Levenberg‐Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells

Summary Fast and precise identification of several unknown parameters for solid oxide fuel cell (SOFC) models play a critical role in modeling analysis, optimal control, and behavior prediction. However, inherent high‐nonlinear, multi‐variable, and strongly coupled features usually lead to thorny ob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of energy research Ročník 45; číslo 12; s. 17903 - 17923
Hlavní autori: Yang, Bo, Chen, Yijun, Guo, Zhengxun, Wang, Jingbo, Zeng, Chunyuan, Li, Danyang, Shu, Hongchun, Shan, Jieshan, Fu, Ting, Zhang, Xiaoshun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Inc 10.10.2021
Predmet:
ISSN:0363-907X, 1099-114X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Fast and precise identification of several unknown parameters for solid oxide fuel cell (SOFC) models play a critical role in modeling analysis, optimal control, and behavior prediction. However, inherent high‐nonlinear, multi‐variable, and strongly coupled features usually lead to thorny obstacles that hinder conventional methods to identify them with a high speed, high accuracy, and reliable stability. Hence, a Levenberg‐Marquardt backpropagation (LMBP) algorithm‐based parameter identification technique is proposed in this study, which is applied to efficiently train designed artificial neural networks (ANNs) to implement the identification task. Furthermore, two typical models, for example, electrochemical model (ECM) and steady‐state model (SSM), are taken into account to validate the identification performance of the LMBP algorithm under different operation conditions. Simulation results based on MATLAB demonstrate that the LMBP algorithm can extremely improve the accuracy, speed, and stability for estimating these unknown parameters via a comprehensive comparison with four mainstream meta‐heuristic algorithms, that is, artificial ecosystem‐based optimization (AEO), equilibrium optimizer (EO), grey wolf optimization (GWO), and moth‐flame optimization (MFO).
AbstractList Fast and precise identification of several unknown parameters for solid oxide fuel cell (SOFC) models play a critical role in modeling analysis, optimal control, and behavior prediction. However, inherent high‐nonlinear, multi‐variable, and strongly coupled features usually lead to thorny obstacles that hinder conventional methods to identify them with a high speed, high accuracy, and reliable stability. Hence, a Levenberg‐Marquardt backpropagation (LMBP) algorithm‐based parameter identification technique is proposed in this study, which is applied to efficiently train designed artificial neural networks (ANNs) to implement the identification task. Furthermore, two typical models, for example, electrochemical model (ECM) and steady‐state model (SSM), are taken into account to validate the identification performance of the LMBP algorithm under different operation conditions. Simulation results based on MATLAB demonstrate that the LMBP algorithm can extremely improve the accuracy, speed, and stability for estimating these unknown parameters via a comprehensive comparison with four mainstream meta‐heuristic algorithms, that is, artificial ecosystem‐based optimization (AEO), equilibrium optimizer (EO), grey wolf optimization (GWO), and moth‐flame optimization (MFO).
Summary Fast and precise identification of several unknown parameters for solid oxide fuel cell (SOFC) models play a critical role in modeling analysis, optimal control, and behavior prediction. However, inherent high‐nonlinear, multi‐variable, and strongly coupled features usually lead to thorny obstacles that hinder conventional methods to identify them with a high speed, high accuracy, and reliable stability. Hence, a Levenberg‐Marquardt backpropagation (LMBP) algorithm‐based parameter identification technique is proposed in this study, which is applied to efficiently train designed artificial neural networks (ANNs) to implement the identification task. Furthermore, two typical models, for example, electrochemical model (ECM) and steady‐state model (SSM), are taken into account to validate the identification performance of the LMBP algorithm under different operation conditions. Simulation results based on MATLAB demonstrate that the LMBP algorithm can extremely improve the accuracy, speed, and stability for estimating these unknown parameters via a comprehensive comparison with four mainstream meta‐heuristic algorithms, that is, artificial ecosystem‐based optimization (AEO), equilibrium optimizer (EO), grey wolf optimization (GWO), and moth‐flame optimization (MFO).
Author Li, Danyang
Shu, Hongchun
Shan, Jieshan
Chen, Yijun
Wang, Jingbo
Yang, Bo
Zeng, Chunyuan
Fu, Ting
Zhang, Xiaoshun
Guo, Zhengxun
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-5453-0707
  surname: Yang
  fullname: Yang, Bo
  organization: Kunming University of Science and Technology
– sequence: 2
  givenname: Yijun
  surname: Chen
  fullname: Chen, Yijun
  organization: Kunming University of Science and Technology
– sequence: 3
  givenname: Zhengxun
  surname: Guo
  fullname: Guo, Zhengxun
  organization: Kunming University of Science and Technology
– sequence: 4
  givenname: Jingbo
  orcidid: 0000-0002-6316-2678
  surname: Wang
  fullname: Wang, Jingbo
  organization: Kunming University of Science and Technology
– sequence: 5
  givenname: Chunyuan
  surname: Zeng
  fullname: Zeng, Chunyuan
  organization: Kunming University of Science and Technology
– sequence: 6
  givenname: Danyang
  surname: Li
  fullname: Li, Danyang
  organization: Kunming University of Science and Technology
– sequence: 7
  givenname: Hongchun
  surname: Shu
  fullname: Shu, Hongchun
  organization: Kunming University of Science and Technology
– sequence: 8
  givenname: Jieshan
  orcidid: 0000-0002-5521-1249
  surname: Shan
  fullname: Shan, Jieshan
  email: jieshanshan82@outlook.com
  organization: Kunming University of Science and Technology
– sequence: 9
  givenname: Ting
  surname: Fu
  fullname: Fu, Ting
  organization: Kunming University of Science and Technology
– sequence: 10
  givenname: Xiaoshun
  surname: Zhang
  fullname: Zhang, Xiaoshun
  organization: Shantou University
BookMark eNp1kM1OwzAQhC1UJEpBvIIlDhxQih0ncXxEVfmRipAQSL1FG2ddXNK4dVKgNx6BZ-RJSBtOCE57mE8zs3NIepWrkJATzoacsfAC_TBRodojfc6UCjiPpj3SZyIRgWJyekAO63rOWKtx2Sdmgq9Y5ehnXx-fd-BXa_BFQ3PQL0vvljCDxrqKQjlz3jbPC2qcp0vwsMAGPbUFVo01VneYM7R2pS2oe28VatZYUo1lWR-RfQNljcc_d0CersaPo5tgcn99O7qcBDpM27JhwjBGjHksOctT4BApA4kUuZC5kobxQkQ6B6EjAyFnIQhkqVZSRWkuRCQG5LTzbcuv1lg32dytfdVGZmEsWSjjpB1iQM46SntX1x5NtvR2AX6TcZZtR8zQZ9sRWzL4RWrb7H5tPNjyD_68499siZv_bLPxw47-BjQxhYI
CitedBy_id crossref_primary_10_3389_fenrg_2022_853991
crossref_primary_10_3389_fenrg_2021_824691
crossref_primary_10_1016_j_rser_2025_116000
crossref_primary_10_1016_j_ijoes_2025_101021
crossref_primary_10_1016_j_renene_2025_123995
crossref_primary_10_1007_s11581_025_06599_1
crossref_primary_10_1016_j_radphyschem_2025_112666
crossref_primary_10_1016_j_compchemeng_2025_109322
crossref_primary_10_1016_j_seta_2021_101825
crossref_primary_10_1140_epjp_s13360_024_05883_9
crossref_primary_10_1016_j_ijft_2024_100849
crossref_primary_10_3389_fenrg_2021_835397
crossref_primary_10_3390_en16062806
crossref_primary_10_1016_j_apradiso_2024_111375
crossref_primary_10_3389_fenrg_2022_844690
crossref_primary_10_3390_pr12112504
crossref_primary_10_1109_TPEL_2022_3211568
crossref_primary_10_3390_su14169882
crossref_primary_10_1016_j_biortech_2023_129820
crossref_primary_10_1016_j_engappai_2024_108141
crossref_primary_10_1007_s10462_023_10696_w
crossref_primary_10_1016_j_ijhydene_2023_07_027
crossref_primary_10_1016_j_psep_2025_106998
crossref_primary_10_3390_en17164140
crossref_primary_10_3390_agriculture12060780
crossref_primary_10_1016_j_matchemphys_2025_131442
crossref_primary_10_3390_app14177552
crossref_primary_10_1016_j_powtec_2023_118551
Cites_doi 10.1016/j.energy.2019.116811
10.1016/j.est.2020.101314
10.1016/j.jpowsour.2015.04.155
10.1109/TIE.2016.2618755
10.1016/j.enconman.2017.06.020
10.1109/TIE.2007.896480
10.1021/ie100032c
10.1016/j.ijhydene.2013.09.072
10.1016/j.apenergy.2017.08.027
10.1016/j.jclepro.2019.01.150
10.1016/j.enconman.2018.08.082
10.1016/j.applthermaleng.2019.114310
10.1016/j.enconman.2019.112204
10.1186/s41601-021-00181-3
10.1016/j.energy.2009.02.012
10.1109/JESTPE.2019.2901747
10.1016/j.energy.2018.10.038
10.1109/WCICA.2010.5554639
10.1109/TPWRS.2020.2966509
10.1016/j.energy.2018.11.091
10.1016/j.energy.2019.07.100
10.1016/j.enconman.2020.112595
10.1016/j.ijhydene.2018.03.161
10.1016/j.ijepes.2015.07.036
10.1016/j.jpowsour.2014.08.130
10.4028/www.scientific.net/AMR.557-559.2202
10.1016/j.renene.2019.01.072
10.1109/TNN.2010.2045657
10.1016/j.renene.2017.12.047
10.1016/j.jpowsour.2005.03.174
10.1016/j.apenergy.2018.01.098
10.1016/j.renene.2019.12.105
10.1016/j.enconman.2016.12.063
10.1016/j.ijhydene.2014.01.064
10.1109/TPWRS.2020.3024955
10.1002/fuce.201100140
10.1186/s41601-019-0147-z
10.1016/j.energy.2020.117843
10.1016/j.enconman.2017.12.090
10.1016/j.energy.2019.116613
10.1186/s41601-020-0154-0
10.1016/j.enconman.2020.112856
10.1016/j.ijhydene.2015.04.042
10.1016/j.enconman.2018.10.074
10.1016/j.est.2020.102153
10.1016/j.enconman.2016.10.062
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.6929
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 17923
ExternalDocumentID 10_1002_er_6929
ER6929
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61963020; 51907112
– fundername: Key Program of National Natural Science Foundation of China
  funderid: 52037003
– fundername: Major Special Project of Yunnan Province of China
  funderid: 202002AF080001
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
F00
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
CITATION
EBS
O8X
WXSBR
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c2899-260e5ee515710b8a1a49fa673b37b97f01d34cba3c4fa2102a3e08c97948b3343
IEDL.DBID DRFUL
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000662240700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0363-907X
IngestDate Sun Sep 07 02:40:36 EDT 2025
Sat Nov 29 02:51:56 EST 2025
Tue Nov 18 22:39:12 EST 2025
Wed Jan 22 16:28:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2899-260e5ee515710b8a1a49fa673b37b97f01d34cba3c4fa2102a3e08c97948b3343
Notes Funding information
Key Program of National Natural Science Foundation of China, Grant/Award Number: 52037003; Major Special Project of Yunnan Province of China, Grant/Award Number: 202002AF080001; National Natural Science Foundation of China, Grant/Award Numbers: 61963020, 51907112
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5521-1249
0000-0002-5453-0707
0000-0002-6316-2678
PQID 2570275636
PQPubID 996365
PageCount 21
ParticipantIDs proquest_journals_2570275636
crossref_primary_10_1002_er_6929
crossref_citationtrail_10_1002_er_6929
wiley_primary_10_1002_er_6929_ER6929
PublicationCentury 2000
PublicationDate 10 October 2021
PublicationDateYYYYMMDD 2021-10-10
PublicationDate_xml – month: 10
  year: 2021
  text: 10 October 2021
  day: 10
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 119
2018; 166
2017; 64
2021; 6
2019; 192
2005; 152
2020; 203
2016; 74
2019; 168
2020; 36
2020; 35
2008; 55
2017; 210
2019; 163
2017; 135
2018; 43
2012; 12
2020; 208
2019; 188
2020; 8
2009; 34
2018; 174
2010; 21
2020; 5
2010; 49
2015; 291
2021; 34
2018; 215
2015; 40
2015; 277
2018; 159
2020; 194
2020; 150
2019; 215
2019; 138
2019; 179
2016; 133
2020; 24
2020; 213
2014
2014; 39
2012; 557
2017; 148
2020; 29
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
Hagan MT (e_1_2_10_51_1) 2014
Guchhait PK (e_1_2_10_7_1) 2020; 5
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Zhang X (e_1_2_10_4_1) 2020; 24
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Tummala ASLV (e_1_2_10_9_1) 2020; 5
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 291
  start-page: 138
  year: 2015
  end-page: 155
  article-title: A parametric model for solid oxide fuel cells based on measurements made on cell materials and components
  publication-title: J Power Sources
– volume: 49
  start-page: 7922
  issue: 17
  year: 2010
  end-page: 7950
  article-title: Mathematical modeling, steady‐state and dynamic behavior, and control of fuel cells: a review
  publication-title: Ind. Eng. Chem. Res
– volume: 159
  start-page: 312
  year: 2018
  end-page: 326
  article-title: Democratic joint operations algorithm for optimal power extraction of PMSG based wind energy conversion system
  publication-title: Energy Convers Manage
– volume: 24
  year: 2020
  article-title: Adaptive distributed auction‐based algorithm for optimal mileage based AGC dispatch with high participation of renewable energy
  publication-title: Int J Electr Power Energy Syst
– volume: 64
  start-page: 1561
  issue: 2
  year: 2017
  end-page: 1571
  article-title: Electrochemical modelling and equivalent circuit representation of micro‐photosynthetic power cell
  publication-title: IEEE Trans Ind Electron
– volume: 133
  start-page: 427
  year: 2016
  end-page: 443
  article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly‐fed induction generator based wind turbine
  publication-title: Energy Convers Manage
– volume: 277
  start-page: 464
  year: 2015
  end-page: 473
  article-title: Solid oxide fuel cell stack temperature estimation with data‐based modeling – Designed experiments and parameter identification
  publication-title: J Power Sources
– volume: 6
  start-page: 37
  issue: 1
  year: 2021
  end-page: 54
  article-title: A critical review of the integration of renewable energy sources with various technologies
  publication-title: Prot Control Mod Power Syst
– volume: 208
  year: 2020
  article-title: Comprehensive overview of meta‐heuristic algorithm applications on PV cell parameter identification
  publication-title: Energy Convers Manage
– volume: 36
  start-page: 1493
  issue: 2
  year: 2020
  end-page: 1503
  article-title: A hybrid framework for topology identification of distribution grid with renewables integration
  publication-title: IEEE Trans Power Syst
– volume: 34
  year: 2021
  article-title: Solid oxide fuel cell systems fault diagnosis: critical summarization, classification, and perspectives
  publication-title: J Energy Storage
– volume: 39
  start-page: 5083
  issue: 10
  year: 2014
  end-page: 5096
  article-title: Parameter identification of an SOFC model with an efficient, adaptive differential evolution algorithm
  publication-title: Int J Hydrogen Energy
– volume: 203
  year: 2020
  article-title: A simplified competitive swarm optimizer for parameter identification of solid oxide fuel cells
  publication-title: Energy Convers Manage
– volume: 188
  year: 2019
  article-title: Parameter identification of solid oxide fuel cell by chaotic binary shark smell optimization method
  publication-title: Energy
– volume: 74
  start-page: 429
  year: 2016
  end-page: 436
  article-title: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine
  publication-title: Int J Electr Power Energy Syst
– volume: 119
  start-page: 577
  year: 2017
  end-page: 589
  article-title: Passivity‐based sliding‐mode control design for optimal power extraction of a PMSG based variable speed wind turbine
  publication-title: Renewable Energy
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  end-page: 20
  article-title: Multi‐objective energy management in microgrids with hybrid energy sources and battery energy storage systems
  publication-title: Prot Control Mod Power Syst
– volume: 174
  start-page: 913
  year: 2018
  end-page: 921
  article-title: Fast and accurate parameter extraction for different types of fuel cells with decomposition and nature‐inspired optimization method
  publication-title: Energy Convers Manage
– volume: 135
  start-page: 21
  year: 2017
  end-page: 34
  article-title: Dynamic model with experimental validation of a biogas‐fed SOFC plant
  publication-title: Energy Convers Manage
– volume: 43
  start-page: 8991
  issue: 18
  year: 2018
  end-page: 8998
  article-title: Personal power using metal‐supported solid oxide fuel cells operated in a camping stove flame
  publication-title: Int J Hydrogen Energy
– volume: 35
  start-page: 2516
  issue: 4
  year: 2020
  end-page: 2526
  article-title: Optimal mileage based AGC dispatch of a GenCo
  publication-title: IEEE Trans Power Syst
– volume: 148
  start-page: 753
  year: 2017
  end-page: 758
  article-title: Microstructure‐modified proton exchange membranes for high‐performance direct methanol fuel cells
  publication-title: Energy Convers Manage
– volume: 5
  start-page: 48
  issue: 1
  year: 2020
  end-page: 55
  article-title: Multi‐objective optimization strategy for distribution network considering V2G enabled electric vehicles in building integrated energy system
  publication-title: Prot Control Mod Power Syst
– volume: 168
  start-page: 235
  year: 2019
  end-page: 246
  article-title: Solid oxide fuel cell hybrid system: a detailed review of an environmentally clean and efficient source of energy
  publication-title: Energy
– volume: 194
  year: 2020
  article-title: The role of solid oxide fuel cells in future ship energy systems
  publication-title: Energy
– volume: 210
  start-page: 711
  year: 2017
  end-page: 723
  article-title: Robust sliding‐mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers
  publication-title: Appl Energy
– volume: 21
  start-page: 930
  issue: 6
  year: 2010
  end-page: 937
  article-title: Improved computation for Levenberg‐Marquardt training
  publication-title: IEEE Trans Neural Netw
– volume: 179
  start-page: 286
  year: 2019
  end-page: 303
  article-title: Dynamic leader based collective intelligence for maximum power point tracking of PV systems affected by partial shading condition
  publication-title: Energy Convers Manage
– volume: 39
  start-page: 532
  issue: 1
  year: 2014
  end-page: 542
  article-title: Parameter identification for solid oxide fuel cells using cooperative barebone particle swarm optimization with hybrid learning
  publication-title: Int J Hydrogen Energy
– volume: 29
  year: 2020
  article-title: Energy and environmental analysis of a flexible power‐to‐x plant based on reversible solid oxide cells (rSOCs) for an urban district
  publication-title: J Energy Storage
– volume: 213
  year: 2020
  article-title: A state‐of‐the‐art survey of solid oxide fuel cell parameter identification: modelling, methodology, and perspectives
  publication-title: Energy Convers Manage
– volume: 203
  year: 2020
  article-title: Economic viability of bitcoin mining using a renewable‐based SOFC power system to supply the electrical power demand
  publication-title: Energy
– volume: 8
  start-page: 1375
  issue: 2
  year: 2020
  end-page: 1390
  article-title: Impedance modeling and stability analysis of grid‐connected DFIG‐based wind farm with a VSC‐HVDC
  publication-title: IEEE J Emerg Sel Top Power Electron
– start-page: 800
  year: 2014
– volume: 55
  start-page: 437
  issue: 1
  year: 2008
  end-page: 447
  article-title: A new modeling approach of embedded Fuel‐Cell power generators based on artificial neural network
  publication-title: IEEE Trans Ind Electron
– volume: 163
  year: 2019
  article-title: 3D design and optimization of heat exchanger network for solid oxide fuel cell‐gas turbine in hybrid electric vehicles
  publication-title: Appl Therm Eng
– volume: 152
  start-page: 175
  year: 2005
  end-page: 181
  article-title: Clarifying the Butler‐Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models
  publication-title: J Power Sources
– volume: 40
  start-page: 7246
  issue: 23
  year: 2015
  end-page: 7251
  article-title: Modeling electrical behavior of solid oxide electrolyzer cells by using artificial neural network
  publication-title: Int J Hydrogen Energy
– volume: 150
  start-page: 221
  year: 2020
  end-page: 233
  article-title: Application of co‐evolution RNA genetic algorithm for obtaining optimal parameters of SOFC model
  publication-title: Renewable Energy
– volume: 5
  start-page: 260
  issue: 3
  year: 2020
  end-page: 269
  article-title: A robust composite wide area control of a DFIG wind energy system for damping inter‐area oscillations
  publication-title: Prot Control Mod Power Syst
– volume: 192
  year: 2019
  article-title: Thermo‐economic modeling and analysis of an NG‐fueled SOFC‐WGS‐TSA‐PEMFC hybrid energy conversion system for stationary electricity power generation
  publication-title: Energy
– volume: 138
  start-page: 458
  year: 2019
  end-page: 464
  article-title: Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms
  publication-title: Renewable Energy
– volume: 5
  start-page: 138
  issue: 2
  year: 2020
  end-page: 150
  article-title: Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm
  publication-title: Prot Control Mod Power Syst
– volume: 12
  start-page: 11
  issue: 1
  year: 2012
  end-page: 23
  article-title: Modeling and optimization of anode‐supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm
  publication-title: Fuel Cells
– volume: 557
  start-page: 2202
  year: 2012
  end-page: 2207
  article-title: Modeling of DIR‐SOFC based on particle swarm optimization‐wavelet network
  publication-title: Adv Mater Res
– volume: 215
  start-page: 1203
  year: 2019
  end-page: 1222
  article-title: Novel bio‐inspired memetic slap swarm algorithm and application to MPPT for PV systems considering partial shading condition
  publication-title: J Clean Prod
– volume: 166
  start-page: 451
  year: 2018
  end-page: 461
  article-title: Parameters' optimization of SOFC for steady state and transient simulations
  publication-title: Energy
– volume: 215
  start-page: 237
  year: 2018
  end-page: 289
  article-title: Progress in solid oxide fuel cell‐gas turbine hybrid power systems: system design and analysis, transient operation, controls and optimization
  publication-title: Appl Energy
– volume: 34
  start-page: 740
  issue: 6
  year: 2009
  end-page: 751
  article-title: Static and dynamic modeling of solid oxide fuel cell using genetic programming
  publication-title: Energy
– volume: 5
  start-page: 138
  issue: 2
  year: 2020
  ident: e_1_2_10_7_1
  article-title: Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm
  publication-title: Prot Control Mod Power Syst
– ident: e_1_2_10_21_1
  doi: 10.1016/j.energy.2019.116811
– ident: e_1_2_10_52_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.est.2020.101314
– start-page: 800
  volume-title: Neural Network Design
  year: 2014
  ident: e_1_2_10_51_1
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jpowsour.2015.04.155
– ident: e_1_2_10_46_1
  doi: 10.1109/TIE.2016.2618755
– ident: e_1_2_10_20_1
  doi: 10.1016/j.enconman.2017.06.020
– ident: e_1_2_10_48_1
  doi: 10.1109/TIE.2007.896480
– volume: 5
  start-page: 260
  issue: 3
  year: 2020
  ident: e_1_2_10_9_1
  article-title: A robust composite wide area control of a DFIG wind energy system for damping inter‐area oscillations
  publication-title: Prot Control Mod Power Syst
– ident: e_1_2_10_33_1
  doi: 10.1021/ie100032c
– ident: e_1_2_10_35_1
  doi: 10.1016/j.ijhydene.2013.09.072
– ident: e_1_2_10_14_1
  doi: 10.1016/j.apenergy.2017.08.027
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jclepro.2019.01.150
– ident: e_1_2_10_36_1
  doi: 10.1016/j.enconman.2018.08.082
– ident: e_1_2_10_22_1
  doi: 10.1016/j.applthermaleng.2019.114310
– ident: e_1_2_10_47_1
  doi: 10.1016/j.enconman.2019.112204
– ident: e_1_2_10_10_1
  doi: 10.1186/s41601-021-00181-3
– ident: e_1_2_10_34_1
  doi: 10.1016/j.energy.2009.02.012
– ident: e_1_2_10_13_1
  doi: 10.1109/JESTPE.2019.2901747
– ident: e_1_2_10_31_1
  doi: 10.1016/j.energy.2018.10.038
– ident: e_1_2_10_39_1
  doi: 10.1109/WCICA.2010.5554639
– ident: e_1_2_10_8_1
  doi: 10.1109/TPWRS.2020.2966509
– volume: 24
  year: 2020
  ident: e_1_2_10_4_1
  article-title: Adaptive distributed auction‐based algorithm for optimal mileage based AGC dispatch with high participation of renewable energy
  publication-title: Int J Electr Power Energy Syst
– ident: e_1_2_10_28_1
  doi: 10.1016/j.energy.2018.11.091
– ident: e_1_2_10_42_1
  doi: 10.1016/j.energy.2019.07.100
– ident: e_1_2_10_3_1
  doi: 10.1016/j.enconman.2020.112595
– ident: e_1_2_10_24_1
  doi: 10.1016/j.ijhydene.2018.03.161
– ident: e_1_2_10_12_1
  doi: 10.1016/j.ijepes.2015.07.036
– ident: e_1_2_10_38_1
  doi: 10.1016/j.jpowsour.2014.08.130
– ident: e_1_2_10_40_1
  doi: 10.4028/www.scientific.net/AMR.557-559.2202
– ident: e_1_2_10_44_1
  doi: 10.1016/j.renene.2019.01.072
– ident: e_1_2_10_50_1
  doi: 10.1109/TNN.2010.2045657
– ident: e_1_2_10_15_1
  doi: 10.1016/j.renene.2017.12.047
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jpowsour.2005.03.174
– ident: e_1_2_10_27_1
  doi: 10.1016/j.apenergy.2018.01.098
– ident: e_1_2_10_26_1
  doi: 10.1016/j.renene.2019.12.105
– ident: e_1_2_10_19_1
  doi: 10.1016/j.enconman.2016.12.063
– ident: e_1_2_10_41_1
  doi: 10.1016/j.ijhydene.2014.01.064
– ident: e_1_2_10_5_1
  doi: 10.1109/TPWRS.2020.3024955
– ident: e_1_2_10_43_1
  doi: 10.1002/fuce.201100140
– ident: e_1_2_10_2_1
  doi: 10.1186/s41601-019-0147-z
– ident: e_1_2_10_6_1
  doi: 10.1016/j.energy.2020.117843
– ident: e_1_2_10_11_1
  doi: 10.1016/j.enconman.2017.12.090
– ident: e_1_2_10_25_1
  doi: 10.1016/j.energy.2019.116613
– ident: e_1_2_10_23_1
  doi: 10.1186/s41601-020-0154-0
– ident: e_1_2_10_30_1
  doi: 10.1016/j.enconman.2020.112856
– ident: e_1_2_10_49_1
  doi: 10.1016/j.ijhydene.2015.04.042
– ident: e_1_2_10_16_1
  doi: 10.1016/j.enconman.2018.10.074
– ident: e_1_2_10_29_1
  doi: 10.1016/j.est.2020.102153
– ident: e_1_2_10_37_1
  doi: 10.1016/j.enconman.2016.10.062
SSID ssj0009917
Score 2.441677
Snippet Summary Fast and precise identification of several unknown parameters for solid oxide fuel cell (SOFC) models play a critical role in modeling analysis,...
Fast and precise identification of several unknown parameters for solid oxide fuel cell (SOFC) models play a critical role in modeling analysis, optimal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17903
SubjectTerms Accuracy
Algorithms
artificial neural network
Artificial neural networks
Back propagation
Back propagation networks
Cell culture
Electrochemistry
Extracellular matrix
Fuel cells
Fuel technology
Heuristic methods
Identification
Identification methods
Levenberg‐Marquardt backpropagation
Mathematical models
Neural networks
Optimal control
Optimization
optimization methods
Parameter estimation
Parameter identification
parameter identification/estimation
Parameters
solid oxide fuel cell
Solid oxide fuel cells
Stability
Title Levenberg‐Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6929
https://www.proquest.com/docview/2570275636
Volume 45
WOSCitedRecordID wos000662240700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgZYCBb0ShIA8VW2gaO0kzImjFUCpUUalbZDs2VLQNpCli5CfwG_kl3CUpLUJISEwZco6s-M7vXXx5R0jN14FrPO5atuTcAsR3LcB12_JtrYEQAEh5UdZswu92m4NBcLvU6ivXh_j64IaRke3XGOBCTusL0VCdnHuA7auk7IDX8hIpX_Xa_c5CcTfI2u1mB5WQAQ7yP2ZxcL0Y-h2KFvxymaVmMNPe-scEt8lmwS3pRe4MO2RFT3bJxpLi4B4xHVRswpquj7f3G5E8o4ekVAr1CDODzSVbKCpG93EyTB_GFDgtRXnwMZbN0GFUFBflZrGh4LrDiMavcIeamR5RPAmY7pN-u3V3eW0VrRYshRmXBVmNdrUGcgOMQzZFQ_DACM9nkvky8I3diBhXUjDFjcAsUTBtN1UA0dyUjHF2QEqTeKIPCVXMNcAZgoYbAVsJGhIQ0FZcR1IYKR23Qs7mbz1UhQ45tsMYhbmCshPqJMQXV4FnzQ2fcumNnybV-bKFRexNQ-zLh6L2zKuQWrZAvw0PWz28HP3N7JisO1jQguUsdpWU0mSmT8iaekmH0-S0cL9PxmjfJw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDLZgIAEH_hHjN4eJW1m3pO16RMAEYkwIbdJuVZImMDE26AbiyCPwjDwJdtsxEEJC4tRDnShK7Phz4nwGKAUm9KwvPMdVQjjo8T0H_brrBK4xCAjQSflxWmwiaDZrnU54lWdV0luYjB_i88CNLCPdr8nA6UC6PGENNcmhj859GmYEKpFXgJmT63q7MaHcDdN6u-lNJYaAnezJLDUu502_-6IJwPwKU1M_U1_6zwiXYTFHl-woU4cVmDL9VVj4wjm4BrZBnE2U1fX--nYpk0fSkRFTUt_h0HB7SZeKyd7NIOmObu8ZolpGBOH3lDjDunGeXpSJDSxD5e3GbPCCf5h9Mj1GdwHDdWjXT1vHZ05ebMHRFHM5GNcYzxiEN4g5VE1WpAit9AOueKDCwLqVmAutJNfCSooTJTduTYdozzXFueAbUOgP-mYTmOaeRdQQVrwY8UpYUegDXS1MrKRVquoV4WA87ZHOmcipIEYvyjiUq5FJIpq4IvY1FnzIyDd-iuyM1y3KrW8YUWU-orXnfhFK6Qr91jw6vabP1t_E9mHurHXZiBrnzYttmK9Segslt7g7UBglT2YXZvXzqDtM9nJd_AAhh-MX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI5gIAQH_hGDATkgboV2SdvliBgViDEhBNJuVZImMLEf6AbiyCPwjDwJdtuxIYSExKmHOlUU2_HnxvlMyH5ohG8D7juu4tyBiO87ENddJ3SNAUAAQSpIsmYTYbNZa7XEVVFViXdhcn6Irx9u6BnZfo0Obh4TezRmDTXpYQDBfZrMcF8E4JQz9evotjGm3BVZv93spBJSwFZ-ZRYHHxVDv8eiMcCchKlZnImW_jPDZbJYoEt6nJvDCpkyvVWyMME5uEZsAzmbsKrr4-39UqZPaCNDqqR-gKnB9pKpisrOXT9tD--7FFAtRYLwLhbO0HZSlBflYn1LwXjbCe2_whtqn02H4lnAYJ3cRqc3J2dO0WzB0ZhzOZDXGN8YgDeAOVRNepILK4OQKRYqEVrXSxjXSjLNrcQ8UTLj1rQAf64pxjjbIKVev2c2CdXMt4AahOcngFeEpyAGupqbREmrVNUvk4PRsse6YCLHhhidOOdQrsYmjXHhyvCtkeBjTr7xU6Qy0ltceN8gxs58SGvPgjLZzzT02_D49BofW38T2yNzV_Uobpw3L7bJfBWrW7C2xa2Q0jB9NjtkVr8M24N0tzDFT9e54pI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Levenberg%E2%80%90Marquardt+backpropagation+algorithm+for+parameter+identification+of+solid+oxide+fuel+cells&rft.jtitle=International+journal+of+energy+research&rft.au=Yang%2C+Bo&rft.au=Chen%2C+Yijun&rft.au=Guo%2C+Zhengxun&rft.au=Wang%2C+Jingbo&rft.date=2021-10-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=12&rft.spage=17903&rft.epage=17923&rft_id=info:doi/10.1002%2Fer.6929&rft.externalDBID=10.1002%252Fer.6929&rft.externalDocID=ER6929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon