEChnlBpOSFSZrQXs93WnjicdK_eE0dAOFJOuqlZKDUG6gJl5sB7yvOjb-7Nsgem27eFE1orQ2aep-cp4gViRwIY_XJ76NOYadLlxtcgqUF1cVsac5gu_hYvMxn5265fQIpyNEK |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDh48uDbbZJPsUaqiqMVHBcHDso8EBK3Sh7_fmTQtinrwtmQTWDKZTL7ZyfcB7CeGK64rFTnOqwjjrUOXUjJyQhdGpUT44rzYhG61zONjejMBh-O7MNZaX3xmj-jR_8uv3soBpcrqiBXwuK4nYTqRssGHt7XG-64aFXTE6MJC8kDkE_O03m4iEmwgQOUCF6z4FoO8qMqPndiHl7PF_33YEiyEYyQ7Htp9GSZsZwUWRxINLHjsCsx_4RtchafbAU7k4JWdEKc_5cnYHVG3knEYnl7ZjWfbpNZQVoTtzx1GxSARJfqHy5Td-zLsiLTrKVHCTvJ-vgYPZ6ft5nkU1BWiEkEWadBLw60mgUyJKK801qlc6lxZpXVhCyViJ_O4EgZfm1znSeKccSZNXGWEqsQ6THXeOnYDWJmnDWt4KpRNpK1UYWOMgXFREi15adMaHI3mOysD9TgpYLxkHoLwNGs3MzJQFgxUg4PxgPch68bfXVfJHuNuwRQ12B4ZNAte2csQLRI9EEbrzd9H7cHsefv6Kru6aF1uwVyDrjr4dMs2TPW7A7sDM-VH_7nX3fVL7xMx8tRR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Dimension+Reduction+for+Pattern+Recognition+in+High-Resolution+Spatio-Spectral+Data&rft.jtitle=IEEE+transactions+on+computers&rft.au=Mahmud%2C+Naveed&rft.au=Haase-Divine%2C+Bennett&rft.au=MacGillivray%2C+Andrew&rft.au=El-Araby%2C+Esam&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=0018-9340&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTC.2020.3034883&rft.externalDocID=9246257 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |