Roadmap toward energy‐positive upfront nitrogen removal process in baseload LNG plant
Summary The use of liquefied natural gas (LNG) has grown over the last decade owing to an increase in the global energy demand. This work presents a pioneering approach for rigorous simulation of an actual cold section of an LNG plant and provides a potential process optimization to achieve a higher...
Uložené v:
| Vydané v: | International journal of energy research Ročník 46; číslo 14; s. 20556 - 20572 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Inc
01.11.2022
|
| Predmet: | |
| ISSN: | 0363-907X, 1099-114X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
The use of liquefied natural gas (LNG) has grown over the last decade owing to an increase in the global energy demand. This work presents a pioneering approach for rigorous simulation of an actual cold section of an LNG plant and provides a potential process optimization to achieve a higher production rate (PR) while reducing the specific power consumption (SPC). The concept of upfront nitrogen removal (UNrem) from the natural gas (NG) feed was introduced, and the impact on the PR and SPC was presented. We considered seven scenarios with varying percentages of UNrem and compared them with the conventional plant design (base case) while maintaining the product specifications (LNG high heating value [HHV] of 1105 Btu/Scf and NGL reid vapor pressure [RVP] of 2042 psia). The results show that UNrem of 87.5% from the NG feed can reduce the total power requirements by 0.24%, increase the production flow rate by 4.4%, and decrease the exergy losses by 0.23% compared with the base case. The UNrem can also have a significant improvement on the plant capacity without the need for structural modifications in the cold section. Future research should focus on the efficiency and feasibility of different UNrem processes as well as examine the use of a large‐scale system.
This present study highlights for the first time the importance of upfront nitrogen removal (UNrem) in improving the production rate of liquefied natural gas (LNG) plant and reducing energy requirements. For a realistic result, the study was performed using an actual LNG plant operating conditions The process optimization is conducted by taking the benefit of the refrigerant cooling capacity while maintain the LNG purity within the international specifications. For the newly developed process, the need for retrofitting or changes within the LNG process and the overall exergy analysis were performed and compared with the base case to provide insights into the achieved improvements. |
|---|---|
| AbstractList | Summary
The use of liquefied natural gas (LNG) has grown over the last decade owing to an increase in the global energy demand. This work presents a pioneering approach for rigorous simulation of an actual cold section of an LNG plant and provides a potential process optimization to achieve a higher production rate (PR) while reducing the specific power consumption (SPC). The concept of upfront nitrogen removal (UNrem) from the natural gas (NG) feed was introduced, and the impact on the PR and SPC was presented. We considered seven scenarios with varying percentages of UNrem and compared them with the conventional plant design (base case) while maintaining the product specifications (LNG high heating value [HHV] of 1105 Btu/Scf and NGL reid vapor pressure [RVP] of 2042 psia). The results show that UNrem of 87.5% from the NG feed can reduce the total power requirements by 0.24%, increase the production flow rate by 4.4%, and decrease the exergy losses by 0.23% compared with the base case. The UNrem can also have a significant improvement on the plant capacity without the need for structural modifications in the cold section. Future research should focus on the efficiency and feasibility of different UNrem processes as well as examine the use of a large‐scale system.
This present study highlights for the first time the importance of upfront nitrogen removal (UNrem) in improving the production rate of liquefied natural gas (LNG) plant and reducing energy requirements. For a realistic result, the study was performed using an actual LNG plant operating conditions The process optimization is conducted by taking the benefit of the refrigerant cooling capacity while maintain the LNG purity within the international specifications. For the newly developed process, the need for retrofitting or changes within the LNG process and the overall exergy analysis were performed and compared with the base case to provide insights into the achieved improvements. The use of liquefied natural gas (LNG) has grown over the last decade owing to an increase in the global energy demand. This work presents a pioneering approach for rigorous simulation of an actual cold section of an LNG plant and provides a potential process optimization to achieve a higher production rate (PR) while reducing the specific power consumption (SPC). The concept of upfront nitrogen removal (UNrem) from the natural gas (NG) feed was introduced, and the impact on the PR and SPC was presented. We considered seven scenarios with varying percentages of UNrem and compared them with the conventional plant design (base case) while maintaining the product specifications (LNG high heating value [HHV] of 1105 Btu/Scf and NGL reid vapor pressure [RVP] of 2042 psia). The results show that UNrem of 87.5% from the NG feed can reduce the total power requirements by 0.24%, increase the production flow rate by 4.4%, and decrease the exergy losses by 0.23% compared with the base case. The UNrem can also have a significant improvement on the plant capacity without the need for structural modifications in the cold section. Future research should focus on the efficiency and feasibility of different UNrem processes as well as examine the use of a large‐scale system. |
| Author | Mkacher, Hajer Karimi, Iftekhar A. Al‐musleh, Easa I. AlMomani, Fares Pal, Ajinkya |
| Author_xml | – sequence: 1 givenname: Hajer surname: Mkacher fullname: Mkacher, Hajer organization: Qatar University – sequence: 2 givenname: Fares orcidid: 0000-0003-4785-4567 surname: AlMomani fullname: AlMomani, Fares email: falmomani@qu.edu.qa organization: Qatar University – sequence: 3 givenname: Ajinkya surname: Pal fullname: Pal, Ajinkya organization: National University of Singapore – sequence: 4 givenname: Iftekhar A. surname: Karimi fullname: Karimi, Iftekhar A. organization: National University of Singapore – sequence: 5 givenname: Easa I. surname: Al‐musleh fullname: Al‐musleh, Easa I. organization: Qatar University |
| BookMark | eNp10MtKAzEUBuAgFWyr-AoBFy5kapK5pLOUUqtQFIpid0OaOSkp02RMUkt3PoLP6JOYWleiq7M4H_-59FDHWAMInVMyoISwa3ADzrPyCHUpKcuE0mzeQV2SFmlSEj4_QT3vV4TEHuVd9DKzol6LFge7Fa7GYMAtd5_vH631Oug3wJtWOWsCNjo4uwSDHaztm2hw66wE77E2eCE8NDEITx8muG2ECafoWInGw9lP7aPn2_HT6C6ZPk7uRzfTRLJh3I7RUgGBfEEWZCiA52mhKFNFFk_gOWS5LEpVKyUJq2UBUGfAslqm9YLwgg9l2kcXh9y4zesGfKhWduNMHFkxzvKCZYyXUSUHJZ313oGqpA4i6HiXE7qpKKn2v6vAVfvfRX_5y7dOr4Xb_SGvDnKrG9j9x6rx7Ft_AXJbgHk |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_06_113 crossref_primary_10_1016_j_jgsce_2025_205714 crossref_primary_10_1002_ese3_1274 crossref_primary_10_1016_j_cherd_2024_06_024 crossref_primary_10_1016_j_cherd_2024_03_041 |
| Cites_doi | 10.15282/jmes.13.1.2019.02.0372 10.1016/j.energy.2016.09.005 10.1016/j.cep.2012.10.010 10.1016/j.compchemeng.2020.106993 10.1021/acs.iecr.8b04542 10.1016/j.memsci.2015.10.007 10.1016/j.ngib.2021.08.006 10.3390/en14123616 10.1016/j.cryogenics.2021.103351 10.1016/B978-0-12-803782-9.00011-X 10.1016/j.cep.2014.06.001 10.1021/acssuschemeng.1c04866 10.1007/s40095-018-0270-z 10.1016/j.applthermaleng.2021.117197 10.1016/j.jngse.2012.02.004 10.1016/j.enpol.2018.05.046 10.1016/j.jngse.2015.12.055 10.1016/j.chemolab.2015.08.020 10.1016/j.energy.2018.12.170 10.1016/j.est.2021.102515 10.1016/j.applthermaleng.2019.114736 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.7749 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 20572 |
| ExternalDocumentID | 10_1002_er_7749 ER7749 |
| Genre | article |
| GrantInformation_xml | – fundername: Qatar University – fundername: Qatar Foundation funderid: NPRP11S‐1231‐170152 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PQGLB 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c2899-219fe0e5b0b08ae7536f12f6477475e45c69fdffc02dc6eed4e24dc3db07678c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758680000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 07:54:00 EDT 2025 Sat Nov 29 02:52:02 EST 2025 Tue Nov 18 21:56:33 EST 2025 Wed Jan 22 16:22:28 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2899-219fe0e5b0b08ae7536f12f6477475e45c69fdffc02dc6eed4e24dc3db07678c3 |
| Notes | Funding information Qatar University; Qatar Foundation, Grant/Award Number: NPRP11S‐1231‐170152 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4785-4567 |
| PQID | 2725624279 |
| PQPubID | 996365 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2725624279 crossref_citationtrail_10_1002_er_7749 crossref_primary_10_1002_er_7749 wiley_primary_10_1002_er_7749_ER7749 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2018; 120 2021; 9 2021; 14 2021; 8 2021; 38 2018; 9 2019; 170 2020; 141 2015; 149 2019; 13 2021; 119 2019; 58 2013; 63 2016; 498 2021; 195 2017 2020; 166 2016 2016; 115 2016; 29 2012; 7 2014; 82 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 29 start-page: 176 year: 2016 end-page: 187 article-title: Design and comprehensive optimization of C3MR liquefaction natural gas cycle by considering operational constraints publication-title: J Nat Gas Sci Eng – volume: 38 start-page: 102515 year: 2021 article-title: Experimental investigation on off‐design performance and adjustment strategies of the centrifugal compressor in compressed air energy storage system publication-title: Journal of Energy Storage – volume: 13 start-page: 4368 year: 2019 end-page: 4379 article-title: Influence of fins designs, geometries and conditions on the performance of a plate‐fin heat exchanger‐experimental perspective publication-title: J Mech Eng Sci – volume: 498 start-page: 291 year: 2016 end-page: 301 article-title: Optimization of membrane based nitrogen removal from natural gas publication-title: J Membr Sci – volume: 119 year: 2021 article-title: Numerical investigation on serrated fin of sub‐atmosphere plate‐fin heat exchanger used in superfluid helium system publication-title: Cryogenics – volume: 170 start-page: 557 year: 2019 end-page: 568 article-title: LNG cold energy utilization: prospects and challenges publication-title: Energy – volume: 63 start-page: 16 year: 2013 end-page: 24 article-title: A novel process configuration for co‐production of NGL and LNG with low energy requirement publication-title: Chemical Engineering and Processing: Process Intensification – volume: 14 start-page: 3616 issue: 12 year: 2021 article-title: Prospective of upfront nitrogen (N2) removal in LNG plants: technical communication publication-title: Energies – volume: 115 start-page: 88 year: 2016 end-page: 106 article-title: Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU)) publication-title: Energy – volume: 82 start-page: 54 year: 2014 end-page: 64 article-title: Energy saving opportunities in integrated NGL/LNG schemes exploiting: Thermal‐coupling common‐utilities and process knowledge publication-title: Chemical Engineering and Processing: Process Intensification – volume: 58 start-page: 1658 issue: 4 year: 2019 end-page: 1674 article-title: Integrated process design and optimization of nitrogen recovery in natural gas processing publication-title: Ind Eng Chem Res – volume: 7 start-page: 52 year: 2012 end-page: 59 article-title: Pros and cons of different nitrogen removal unit (NRU) technology publication-title: J Nat Gas Sci Eng – start-page: 233 year: 2017 – volume: 195 year: 2021 article-title: Influence of inlet configuration and distributor geometry on the performance of cryogenic plate‐fin heat exchangers publication-title: Appl Therm Eng – volume: 166 year: 2020 article-title: Comprehensive review of current natural gas liquefaction processes on technical and economic performance publication-title: Appl Therm Eng – volume: 141 year: 2020 article-title: Rigorous simulation, energy and environmental analysis of an actual baseload LNG supply chain publication-title: Comput Chem Eng – volume: 8 start-page: 475 issue: 5 year: 2021 end-page: 483 article-title: Evolution laws and new trends of global LNG pricing and their implications publication-title: Natural Gas Industry B – year: 2016 – volume: 9 start-page: 155 issue: 2 year: 2018 end-page: 167 article-title: Numerical analysis of the surface and geometry of plate fin heat exchangers for increasing heat transfer rate publication-title: Int J Energy Environ Eng – volume: 120 start-page: 259 year: 2018 end-page: 267 article-title: Acceptance of LNG as an alternative fuel: determinants and policy implications publication-title: Energy Policy – volume: 9 start-page: 13056 year: 2021 end-page: 13067 article-title: Reducing power use in the cold section of LNG plants publication-title: ACS Sustain Chem Eng – volume: 149 start-page: 153 year: 2015 end-page: 165 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemom Intell Lab Syst – ident: e_1_2_12_16_1 doi: 10.15282/jmes.13.1.2019.02.0372 – ident: e_1_2_12_8_1 doi: 10.1016/j.energy.2016.09.005 – ident: e_1_2_12_23_1 doi: 10.1016/j.cep.2012.10.010 – ident: e_1_2_12_5_1 doi: 10.1016/j.compchemeng.2020.106993 – ident: e_1_2_12_7_1 doi: 10.1021/acs.iecr.8b04542 – ident: e_1_2_12_13_1 doi: 10.1016/j.memsci.2015.10.007 – ident: e_1_2_12_21_1 doi: 10.1016/j.ngib.2021.08.006 – ident: e_1_2_12_10_1 doi: 10.3390/en14123616 – ident: e_1_2_12_17_1 doi: 10.1016/j.cryogenics.2021.103351 – ident: e_1_2_12_9_1 – ident: e_1_2_12_14_1 doi: 10.1016/B978-0-12-803782-9.00011-X – ident: e_1_2_12_22_1 doi: 10.1016/j.cep.2014.06.001 – ident: e_1_2_12_6_1 doi: 10.1021/acssuschemeng.1c04866 – ident: e_1_2_12_18_1 doi: 10.1007/s40095-018-0270-z – ident: e_1_2_12_19_1 doi: 10.1016/j.applthermaleng.2021.117197 – ident: e_1_2_12_12_1 doi: 10.1016/j.jngse.2012.02.004 – ident: e_1_2_12_2_1 doi: 10.1016/j.enpol.2018.05.046 – ident: e_1_2_12_11_1 doi: 10.1016/j.jngse.2015.12.055 – ident: e_1_2_12_20_1 doi: 10.1016/j.chemolab.2015.08.020 – ident: e_1_2_12_3_1 doi: 10.1016/j.energy.2018.12.170 – ident: e_1_2_12_15_1 doi: 10.1016/j.est.2021.102515 – ident: e_1_2_12_4_1 doi: 10.1016/j.applthermaleng.2019.114736 |
| SSID | ssj0009917 |
| Score | 2.3796196 |
| Snippet | Summary
The use of liquefied natural gas (LNG) has grown over the last decade owing to an increase in the global energy demand. This work presents a pioneering... The use of liquefied natural gas (LNG) has grown over the last decade owing to an increase in the global energy demand. This work presents a pioneering... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 20556 |
| SubjectTerms | Calorific value Energy demand energy optimization Exergy Flow rates Flow velocity Liquefied natural gas liquefied natural gas (LNG) Natural gas Nitrogen removal Optimization particle swarm optimization (PSO) Plant design Plants Power consumption Product specifications Removal simulation‐based optimization upfront nitrogen removal Vapor pressure Vapour pressure |
| Title | Roadmap toward energy‐positive upfront nitrogen removal process in baseload LNG plant |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.7749 https://www.proquest.com/docview/2725624279 |
| Volume | 46 |
| WOSCitedRecordID | wos000758680000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5g4wAH3ojBQDlM3MpKmvVxRLDBYZrQxMRuVZo60qStrbrHmZ_Ab-SX4KTdAyEkJE6VWjutYju20_gzIQ3XA4mKwK3YC2yLK90NEIRjKeErJhhHPoOu3_V6PX84DF42Wn0V-BCrDTdtGWa91gYuomlzDRoK-S2GLsE2qTLUWl4h1cd-Z9BdI-4Gpt2u-VGJGeCwqJjVzM2S9bsrWseXm1GqcTOdg3984CHZL2NLel8owxHZguSY7G0gDp6Qt34q4onI6Mwcl6VgSv8-3z-Kw1sLoPNMaUwDiqaep6hdNIdJiupIs6KkgI4Sql3fGAei3d4TzcYonFMy6LRfH56tsreCJXWKZeFCpcCGVmRHti8AkxZX3TGly1K51wLekm6gYqWkzWLpoiPlwHgsnTiyPfRv0jkjlSRN4JxQXyqlIqF3k4DHd0y0giDGe_gKwJGcGrlZTnMoS-Bx3f9iHBaQySyEPNQzVSN0RZgVWBs_SepLOYWlsU1D5mHchqGGh48bRiK_sYftvr5c_I3skuwyXexgKg_rpDLL53BFduRiNprm16W-fQE3Zdxa |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED90CuqD_8Xp1DyIb3U1S9f1UXRzYi0yHO6ttOkFhLmVuu3Zj-Bn9JN4Ses2EUHwqdDm0pLc5S7X_H4HcFp3UZIiCCtxPdsSSlcDxKhmqaiheMQFyRl2fd8Ngkav5z0Upyo1Fibnh5gm3LRlmPVaG7hOSFdnrKGYnVPs4i3CkiAlckqwdN1pdf0Z5a5n6u2aP5W0BezlkFktXC1Ev_uiWYA5H6YaP9Pa-M8XbsJ6EV2yy1wdtmABB9uwNsc5uANPnWGUvEQpG5kDswwN-O_j7T0_vjVBNk6VZjVgZOzZkPSLZfgyJIVkaQ4qYM8Dpp1fnzpifnDD0j5Nzy50W83Hq7ZVVFewpN5kWbRUKbTRie3YbkRI25a6uuBKA1OF66BwZN1TiVLS5omskysVyEUia0lsu-ThZG0PSoPhAPeBNaRSKo50PglFcsEjx_MSukevQOqpVoazr3EOZUE9ritg9MOcNJmHmIV6pMrApg3TnG3jZ5PK10SFhbm9htylyI2CDZcen5op-U08bHb05eBvzU5gpf1474f-bXB3CKtcQx8MDrECpVE2xiNYlpPR82t2XCjfJ2Qz4Eo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60iujBt1ituofiLTbdbJLmKLZVsZRSLPYW0t1ZKPQR0sfZn-Bv9Jc4u0kfIoLgKZDsbMLuzM7MZr9vCCl6PghUBG5JP7AtrnQ1QIgcS0UVxSLGUc6w6zf8ZrPS7Qat7FSlxsKk_BDLDTdtGWa91gYOsVSlFWsoJHcYuwSbZIu7gYdGuVVt1zuNFeVuYOrtmj-VmAJ2U8isFi5lot990SrAXA9TjZ-pH_znCw_JfhZd0vtUHY7IBoyOyd4a5-AJeWuPIzmMYjo1B2YpGPDf5_tHenxrDnQWK81qQNHYkzHqF01gOEaFpHEKKqD9EdXOb4Ad0UbzkcYDnJ5T0qnXXh-erKy6giV0kmXhUqXABrdn9-xKBJi2eKrMlAamct8F7govUFIpYTMpPHSlHBiXwpE920cPJ5wzkhuNR3BOaEUopXqR3k8CLssscoNA4j18BWBPTp7cLsY5FBn1uK6AMQhT0mQWQhLqkcoTumwYp2wbP5sUFhMVZuY2CZmPkRsGGz4-Lpop-U08rLX15eJvzW7ITqtaDxvPzZdLsss08sHAEAskN01mcEW2xXzanyTXme59AR-q38U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roadmap+toward+energy%E2%80%90positive+upfront+nitrogen+removal+process+in+baseload+LNG+plant&rft.jtitle=International+journal+of+energy+research&rft.au=Mkacher%2C+Hajer&rft.au=AlMomani%2C+Fares&rft.au=Pal%2C+Ajinkya&rft.au=Karimi%2C+Iftekhar+A.&rft.date=2022-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=14&rft.spage=20556&rft.epage=20572&rft_id=info:doi/10.1002%2Fer.7749&rft.externalDBID=10.1002%252Fer.7749&rft.externalDocID=ER7749 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |