Recent Developments and Novel Applications of Laser Shock Peening: A Review
By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of many metallic components. In recent years, LSP has found many new applications in emerging fields: additive manufacturing, ceramics, and meta...
Uloženo v:
| Vydáno v: | Advanced engineering materials Ročník 23; číslo 7 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.07.2021
|
| Témata: | |
| ISSN: | 1438-1656, 1527-2648 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of many metallic components. In recent years, LSP has found many new applications in emerging fields: additive manufacturing, ceramics, and metallic glasses. In addition, innovative process development based on LSP has been reported, which includes warm LSP, cryogenic LSP, electropulsing‐assisted LSP, laser peening without coating, femotosecond LSP, and laser peen forming. Herein, a comprehensive review of the LSP process with a focus on the novel applications and innovative process development is aimed for. The history of LSP with key events is briefly reviewed. The fundamental mechanisms of LSP, including the generation of shockwaves by a high‐energy pulsed laser, the generation of compressive residual stresses by the shockwave, and its effect on crack propagation, and how LSP induces grain refinement are also discussed. The effects of compressive residual stresses and grain refinement on the mechanical properties of metallic materials are reviewed. Recent developments in LSP, such as innovative process development based on LSP and its novel applications, are discussed. Finally, the current challenges the LSP technology faces and its future directions are also discussed.
Herein, the recent developments of laser shock peening (LSP), including its applications in emerging fields, e.g., additive manufacturing and innovative process development, including warm LSP, femtosecond LSP, and electropulsing‐assisted LSP, among others, are reviewed. The current challenges the LSP technology faces and its future directions are also discussed. |
|---|---|
| AbstractList | By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of many metallic components. In recent years, LSP has found many new applications in emerging fields: additive manufacturing, ceramics, and metallic glasses. In addition, innovative process development based on LSP has been reported, which includes warm LSP, cryogenic LSP, electropulsing‐assisted LSP, laser peening without coating, femotosecond LSP, and laser peen forming. Herein, a comprehensive review of the LSP process with a focus on the novel applications and innovative process development is aimed for. The history of LSP with key events is briefly reviewed. The fundamental mechanisms of LSP, including the generation of shockwaves by a high‐energy pulsed laser, the generation of compressive residual stresses by the shockwave, and its effect on crack propagation, and how LSP induces grain refinement are also discussed. The effects of compressive residual stresses and grain refinement on the mechanical properties of metallic materials are reviewed. Recent developments in LSP, such as innovative process development based on LSP and its novel applications, are discussed. Finally, the current challenges the LSP technology faces and its future directions are also discussed.
Herein, the recent developments of laser shock peening (LSP), including its applications in emerging fields, e.g., additive manufacturing and innovative process development, including warm LSP, femtosecond LSP, and electropulsing‐assisted LSP, among others, are reviewed. The current challenges the LSP technology faces and its future directions are also discussed. |
| Author | Dong, Yalin Zhang, Chaoyi Ye, Chang |
| Author_xml | – sequence: 1 givenname: Chaoyi surname: Zhang fullname: Zhang, Chaoyi organization: Huazhong University of Science and Technology – sequence: 2 givenname: Yalin surname: Dong fullname: Dong, Yalin organization: The University of Akron – sequence: 3 givenname: Chang orcidid: 0000-0002-2546-4464 surname: Ye fullname: Ye, Chang email: cye@hust.edu.cn organization: Huazhong University of Science and Technology |
| BookMark | eNqFkF1LwzAUhoNMcJveep0_0JmTNEnnXdnmB9YPpl6XND3VaNeWpmzs39s5URDEq_NyeJ_D4RmRQVVXSMgpsAkwxs9MjqsJZ5wx4KAOyBAk1wFXYTTocyiiAJRUR2Tk_VvfAQZiSG6WaLHq6BzXWNbNqs-emiqnd3W_oHHTlM6aztWVp3VBE-OxpY-vtX2nD4iVq17OaUyXuHa4OSaHhSk9nnzNMXm-WDzNroLk_vJ6FieB5dFUBZFi3IpcywIykxkJoS60kUzrTEjIATMdZkJZy6XSwloAo0SBmREKcsmNGJNwf9e2tfctFql13eePXWtcmQJLd0LSnZD0W0iPTX5hTetWpt3-DUz3wMaVuP2nncbzxe0P-wFQ4HUS |
| CitedBy_id | crossref_primary_10_1007_s11665_023_08406_2 crossref_primary_10_1016_j_apsusc_2022_156032 crossref_primary_10_3390_nano12091415 crossref_primary_10_1016_j_tafmec_2022_103642 crossref_primary_10_3390_met12010026 crossref_primary_10_1016_j_surfcoat_2025_132076 crossref_primary_10_1016_j_apsusc_2023_158697 crossref_primary_10_1016_j_wear_2024_205349 crossref_primary_10_1080_02670844_2023_2206186 crossref_primary_10_2351_7_0001411 crossref_primary_10_1016_j_optlastec_2024_111832 crossref_primary_10_3390_mi16090973 crossref_primary_10_1002_adem_202201451 crossref_primary_10_1002_adem_202200365 crossref_primary_10_1016_j_surfcoat_2023_129697 crossref_primary_10_1016_j_tws_2024_112326 crossref_primary_10_1088_1742_6596_3061_1_012020 crossref_primary_10_1016_j_euromechsol_2023_105008 crossref_primary_10_1007_s00170_024_13872_6 crossref_primary_10_1016_j_cossms_2023_101090 crossref_primary_10_1007_s00170_024_13126_5 crossref_primary_10_1016_j_apsusc_2024_159939 crossref_primary_10_1016_j_ijfatigue_2022_107033 crossref_primary_10_1016_j_jmapro_2025_06_092 crossref_primary_10_3390_coatings14030315 crossref_primary_10_1016_j_ijmachtools_2023_104029 crossref_primary_10_3390_jmmp9080273 crossref_primary_10_1016_j_optlastec_2023_109505 crossref_primary_10_1016_j_surfin_2023_103757 crossref_primary_10_1016_j_optlastec_2024_111325 crossref_primary_10_1002_adem_202201066 crossref_primary_10_1016_j_tafmec_2024_104281 crossref_primary_10_1007_s12540_024_01824_4 crossref_primary_10_3390_met13020397 crossref_primary_10_1016_j_optlaseng_2024_108298 crossref_primary_10_1016_j_optlastec_2023_110330 crossref_primary_10_1016_j_mtcomm_2024_108740 crossref_primary_10_1177_14644207231206067 crossref_primary_10_1016_j_engfailanal_2024_109150 crossref_primary_10_1016_j_matchar_2024_113706 crossref_primary_10_1007_s12541_023_00870_z crossref_primary_10_1016_j_jmapro_2022_12_011 crossref_primary_10_3390_ma16113944 crossref_primary_10_1038_s41598_021_02895_8 crossref_primary_10_1016_j_vacuum_2025_114371 crossref_primary_10_1016_j_surfcoat_2025_132252 crossref_primary_10_3390_mi15111296 crossref_primary_10_1016_j_matchar_2023_113387 crossref_primary_10_1007_s11665_022_06618_6 crossref_primary_10_1016_j_optlastec_2022_108083 crossref_primary_10_1007_s41403_024_00472_9 crossref_primary_10_1088_2053_1591_ac21e8 crossref_primary_10_1016_j_mtcomm_2023_106699 crossref_primary_10_1111_jace_18222 crossref_primary_10_1016_j_triboint_2024_110480 crossref_primary_10_3389_fmats_2022_848980 crossref_primary_10_1016_S1003_6326_25_66788_4 crossref_primary_10_1007_s40042_024_01129_0 crossref_primary_10_1007_s11182_024_03267_1 crossref_primary_10_1007_s11665_023_08051_9 crossref_primary_10_1016_j_corsci_2022_110935 crossref_primary_10_1007_s11665_023_08644_4 crossref_primary_10_1016_j_matchar_2021_111571 crossref_primary_10_1016_j_surfcoat_2023_129725 crossref_primary_10_1007_s11665_024_10286_z crossref_primary_10_1016_j_engfailanal_2022_106937 crossref_primary_10_3390_ma15196693 crossref_primary_10_1007_s11665_023_08236_2 crossref_primary_10_1016_S1003_6326_24_66557_X crossref_primary_10_3390_met15080921 crossref_primary_10_1088_1402_4896_ad385a crossref_primary_10_1016_j_jmapro_2024_12_032 crossref_primary_10_1016_j_msea_2024_146583 crossref_primary_10_1016_j_msea_2023_145699 crossref_primary_10_1016_j_optlastec_2023_110301 crossref_primary_10_1111_ffe_14542 crossref_primary_10_1016_j_ijhydene_2025_02_422 crossref_primary_10_1016_j_engfailanal_2023_107846 crossref_primary_10_1080_14786435_2023_2246019 crossref_primary_10_1016_j_matchar_2023_112827 crossref_primary_10_1007_s00170_023_11828_w crossref_primary_10_1016_j_matdes_2024_113555 crossref_primary_10_1007_s11771_025_6003_6 crossref_primary_10_1063_5_0126075 crossref_primary_10_3390_ma16206769 crossref_primary_10_1016_j_diamond_2024_111468 crossref_primary_10_1016_j_surfin_2023_103284 crossref_primary_10_1007_s12540_023_01517_4 crossref_primary_10_1007_s11665_024_10418_5 crossref_primary_10_3390_ma17040909 crossref_primary_10_1016_j_surfcoat_2024_131470 crossref_primary_10_3390_coatings12101444 crossref_primary_10_1088_1742_6596_2981_1_012011 crossref_primary_10_1007_s11665_023_08356_9 crossref_primary_10_1007_s12540_022_01334_1 crossref_primary_10_2478_adms_2023_0022 crossref_primary_10_1177_02670844241284498 crossref_primary_10_1016_j_ceramint_2025_01_483 crossref_primary_10_1016_j_ijmecsci_2024_108968 crossref_primary_10_3390_ma17143484 crossref_primary_10_1016_j_surfcoat_2024_131353 crossref_primary_10_1177_09544062241307455 crossref_primary_10_1002_adem_202401779 crossref_primary_10_3390_met13071268 crossref_primary_10_1016_j_optlastec_2023_110094 crossref_primary_10_1016_j_jmatprotec_2025_118823 crossref_primary_10_1016_j_msea_2023_145317 crossref_primary_10_1016_j_jmrt_2025_05_168 crossref_primary_10_1007_s11665_023_08900_7 crossref_primary_10_1016_j_aei_2025_103350 crossref_primary_10_1007_s00170_024_14412_y crossref_primary_10_1016_j_ijmachtools_2022_103917 crossref_primary_10_1016_j_jmapro_2025_06_026 crossref_primary_10_1016_j_jnucmat_2023_154555 crossref_primary_10_1016_j_optlastec_2025_112548 crossref_primary_10_1007_s00170_023_10954_9 crossref_primary_10_1016_j_ymssp_2024_111912 crossref_primary_10_1016_j_vacuum_2022_111740 crossref_primary_10_1016_j_surfcoat_2024_131567 crossref_primary_10_1002_admi_202101232 crossref_primary_10_1016_j_optlastec_2024_111132 crossref_primary_10_1016_j_ijfatigue_2025_108862 crossref_primary_10_1016_j_ijmecsci_2025_110408 crossref_primary_10_1016_j_jnucmat_2024_155080 crossref_primary_10_1177_14644207241307815 crossref_primary_10_1007_s40430_025_05819_z crossref_primary_10_3390_app112210986 crossref_primary_10_1007_s12289_022_01686_4 crossref_primary_10_1016_j_ijmachtools_2023_104061 crossref_primary_10_1108_RPJ_11_2022_0395 crossref_primary_10_1016_j_engfailanal_2022_106625 crossref_primary_10_1016_j_optlastec_2024_111700 crossref_primary_10_1111_jace_19408 crossref_primary_10_3390_coatings13091524 crossref_primary_10_1016_j_ijleo_2023_170654 crossref_primary_10_1002_adem_202300615 crossref_primary_10_1007_s00170_025_15474_2 crossref_primary_10_1016_j_jmapro_2023_11_017 crossref_primary_10_1016_j_jmatprotec_2022_117851 crossref_primary_10_1016_j_msea_2023_145271 crossref_primary_10_1016_j_vacuum_2023_111932 crossref_primary_10_1016_j_msea_2024_146388 |
| Cites_doi | 10.1016/j.surfcoat.2019.04.060 10.1016/j.msec.2017.03.003 10.1016/j.matdes.2017.08.066 10.1016/j.ijfatigue.2015.04.018 10.1063/1.3651508 10.1016/j.actamat.2010.10.032 10.1007/s00170-013-5032-8 10.1016/j.surfcoat.2021.126848 10.1016/j.corsci.2014.10.045 10.1016/j.ijfatigue.2017.04.016 10.4028/www.scientific.net/KEM.464.588 10.1063/1.4881555 10.1063/1.1915537 10.1016/j.surfcoat.2018.01.043 10.1016/j.mfglet.2019.11.003 10.1016/S0921-5093(98)00793-X 10.1016/j.optlastec.2015.04.009 10.1016/j.optlaseng.2016.05.014 10.1016/j.surfcoat.2018.06.020 10.1016/j.jmatprotec.2020.116588 10.2961/jlmn.2010.02.0014 10.1016/j.jallcom.2018.06.030 10.1063/1.366113 10.1063/1.4742997 10.3390/ma7127925 10.1016/j.msea.2010.12.058 10.1007/s40799-018-0291-9 10.1088/1361-6463/abc040 10.1016/j.surfcoat.2013.06.003 10.1007/s00170-019-03868-y 10.1016/j.addma.2018.09.013 10.1016/j.msea.2010.11.045 10.2351/1.5012962 10.1016/j.ijfatigue.2013.10.001 10.1016/j.ijfatigue.2020.105596 10.1016/j.matdes.2019.107626 10.1016/j.msea.2018.09.016 10.1016/j.msea.2017.08.050 10.1016/j.jmatprotec.2015.02.030 10.1111/j.1460-2695.2004.00763.x 10.1016/j.surfcoat.2018.02.009 10.1016/j.optlastec.2019.105763 10.1016/j.actamat.2012.06.024 10.1016/j.optlastec.2020.106409 10.1016/j.actamat.2011.07.070 10.1016/j.jmatprotec.2018.11.024 10.2320/matertrans.M2016150 10.1016/j.msea.2014.05.003 10.2351/1.4967013 10.1111/ffe.13226 10.1016/j.engfailanal.2018.04.045 10.1016/j.msea.2020.139199 10.1016/j.jmatprotec.2015.06.026 10.1063/1.1653116 10.1016/S0142-1123(02)00022-1 10.1108/17579861111162923 10.1016/j.triboint.2009.04.005 10.1016/j.optlastec.2015.06.029 10.1115/1.2812381 10.1063/1.346783 10.1016/j.jallcom.2019.06.156 10.1016/j.ijfatigue.2015.08.024 10.1016/j.msea.2010.10.020 10.1016/j.optlastec.2015.09.014 10.1016/j.jmatprotec.2010.08.025 10.1016/j.ijfatigue.2017.04.002 10.1016/j.surfcoat.2012.01.050 10.1016/j.optlastec.2017.03.017 10.1361/105994903770342944 10.1016/j.addma.2020.101112 10.1016/j.triboint.2009.04.014 10.1007/s00170-018-3033-3 10.1016/j.ijmachtools.2019.103475 10.1016/S0921-5093(00)01277-6 10.1364/AO.57.002467 10.1016/j.matdes.2015.10.128 10.1016/j.actamat.2017.01.050 10.1063/1.354710 10.3390/met9070746 10.1111/jace.15742 10.1016/j.corsci.2012.03.044 10.1016/j.jmatprotec.2012.01.023 10.1016/j.optlastec.2018.06.032 10.1016/j.actamat.2014.09.032 10.1016/j.matdes.2011.10.053 10.1016/j.jeurceramsoc.2017.03.005 10.1016/j.jmst.2020.03.059 10.1016/j.ijfatigue.2012.03.008 10.1016/S1359-6462(03)00143-X 10.2961/jlmn.2012.02.0006 10.1016/j.jallcom.2020.153707 10.1016/j.ijfatigue.2010.12.016 10.1016/j.surfcoat.2018.02.083 10.1016/j.jallcom.2018.01.070 10.1016/j.msea.2004.07.025 10.1016/j.surfcoat.2020.126670 10.1016/j.matdes.2013.07.009 10.1016/j.optlastec.2016.02.007 10.1016/j.mfglet.2020.11.006 10.1016/j.optlastec.2017.03.003 10.1179/1743284712Y.0000000166 10.1016/j.ijfatigue.2006.10.005 10.1063/1.1661837 10.1080/14786435.2011.645899 10.1016/j.jmatprotec.2014.12.028 10.1016/j.jallcom.2016.04.179 10.1016/j.optlastec.2012.06.019 10.1016/j.optlastec.2017.12.044 10.2961/jlmn.2009.01.0007 10.1016/j.optlastec.2019.105784 10.1007/BF02677273 10.1016/S0168-583X(96)00551-4 10.1016/j.actamat.2010.03.026 10.1016/j.optlastec.2016.07.003 10.1016/j.matdes.2013.08.104 10.1016/j.surfcoat.2016.12.093 10.1016/j.surfcoat.2016.02.038 10.1007/s11665-018-3172-6 10.1111/jace.14630 10.1016/S0921-5093(03)00069-8 10.1016/j.msea.2015.08.084 10.1016/j.msea.2010.01.076 10.2961/jlmn.2006.03.0002 10.1016/j.matdes.2017.05.083 10.1016/j.msea.2005.11.017 10.1063/1.4932142 10.1016/j.apsusc.2014.06.056 10.1016/j.mtla.2019.100265 10.1016/j.actamat.2012.12.016 10.1016/j.ijmecsci.2018.10.040 10.1115/1.4034891 10.1016/j.actamat.2010.06.010 10.1016/j.msea.2011.12.072 10.1016/j.optlastec.2016.03.028 10.3390/met9060626 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/adem.202001216 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1527-2648 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adem_202001216 ADEM202001216 |
| Genre | article |
| GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c2896-8602c3d75f1baba5147f7a5077b351d1eb74b36cc25673cc11a63feba361d52a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000644895700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1438-1656 |
| IngestDate | Thu Oct 09 00:33:23 EDT 2025 Tue Nov 18 22:17:53 EST 2025 Wed Jan 22 16:30:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2896-8602c3d75f1baba5147f7a5077b351d1eb74b36cc25673cc11a63feba361d52a3 |
| ORCID | 0000-0002-2546-4464 |
| PageCount | 24 |
| ParticipantIDs | crossref_citationtrail_10_1002_adem_202001216 crossref_primary_10_1002_adem_202001216 wiley_primary_10_1002_adem_202001216_ADEM202001216 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering materials |
| PublicationYear | 2021 |
| References | 2015; 79 2013; 69 2010; 108 2004; 27 2015; 73 2015; 75 2013; 61 2018; 10813 1972; 43 2020; 13 2011; 59 1998; 82 2017; 310 2019; 167 2011; 110 2017; 75 2018; 337 2018; 339 2011; 528 2015; 83 2013; 232 2003; 48 2018; 737 2018; 30 2015; 90 2010; 5 2019; 150 2000; 3885 2012; 536 2004; 386 2018; 342 2019; 9 2011; 2 2019; 6 2018; 744 2018; 108 2018; 349 2020; 780 2018; 101 1997; 24 2018; 103 2020; 148 2019; 104 1996 2020; 822 1998; 257 2017; 130 2015; 647 2020; 33 2012; 36 2017; 134 1970; 16 2018; 27 2019; 101 2016; 680 2014; 313 2018; 24 2017; 704 2012; 112 2015; 115 2019; 43 2015; 110 2018; 91 2010; 210 2005; 97 2020; 23 2020; 279 2015; 118 2016; 291 2012; 44 2012; 60 2013; 29 2021; 409 2021; 27 2006; 417 2010; 58 2009; 42 2015; 225 2016; 107 2020; 121 2018; 767 2015; 221 2021; 405 1999; 121 2020; 59 2019; 125 2019; 802 2020; 54 2003; 355 2012; 206 2019; 120 2016; 78 2003; 12 2001; 298 2007; 29 2012; 212 2016; 90 2017; 37 2020; 131 2014; 609 2018; 135 1993; 74 2014; 59 2016; 86 2015; 219 2016; 83 2016; 82 2016; 81 2020; 136 2020; 43 2014; 7 2017; 127 2014; 54 2014; 53 2010; 527 2018; 140 2013; 45 2011; 33 2017; 29 2006; 1 2002 2019; 266 2016; 57 2017; 94 2012; 92 1963; 16 1990; 68 2017; 93 2002; 24 1997; 121 2002; 22 2000; 1–2 2016; 139 2014 2009; 4 2017; 100 2012; 7 2017; 102 2019; 370 2011; 464 1977; 8 2018; 57 Cui B. (e_1_2_8_147_1) 2018; 10813 Luo M. (e_1_2_8_136_1) 2018; 140 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Prevey P. S. (e_1_2_8_20_1) 2000 Ocaña J. L. (e_1_2_8_27_1) 2000; 3885 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_133_1 Garrison B. (e_1_2_8_7_1) 2002 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 Prabhakaran S. (e_1_2_8_38_1) 2016; 107 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Zhou J. (e_1_2_8_55_1) 2002; 22 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_153_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 Yang X. (e_1_2_8_87_1) 2020; 13 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Hu Y. (e_1_2_8_130_1) 2010; 108 e_1_2_8_70_1 Li Z. (e_1_2_8_54_1) 1997; 24 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 Peyre P. (e_1_2_8_9_1) 2018; 135 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 Askar'yan G. (e_1_2_8_2_1) 1963; 16 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 Zhao J. (e_1_2_8_113_1) 2019; 125 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
| References_xml | – volume: 1–2 start-page: 426 year: 2000 end-page: 434 – volume: 680 start-page: 544 year: 2016 publication-title: J. Alloys Compd. – volume: 139 start-page: 041004 year: 2016 publication-title: J. Manuf. Sci. Eng. – volume: 29 start-page: 012005 year: 2017 publication-title: J. Laser Appl. – volume: 93 start-page: 208 year: 2017 publication-title: Opt. Laser Technol. – volume: 59 start-page: 7219 year: 2011 publication-title: Acta Mater. – volume: 6 start-page: 100265 year: 2019 publication-title: Materialia – volume: 125 start-page: 1 year: 2019 publication-title: J. Appl. Phys. – volume: 83 start-page: 216 year: 2015 publication-title: Acta Mater. – volume: 24 start-page: 118 year: 1997 publication-title: Chin. J. Lasers – volume: 37 start-page: 3027 year: 2017 publication-title: J. Eur. Ceram. Soc. – volume: 57 start-page: 2467 year: 2018 publication-title: Appl. Opt. – volume: 90 start-page: 364 year: 2016 publication-title: Mater. Des. – year: 2014 – volume: 802 start-page: 573 year: 2019 publication-title: J. Alloys Compd. – volume: 60 start-page: 145 year: 2012 publication-title: Corros. Sci. – volume: 91 start-page: 165 year: 2018 publication-title: Eng. Fail Anal. – volume: 339 start-page: 48 year: 2018 publication-title: Surf. Coat. Technol. – volume: 29 start-page: 626 year: 2013 publication-title: Mater. Sci. Technol. – volume: 5 start-page: 175 year: 2010 publication-title: J. Laser Micro Nanoeng. – volume: 82 start-page: 2826 year: 1998 publication-title: J. Appl. Phys. – volume: 103 start-page: 142 year: 2018 publication-title: Opt. Laser Technol. – volume: 13 start-page: 1 year: 2020 publication-title: Materials – volume: 118 start-page: 134902 year: 2015 publication-title: J. Appl. Phys. – volume: 36 start-page: 809 year: 2012 publication-title: Mater. Des. – volume: 130 start-page: 350 year: 2017 publication-title: Mater. Des. – volume: 97 start-page: 113517 year: 2005 publication-title: J. Appl. Phys. – volume: 136 start-page: 105596 year: 2020 publication-title: Int. J. Fatigue – volume: 7 start-page: 158 year: 2012 publication-title: J. Laser Micro Nanoeng. – volume: 43 start-page: 1500 year: 2020 publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 48 start-page: 1593 year: 2003 publication-title: Scr. Mater. – volume: 108 start-page: 4 year: 2010 publication-title: J. Appl. Phys. – volume: 59 start-page: 1014 year: 2011 publication-title: Acta Mater. – volume: 409 start-page: 126848 year: 2021 publication-title: Surf. Coat. Technol. – volume: 54 start-page: 734 year: 2014 publication-title: Mater. Des. – volume: 121 start-page: 321 year: 1999 publication-title: J. Eng. Mater. Technol. – volume: 108 start-page: 32 year: 2018 publication-title: Opt. Laser Technol. – volume: 337 start-page: 501 year: 2018 publication-title: Surf. Coat. Technol. – volume: 75 start-page: 1299 year: 2017 publication-title: Mater. Sci. Eng. C – volume: 33 start-page: 101112 year: 2020 publication-title: Addit. Manuf. – volume: 221 start-page: 214 year: 2015 publication-title: J. Mater. Process. Technol. – volume: 110 start-page: 083504 year: 2015 publication-title: J. Appl. Phys. – volume: 780 start-page: 139199 year: 2020 publication-title: Mater. Sci. Eng. A – volume: 115 start-page: 213519 year: 2015 publication-title: J. Appl. Phys. – volume: 206 start-page: 3374 year: 2012 publication-title: Surf. Coat. Technol. – volume: 7 start-page: 7925 year: 2014 publication-title: Materials – volume: 121 start-page: 105784 year: 2020 publication-title: Opt. Laser Technol. – volume: 405 start-page: 126670 year: 2021 publication-title: Surf. Coat. Technol. – volume: 58 start-page: 3984 year: 2010 publication-title: Acta Mater. – volume: 43 start-page: 161 year: 2019 publication-title: Exp. Tech. – volume: 150 start-page: 404 year: 2019 publication-title: Int. J. Mech. Sci. – volume: 75 start-page: 157 year: 2015 publication-title: Opt. Laser Technol. – volume: 135 start-page: 241 year: 2018 publication-title: J. Laser Appl. – volume: 212 start-page: 1347 year: 2012 publication-title: J. Mater. Process. Technol. – volume: 298 start-page: 296 year: 2001 publication-title: Mater. Sci. Eng. A – volume: 30 start-page: 012001 year: 2018 publication-title: J. Laser Appl. – year: 2002 – volume: 104 start-page: 907 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 94 start-page: 15 year: 2017 publication-title: Opt. Laser Technol. – volume: 2 start-page: 332 year: 2011 publication-title: Int. J. Struct. Integrity – volume: 12 start-page: 414 year: 2003 publication-title: J. Mater. Eng. Perform. – volume: 528 start-page: 2128 year: 2011 publication-title: Mater. Sci. Eng. A – volume: 27 start-page: 649 year: 2004 publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 121 start-page: 432 year: 1997 publication-title: Nucl. Instr. Methods Phys. Res. Sect. B – volume: 822 start-page: 153707 year: 2020 publication-title: J. Alloys Compd. – volume: 102 start-page: 121 year: 2017 publication-title: Int. J. Fatigue – volume: 9 start-page: 746 year: 2019 publication-title: Metals – volume: 60 start-page: 4997 year: 2012 publication-title: Acta Mater. – volume: 42 start-page: 1250 year: 2009 publication-title: Tribol. Int. – volume: 24 start-page: 1021 year: 2002 publication-title: Int. J. Fatigue – volume: 23 start-page: 5 year: 2020 publication-title: Manuf. Lett. – volume: 131 start-page: 106409 year: 2020 publication-title: Opt. Laser Technol. – volume: 291 start-page: 161 year: 2016 publication-title: Surf. Coat. Technol. – volume: 219 start-page: 230 year: 2015 publication-title: J. Mater. Process. Technol. – volume: 536 start-page: 82 year: 2012 publication-title: Mater. Sci. Eng. A – volume: 22 start-page: 7 year: 2002 publication-title: Appl. Laser – volume: 279 start-page: 116588 year: 2020 publication-title: J. Mater. Process. Technol. – volume: 82 start-page: 428 year: 2016 publication-title: Int. J. Fatigue – volume: 107 start-page: 98 year: 2016 publication-title: JMADE – volume: 464 start-page: 588 year: 2011 publication-title: Key Eng. Mater. – volume: 10813 start-page: 27 year: 2018 publication-title: Int. Soc. Opt. Eng. – volume: 349 start-page: 503 year: 2018 publication-title: Surf. Coat. Technol. – volume: 3885 start-page: 2520 year: 2000 publication-title: Proc. SPIE – Int. Soc. Opt. Eng. – volume: 57 start-page: 1776 year: 2016 publication-title: Mater. Trans. – volume: 1 start-page: 1 year: 2006 publication-title: J. Laser Micro/Nanoeng. – volume: 609 start-page: 195 year: 2014 publication-title: Mater. Sci. Eng. A – volume: 54 start-page: 055204 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 232 start-page: 464 year: 2013 publication-title: Surf. Coat. Technol. – volume: 81 start-page: 137 year: 2016 publication-title: Opt. Laser Technol. – volume: 417 start-page: 334 year: 2006 publication-title: Mater. Sci. Eng., A – volume: 370 start-page: 244 year: 2019 publication-title: Surf. Coat. Technol. – volume: 744 start-page: 156 year: 2018 publication-title: J. Alloys Compd. – volume: 110 start-page: 083504 year: 2011 publication-title: J. Appl. Phys. – volume: 42 start-page: 1324 year: 2009 publication-title: Tribol. Int. – volume: 27 start-page: 26 year: 2021 publication-title: Manuf. Lett. – volume: 9 start-page: 626 year: 2019 publication-title: Metals – volume: 737 start-page: 94 year: 2018 publication-title: Mater. Sci. Eng. A – volume: 92 start-page: 1369 year: 2012 publication-title: Philos. Mag. – volume: 43 start-page: 3893 year: 1972 publication-title: J. Appl. Phys. – volume: 16 start-page: 113 year: 1970 publication-title: Appl. Phys. Lett. – volume: 33 start-page: 788 year: 2011 publication-title: Int. J. Fatigue – volume: 59 start-page: 23 year: 2014 publication-title: Int. J. Fatigue – volume: 167 start-page: 107626 year: 2019 publication-title: Mater. Des. – volume: 4 start-page: 3 year: 2009 publication-title: J. Laser Micro/Nanoeng. – volume: 100 start-page: 407 year: 2017 publication-title: Int. J. Fatigue – volume: 101 start-page: 1247 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 100 start-page: 911 year: 2017 publication-title: J. Am. Ceram. Soc. – volume: 134 start-page: 523 year: 2017 publication-title: Mater. Des. – volume: 68 start-page: 775 year: 1990 publication-title: J. Appl. Phys. – volume: 647 start-page: 7 year: 2015 publication-title: Mater. Sci. Eng. A – volume: 225 start-page: 463 year: 2015 publication-title: J. Mater. Process. Technol. – volume: 528 start-page: 914 year: 2011 publication-title: Mater. Sci. Eng. A – volume: 58 start-page: 5354 year: 2010 publication-title: Acta Mater. – volume: 45 start-page: 389 year: 2013 publication-title: Opt. Laser Technol. – volume: 704 start-page: 459 year: 2017 publication-title: Mater. Sci. Eng. A – volume: 86 start-page: 53 year: 2016 publication-title: Opt. Lasers Eng. – volume: 528 start-page: 2899 year: 2011 publication-title: Mater. Sci. Eng. A – volume: 127 start-page: 252 year: 2017 publication-title: Acta Mater. – volume: 120 start-page: 105763 year: 2019 publication-title: Opt. Laser Technol. – year: 1996 – volume: 74 start-page: 2268 year: 1993 publication-title: J. Appl. Phys. – volume: 140 start-page: 1 year: 2018 publication-title: J. Manuf. Sci. Eng. Trans. ASME – volume: 79 start-page: 1 year: 2015 publication-title: Int. J. Fatigue – volume: 8 start-page: 119 year: 1977 publication-title: Metall. Trans. A – volume: 266 start-page: 612 year: 2019 publication-title: J. Mater. Process Technol. – volume: 313 start-page: 692 year: 2014 publication-title: Appl. Surf. Sci. – volume: 210 start-page: 2304 year: 2010 publication-title: J. Mater. Process. Technol. – volume: 527 start-page: 3411 year: 2010 publication-title: Mater. Sci. Eng. A – volume: 44 start-page: 292 year: 2012 publication-title: Int. J. Fatigue – volume: 53 start-page: 452 year: 2014 publication-title: Mater. Des. – volume: 148 start-page: 103475 year: 2020 publication-title: Int. J. Mach. Tools Manuf. – volume: 29 start-page: 1302 year: 2007 publication-title: Int. J. Fatigue – volume: 767 start-page: 253 year: 2018 publication-title: J. Alloys Compd. – volume: 257 start-page: 322 year: 1998 publication-title: Mater. Sci. Eng. A – volume: 355 start-page: 216 year: 2003 publication-title: Mater. Sci. Eng. A – volume: 59 start-page: 100 year: 2020 publication-title: J. Mater. Sci. Technol. – volume: 112 start-page: 033515 year: 2012 publication-title: J. Appl. Phys. – volume: 24 start-page: 67 year: 2018 publication-title: Addit. Manuf. – volume: 90 start-page: 434 year: 2015 publication-title: Corros. Sci. – volume: 310 start-page: 157 year: 2017 publication-title: Surf. Coat. Technol. – volume: 69 start-page: 319 year: 2013 publication-title: Int. J. Adv. Manuf. Technol. – volume: 27 start-page: 1466 year: 2018 publication-title: J. Mater. Eng. Perform. – volume: 86 start-page: 54 year: 2016 publication-title: Opt. Laser Technol. – volume: 16 start-page: 1638 year: 1963 publication-title: Sov. J. Exp. Theor. Phys. – volume: 386 start-page: 291 year: 2004 publication-title: Mater. Sci. Eng. A – volume: 342 start-page: 29 year: 2018 publication-title: Surf. Coat. Technol. – volume: 83 start-page: 43 year: 2016 publication-title: Opt. Laser Technol. – volume: 61 start-page: 1957 year: 2013 publication-title: Acta Mater. – volume: 101 start-page: 4933 year: 2018 publication-title: J. Am. Ceram. Soc. – volume: 73 start-page: 94 year: 2015 publication-title: Opt. Laser Technol. – volume: 78 start-page: 15 year: 2016 publication-title: Opt. Laser Technol. – ident: e_1_2_8_19_1 doi: 10.1016/j.surfcoat.2019.04.060 – ident: e_1_2_8_23_1 doi: 10.1016/j.msec.2017.03.003 – ident: e_1_2_8_144_1 doi: 10.1016/j.matdes.2017.08.066 – ident: e_1_2_8_78_1 doi: 10.1016/j.ijfatigue.2015.04.018 – ident: e_1_2_8_110_1 doi: 10.1063/1.3651508 – ident: e_1_2_8_35_1 doi: 10.1016/j.actamat.2010.10.032 – ident: e_1_2_8_124_1 doi: 10.1007/s00170-013-5032-8 – ident: e_1_2_8_112_1 doi: 10.1016/j.surfcoat.2021.126848 – ident: e_1_2_8_97_1 doi: 10.1016/j.corsci.2014.10.045 – ident: e_1_2_8_84_1 doi: 10.1016/j.ijfatigue.2017.04.016 – ident: e_1_2_8_126_1 doi: 10.4028/www.scientific.net/KEM.464.588 – ident: e_1_2_8_36_1 doi: 10.1063/1.4881555 – ident: e_1_2_8_28_1 doi: 10.1063/1.1915537 – ident: e_1_2_8_95_1 doi: 10.1016/j.surfcoat.2018.01.043 – ident: e_1_2_8_101_1 doi: 10.1016/j.mfglet.2019.11.003 – volume-title: High Cycle Fatigue (Hcf) Science and Technology Program 2000 Annual Report. Nuclear Data in Science and Technology year: 2002 ident: e_1_2_8_7_1 – ident: e_1_2_8_13_1 doi: 10.1016/S0921-5093(98)00793-X – ident: e_1_2_8_151_1 doi: 10.1016/j.optlastec.2015.04.009 – ident: e_1_2_8_150_1 doi: 10.1016/j.optlaseng.2016.05.014 – ident: e_1_2_8_10_1 doi: 10.1016/j.surfcoat.2018.06.020 – ident: e_1_2_8_139_1 doi: 10.1016/j.jmatprotec.2020.116588 – ident: e_1_2_8_122_1 doi: 10.2961/jlmn.2010.02.0014 – ident: e_1_2_8_94_1 doi: 10.1016/j.jallcom.2018.06.030 – ident: e_1_2_8_59_1 doi: 10.1063/1.366113 – ident: e_1_2_8_111_1 doi: 10.1063/1.4742997 – ident: e_1_2_8_50_1 doi: 10.3390/ma7127925 – ident: e_1_2_8_77_1 doi: 10.1016/j.msea.2010.12.058 – ident: e_1_2_8_60_1 doi: 10.1007/s40799-018-0291-9 – ident: e_1_2_8_61_1 doi: 10.1088/1361-6463/abc040 – ident: e_1_2_8_153_1 doi: 10.1016/j.surfcoat.2013.06.003 – ident: e_1_2_8_107_1 doi: 10.1007/s00170-019-03868-y – ident: e_1_2_8_140_1 doi: 10.1016/j.addma.2018.09.013 – ident: e_1_2_8_71_1 doi: 10.1016/j.msea.2010.11.045 – ident: e_1_2_8_125_1 doi: 10.2351/1.5012962 – start-page: 426 volume-title: Heat Treating, Proc. year: 2000 ident: e_1_2_8_20_1 – ident: e_1_2_8_73_1 doi: 10.1016/j.ijfatigue.2013.10.001 – ident: e_1_2_8_66_1 doi: 10.1016/j.ijfatigue.2020.105596 – ident: e_1_2_8_145_1 doi: 10.1016/j.matdes.2019.107626 – ident: e_1_2_8_74_1 doi: 10.1016/j.msea.2018.09.016 – ident: e_1_2_8_91_1 doi: 10.1016/j.msea.2017.08.050 – ident: e_1_2_8_127_1 doi: 10.1016/j.jmatprotec.2015.02.030 – ident: e_1_2_8_76_1 doi: 10.1111/j.1460-2695.2004.00763.x – ident: e_1_2_8_24_1 doi: 10.1016/j.surfcoat.2018.02.009 – ident: e_1_2_8_39_1 doi: 10.1016/j.optlastec.2019.105763 – ident: e_1_2_8_37_1 doi: 10.1016/j.actamat.2012.06.024 – volume: 24 start-page: 118 year: 1997 ident: e_1_2_8_54_1 publication-title: Chin. J. Lasers – ident: e_1_2_8_57_1 doi: 10.1016/j.optlastec.2020.106409 – ident: e_1_2_8_63_1 doi: 10.1016/j.actamat.2011.07.070 – ident: e_1_2_8_45_1 doi: 10.1016/j.jmatprotec.2018.11.024 – ident: e_1_2_8_56_1 doi: 10.2320/matertrans.M2016150 – volume: 140 start-page: 1 year: 2018 ident: e_1_2_8_136_1 publication-title: J. Manuf. Sci. Eng. Trans. ASME – ident: e_1_2_8_105_1 doi: 10.1016/j.msea.2014.05.003 – ident: e_1_2_8_123_1 doi: 10.2351/1.4967013 – ident: e_1_2_8_75_1 doi: 10.1111/ffe.13226 – ident: e_1_2_8_100_1 doi: 10.1016/j.engfailanal.2018.04.045 – ident: e_1_2_8_67_1 doi: 10.1016/j.msea.2020.139199 – ident: e_1_2_8_17_1 doi: 10.1016/j.jmatprotec.2015.06.026 – ident: e_1_2_8_4_1 doi: 10.1063/1.1653116 – volume: 3885 start-page: 2520 year: 2000 ident: e_1_2_8_27_1 publication-title: Proc. SPIE – Int. Soc. Opt. Eng. – ident: e_1_2_8_49_1 doi: 10.1016/S0142-1123(02)00022-1 – ident: e_1_2_8_117_1 doi: 10.1108/17579861111162923 – ident: e_1_2_8_90_1 doi: 10.1016/j.triboint.2009.04.005 – ident: e_1_2_8_119_1 doi: 10.1016/j.optlastec.2015.06.029 – ident: e_1_2_8_16_1 doi: 10.1115/1.2812381 – ident: e_1_2_8_25_1 doi: 10.1063/1.346783 – ident: e_1_2_8_43_1 doi: 10.1016/j.jallcom.2019.06.156 – ident: e_1_2_8_22_1 doi: 10.1016/j.ijfatigue.2015.08.024 – ident: e_1_2_8_79_1 doi: 10.1016/j.msea.2010.10.020 – ident: e_1_2_8_51_1 doi: 10.1016/j.optlastec.2015.09.014 – volume: 13 start-page: 1 year: 2020 ident: e_1_2_8_87_1 publication-title: Materials – ident: e_1_2_8_132_1 doi: 10.1016/j.jmatprotec.2010.08.025 – ident: e_1_2_8_62_1 doi: 10.1016/j.ijfatigue.2017.04.002 – ident: e_1_2_8_137_1 doi: 10.1016/j.surfcoat.2012.01.050 – ident: e_1_2_8_21_1 doi: 10.1016/j.msea.2017.08.050 – ident: e_1_2_8_80_1 doi: 10.1016/j.optlastec.2017.03.017 – ident: e_1_2_8_15_1 doi: 10.1361/105994903770342944 – ident: e_1_2_8_48_1 doi: 10.1016/j.addma.2020.101112 – ident: e_1_2_8_89_1 doi: 10.1016/j.triboint.2009.04.014 – volume: 108 start-page: 4 year: 2010 ident: e_1_2_8_130_1 publication-title: J. Appl. Phys. – ident: e_1_2_8_47_1 doi: 10.1007/s00170-018-3033-3 – ident: e_1_2_8_12_1 doi: 10.1016/j.ijmachtools.2019.103475 – ident: e_1_2_8_14_1 doi: 10.1016/S0921-5093(00)01277-6 – ident: e_1_2_8_18_1 doi: 10.1364/AO.57.002467 – ident: e_1_2_8_135_1 doi: 10.1016/j.matdes.2015.10.128 – ident: e_1_2_8_31_1 doi: 10.1016/j.actamat.2017.01.050 – ident: e_1_2_8_58_1 doi: 10.1063/1.354710 – ident: e_1_2_8_108_1 doi: 10.3390/met9070746 – ident: e_1_2_8_142_1 doi: 10.1111/jace.15742 – ident: e_1_2_8_98_1 doi: 10.1016/j.corsci.2012.03.044 – ident: e_1_2_8_32_1 – ident: e_1_2_8_96_1 doi: 10.1016/j.jmatprotec.2012.01.023 – volume: 125 start-page: 1 year: 2019 ident: e_1_2_8_113_1 publication-title: J. Appl. Phys. – ident: e_1_2_8_129_1 doi: 10.1016/j.optlastec.2018.06.032 – ident: e_1_2_8_72_1 doi: 10.1016/j.actamat.2014.09.032 – ident: e_1_2_8_118_1 doi: 10.1016/j.matdes.2011.10.053 – ident: e_1_2_8_143_1 doi: 10.1016/j.jeurceramsoc.2017.03.005 – ident: e_1_2_8_92_1 doi: 10.1016/j.jmst.2020.03.059 – ident: e_1_2_8_70_1 doi: 10.1016/j.ijfatigue.2012.03.008 – ident: e_1_2_8_93_1 doi: 10.1016/S1359-6462(03)00143-X – ident: e_1_2_8_134_1 doi: 10.2961/jlmn.2012.02.0006 – ident: e_1_2_8_103_1 doi: 10.1016/j.jallcom.2020.153707 – ident: e_1_2_8_8_1 doi: 10.1016/j.ijfatigue.2010.12.016 – ident: e_1_2_8_85_1 doi: 10.1016/j.surfcoat.2018.02.083 – ident: e_1_2_8_83_1 doi: 10.1016/j.jallcom.2018.01.070 – ident: e_1_2_8_26_1 doi: 10.1016/j.msea.2004.07.025 – ident: e_1_2_8_106_1 doi: 10.1016/j.surfcoat.2020.126670 – ident: e_1_2_8_82_1 doi: 10.1016/j.matdes.2013.07.009 – ident: e_1_2_8_52_1 doi: 10.1016/j.optlastec.2016.02.007 – ident: e_1_2_8_121_1 doi: 10.1016/j.mfglet.2020.11.006 – ident: e_1_2_8_120_1 doi: 10.1016/j.optlastec.2017.03.003 – ident: e_1_2_8_102_1 doi: 10.1179/1743284712Y.0000000166 – volume: 135 start-page: 241 year: 2018 ident: e_1_2_8_9_1 publication-title: J. Laser Appl. – ident: e_1_2_8_88_1 doi: 10.1016/j.ijfatigue.2006.10.005 – volume: 10813 start-page: 27 year: 2018 ident: e_1_2_8_147_1 publication-title: Int. Soc. Opt. Eng. – ident: e_1_2_8_5_1 doi: 10.1063/1.1661837 – ident: e_1_2_8_41_1 doi: 10.1080/14786435.2011.645899 – ident: e_1_2_8_133_1 doi: 10.1016/j.jmatprotec.2014.12.028 – ident: e_1_2_8_64_1 doi: 10.1016/j.jallcom.2016.04.179 – ident: e_1_2_8_116_1 doi: 10.1016/j.optlastec.2012.06.019 – volume: 16 start-page: 1638 year: 1963 ident: e_1_2_8_2_1 publication-title: Sov. J. Exp. Theor. Phys. – ident: e_1_2_8_11_1 doi: 10.1016/j.optlastec.2017.12.044 – ident: e_1_2_8_44_1 doi: 10.2961/jlmn.2009.01.0007 – ident: e_1_2_8_68_1 doi: 10.1016/j.optlastec.2019.105784 – ident: e_1_2_8_6_1 doi: 10.1007/BF02677273 – ident: e_1_2_8_53_1 doi: 10.1016/S0168-583X(96)00551-4 – ident: e_1_2_8_30_1 doi: 10.1016/j.actamat.2010.03.026 – ident: e_1_2_8_152_1 doi: 10.1016/j.optlastec.2016.07.003 – ident: e_1_2_8_40_1 doi: 10.1063/1.3651508 – ident: e_1_2_8_81_1 doi: 10.1016/j.matdes.2013.08.104 – ident: e_1_2_8_99_1 doi: 10.1016/j.surfcoat.2016.12.093 – volume: 107 start-page: 98 year: 2016 ident: e_1_2_8_38_1 publication-title: JMADE – ident: e_1_2_8_115_1 doi: 10.1016/j.surfcoat.2016.02.038 – ident: e_1_2_8_86_1 doi: 10.1007/s11665-018-3172-6 – ident: e_1_2_8_141_1 doi: 10.1111/jace.14630 – ident: e_1_2_8_69_1 doi: 10.1016/S0921-5093(03)00069-8 – ident: e_1_2_8_104_1 doi: 10.1016/j.msea.2015.08.084 – ident: e_1_2_8_131_1 – ident: e_1_2_8_65_1 doi: 10.1016/j.msea.2010.01.076 – ident: e_1_2_8_34_1 doi: 10.2961/jlmn.2006.03.0002 – ident: e_1_2_8_46_1 doi: 10.1016/j.matdes.2017.05.083 – ident: e_1_2_8_33_1 doi: 10.1016/j.msea.2005.11.017 – volume: 22 start-page: 7 year: 2002 ident: e_1_2_8_55_1 publication-title: Appl. Laser – ident: e_1_2_8_42_1 doi: 10.1063/1.4932142 – ident: e_1_2_8_148_1 doi: 10.1016/j.apsusc.2014.06.056 – ident: e_1_2_8_146_1 doi: 10.1016/j.mtla.2019.100265 – ident: e_1_2_8_109_1 doi: 10.1016/j.actamat.2012.12.016 – ident: e_1_2_8_138_1 doi: 10.1016/j.ijmecsci.2018.10.040 – ident: e_1_2_8_128_1 doi: 10.1115/1.4034891 – ident: e_1_2_8_29_1 doi: 10.1016/j.actamat.2010.06.010 – ident: e_1_2_8_114_1 doi: 10.1016/j.msea.2011.12.072 – ident: e_1_2_8_149_1 doi: 10.1016/j.optlastec.2016.03.028 – ident: e_1_2_8_3_1 doi: 10.3390/met9060626 |
| SSID | ssj0011013 |
| Score | 2.6474257 |
| SecondaryResourceType | review_article |
| Snippet | By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | additive manufacturing fatigue laser shock peening mechanical properties residual stresses |
| Title | Recent Developments and Novel Applications of Laser Shock Peening: A Review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202001216 |
| Volume | 23 |
| WOSCitedRecordID | wos000644895700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1527-2648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011013 issn: 1438-1656 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609aAH32J9sQfB09LsbpJNvBW1CJZS1EJvYZ8oSCpt9fc7m6QxPYigx4TJEmZndmYyX75B6DJIYNMD7ohOQ0PC1FIioyQl2hhhDcRjrZNi2IQYDpPJJB01_uIv-SHqD27eM4rz2ju4VPPuN2moR49DfccKVrJ4HbUZGG_UQu3bx_54UHcSwOQKkH0Iju2ZZpbEjQHrrq6wEpiaiWoRafo7_3_HXbRdZZm4V5rFHlqz-T7aanAPHqAHSBgh4OAGamiOZW7wcAo3cK_R2MZThwcQ7Wb46QWOTzyC2hfWuMY9XLYWDtG4f_d8c0-qyQpEQ4EVEz94SnMjIkeVVBKSJuGEhNRQKB5RQ60SoeIeUh3FgmtNqYy5s0rymJqISX6EWvk0t8cI29jaNHA0lYaGRiWJVoxay5SJXOB40EFkqdZMV7TjfvrFW1YSJrPMKymrldRBV7X8e0m48aMkK3T_i1jmLbq-OvnLQ6dok3koS4HSPUOtxezDnqMN_bl4nc8uKov7AjAz1XI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60FdSDb7E-9yB4Wsxmk2zirail0hiKttBb2FdQkFba6u93NkljehBBPCZMljCZ2ZnZ-fINQpdOCB_dYRlRkaeJFxlKhB9GRGnNjYZ4rFSYD5vgSRKORlG_RBPaf2EKfojqwM16Rr5fWwe3B9LX36yhFj4OBZ6b05IFq6jpgS2BkTfvnjrDuGolgM3lKHsPPNtSzSyYGx33enmFpchUz1TzUNPZ_oeX3EFbZZ6J24Vh7KIVM95DmzX2wX3Ug5QRQg6u4YZmWIw1TiZwA7drrW08yXAM8W6Kn19gA8V9qH5hjRvcxkVz4QANO_eD2y4pZysQBSVWQOzoKcU09zMqhRSQNvGMC0gOuWQ-1dRI7klmQdV-wJlSlIqAZUYKFlDtu4IdosZ4MjZHCJvAmMjJaCQ09bQMQyVdaowrtZ85GXNaiCz0mqqSeNzOv3hLC8pkN7VKSisltdBVJf9eUG78KOnmyv9FLLU2XV0d_-WhC7TeHTzGafyQ9E7QhmuBLTlm9xQ15tMPc4bW1Of8dTY9L83vCxCg2WI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7E-9yB4Cs3u5umtWIPSEopa6C3sEwVpS1v9_e4maUwPIojHhMkSZmd2ZjJfvgG4diOz6S7Vjog96Xixwg7zo9gRUoZKmngsRJQPmwjTNBqN4kGJJrT_whT8ENUHN-sZ-XltHVxNpW5_s4Za-Lgp8EhOSxasQ9Ozk2Qa0Ow-JcN-1UowNpej7D3j2ZZqZsnc6JL26gorkameqeahJtn9h5fcg50yz0SdwjD2YU2ND2C7xj54CD2TMpqQg2q4oTliY4nSibmBOrXWNppo1DfxboaeX80Bigam-jVr3KIOKpoLRzBM7l_uHpxytoIjTIkVOHb0lKAy9DXmjDOTNoU6ZCY5DDn1scSKhx6nFlTtByEVAmMWUK04owGWPmH0GBrjyVidAFKBUrGrccwk9iSPIsEJVopw6WtXU7cFzlKvmSiJx-38i_esoEwmmVVSVimpBTeV_LSg3PhRkuTK_0UsszZdXZ3-5aEr2Bx0k6z_mPbOYItYXEsO2T2HxmL2oS5gQ3wu3uazy9L6vgDRxtjd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Developments+and+Novel+Applications+of+Laser+Shock+Peening%3A+A+Review&rft.jtitle=Advanced+engineering+materials&rft.au=Zhang%2C+Chaoyi&rft.au=Dong%2C+Yalin&rft.au=Ye%2C+Chang&rft.date=2021-07-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=23&rft.issue=7&rft_id=info:doi/10.1002%2Fadem.202001216&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202001216 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |