Machine learning predictive models for optimal design of building‐integrated photovoltaic‐thermal collectors

Summary This research article aims to examine the feasibility of several machine learning techniques to forecast the exergetic performance of a building‐integrated photovoltaic‐thermal (BIPVT) collector. In this regard, it uses multiple linear regression, multilayer perceptron, radial basis function...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of energy research Ročník 44; číslo 7; s. 5675 - 5695
Hlavní autori: Shahsavar, Amin, Moayedi, Hossein, Al‐Waeli, Ali H. A., Sopian, Kamaruzzaman, Chelvanathan, Puvaneswaran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Inc 10.06.2020
Predmet:
ISSN:0363-907X, 1099-114X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary This research article aims to examine the feasibility of several machine learning techniques to forecast the exergetic performance of a building‐integrated photovoltaic‐thermal (BIPVT) collector. In this regard, it uses multiple linear regression, multilayer perceptron, radial basis function regressor, sequential minimal optimization improved support vector machine, lazy.IBK, random forest (RF), and random tree approaches. Moreover, it implements the performance evaluation criteria (PEC) to evaluate the system's performance from the perspective of exergy. The use of these approaches serves the identification process to realize the relationship between the input–output parameters of the BIPVT system. The novelty of this work is that it utilizes and compares multiple learning algorithms to predict the PEC of BIPVT through design parameters. Hence, the research considers the parameter (PEC) as the essential output of the BIPVT collector, while the input parameters are the length, width, and depth of the duct, located under the PV modules, as well as the air mass flow rate. The results of the research for the statistical indexes of mean absolute error, root mean square error, relative absolute error (%), and root relative squared error (%) show values of (0.2967, 0.3885, 1.8754, and 1.5237) and (0.4957, 0.8153, 2.9586, and 2.8289), respectively, for the training and testing datasets. While R2 ranges (0.9997‐0.9999) for those datasets. Therefore, to estimate the exergy performance of the BIPVT collector, the RF model is superior to other proposed models. Reliable predictive models of the exergetic performance of a BIPVT collector in Iran were developed in this study. The Performance Evaluation Criteria (PEC) was used to assess the performance of the BIPVT collector. The most reliable predictions of PEC were obtained from the Random Forest (RF) method.
AbstractList Summary This research article aims to examine the feasibility of several machine learning techniques to forecast the exergetic performance of a building‐integrated photovoltaic‐thermal (BIPVT) collector. In this regard, it uses multiple linear regression, multilayer perceptron, radial basis function regressor, sequential minimal optimization improved support vector machine, lazy.IBK, random forest (RF), and random tree approaches. Moreover, it implements the performance evaluation criteria (PEC) to evaluate the system's performance from the perspective of exergy. The use of these approaches serves the identification process to realize the relationship between the input–output parameters of the BIPVT system. The novelty of this work is that it utilizes and compares multiple learning algorithms to predict the PEC of BIPVT through design parameters. Hence, the research considers the parameter (PEC) as the essential output of the BIPVT collector, while the input parameters are the length, width, and depth of the duct, located under the PV modules, as well as the air mass flow rate. The results of the research for the statistical indexes of mean absolute error, root mean square error, relative absolute error (%), and root relative squared error (%) show values of (0.2967, 0.3885, 1.8754, and 1.5237) and (0.4957, 0.8153, 2.9586, and 2.8289), respectively, for the training and testing datasets. While R2 ranges (0.9997‐0.9999) for those datasets. Therefore, to estimate the exergy performance of the BIPVT collector, the RF model is superior to other proposed models. Reliable predictive models of the exergetic performance of a BIPVT collector in Iran were developed in this study. The Performance Evaluation Criteria (PEC) was used to assess the performance of the BIPVT collector. The most reliable predictions of PEC were obtained from the Random Forest (RF) method.
This research article aims to examine the feasibility of several machine learning techniques to forecast the exergetic performance of a building‐integrated photovoltaic‐thermal (BIPVT) collector. In this regard, it uses multiple linear regression, multilayer perceptron, radial basis function regressor, sequential minimal optimization improved support vector machine, lazy.IBK, random forest (RF), and random tree approaches. Moreover, it implements the performance evaluation criteria (PEC) to evaluate the system's performance from the perspective of exergy. The use of these approaches serves the identification process to realize the relationship between the input–output parameters of the BIPVT system. The novelty of this work is that it utilizes and compares multiple learning algorithms to predict the PEC of BIPVT through design parameters. Hence, the research considers the parameter (PEC) as the essential output of the BIPVT collector, while the input parameters are the length, width, and depth of the duct, located under the PV modules, as well as the air mass flow rate. The results of the research for the statistical indexes of mean absolute error, root mean square error, relative absolute error (%), and root relative squared error (%) show values of (0.2967, 0.3885, 1.8754, and 1.5237) and (0.4957, 0.8153, 2.9586, and 2.8289), respectively, for the training and testing datasets. While R2 ranges (0.9997‐0.9999) for those datasets. Therefore, to estimate the exergy performance of the BIPVT collector, the RF model is superior to other proposed models.
Author Sopian, Kamaruzzaman
Al‐Waeli, Ali H. A.
Shahsavar, Amin
Moayedi, Hossein
Chelvanathan, Puvaneswaran
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0003-0493-898X
  surname: Shahsavar
  fullname: Shahsavar, Amin
  organization: Kermanshah University of Technology
– sequence: 2
  givenname: Hossein
  orcidid: 0000-0002-5625-1437
  surname: Moayedi
  fullname: Moayedi, Hossein
  organization: Ton Duc Thang University
– sequence: 3
  givenname: Ali H. A.
  orcidid: 0000-0001-5064-9180
  surname: Al‐Waeli
  fullname: Al‐Waeli, Ali H. A.
  email: ali9alwaeli@gmail.com
  organization: Universiti Kebangsaan Malaysia (UKM)
– sequence: 4
  givenname: Kamaruzzaman
  orcidid: 0000-0002-4675-3927
  surname: Sopian
  fullname: Sopian, Kamaruzzaman
  organization: Universiti Kebangsaan Malaysia (UKM)
– sequence: 5
  givenname: Puvaneswaran
  surname: Chelvanathan
  fullname: Chelvanathan, Puvaneswaran
  organization: Universiti Kebangsaan Malaysia (UKM)
BookMark eNp10M1KAzEQB_AgCtYPfIWABw-ymmyy2-QopX6AIoiCtyXJzrYpMVmTVPHmI_iMPolb60n0NIf5zQzz30GbPnhA6ICSE0pIeQrxpGIl20AjSqQsKOWPm2hEWM0KScaP22gnpQUhQ4-OR6i_UWZuPWAHKnrrZ7iP0FqT7Qvgp9CCS7gLEYc-2yflcAvJzjwOHdZL69ph4PP9w_oMs6gytLifhxxegsvKmqGT5xBXYyY4ByaHmPbQVqdcgv2fuosezqf3k8vi-vbianJ2XZhSSFYAB11XYnih1iCE7JiWWjHgtJWdNlJz3UoiNGe1AFER3oIRrJaclNyQrmO76HC9t4_heQkpN4uwjH442ZSc8KoUJa0GVayViSGlCF1jbFbZBp-jsq6hpFmF2kBsVqEO_uiX7-OQS3z7Qx6v5at18PYfa6Z33_oLKr6LCA
CitedBy_id crossref_primary_10_1016_j_rser_2023_113370
crossref_primary_10_1016_j_csite_2025_106352
crossref_primary_10_3390_s21238051
crossref_primary_10_1016_j_energy_2020_118409
crossref_primary_10_3390_pr11092731
crossref_primary_10_4018_IJAMC_296262
crossref_primary_10_1002_er_7575
crossref_primary_10_3389_fbuil_2023_1248259
crossref_primary_10_1007_s00366_020_01119_3
crossref_primary_10_1109_ACCESS_2021_3102222
crossref_primary_10_1016_j_heliyon_2023_e16815
crossref_primary_10_1016_j_csite_2025_105851
crossref_primary_10_1016_j_renene_2025_123242
crossref_primary_10_1016_j_csite_2024_104860
crossref_primary_10_1016_j_energy_2025_135212
crossref_primary_10_3390_app11167550
crossref_primary_10_1051_e3sconf_202455902003
crossref_primary_10_1016_j_jobe_2025_112103
crossref_primary_10_1016_j_jclepro_2022_133138
crossref_primary_10_1016_j_enconman_2021_114488
crossref_primary_10_1080_19942060_2022_2126528
crossref_primary_10_3390_en15218289
crossref_primary_10_1016_j_renene_2024_120348
crossref_primary_10_1080_15567036_2023_2234321
crossref_primary_10_1080_17512549_2023_2185675
Cites_doi 10.1007/BF02478259
10.1016/j.applthermaleng.2018.09.101
10.1016/j.enbuild.2015.11.045
10.1016/j.csite.2019.100547
10.1002/er.4807
10.1016/j.renene.2015.07.014
10.1016/j.jag.2009.06.002
10.1016/0893-6080(89)90020-8
10.1016/j.solener.2010.07.010
10.1016/j.renene.2017.06.085
10.1016/j.camwa.2016.04.048
10.1016/j.renene.2017.01.062
10.1016/j.solener.2017.09.056
10.1016/j.apenergy.2017.09.039
10.1016/j.solener.2006.08.002
10.1115/1.4005250
10.1002/9781118671603
10.1016/j.solener.2012.09.001
10.1109/34.58871
10.1016/j.energy.2015.09.078
10.1126/science.247.4945.978
10.1016/j.energy.2015.05.017
10.2307/2685209
10.1016/j.egypro.2015.07.819
10.1016/j.enconman.2018.02.039
10.1016/j.apenergy.2018.07.055
10.1023/A:1010933404324
10.1016/j.applthermaleng.2016.12.104
10.1016/j.asoc.2018.02.027
10.1002/er.4855
10.1016/j.enconman.2018.01.006
10.1016/j.enconman.2018.07.034
10.1016/j.enconman.2018.07.057
10.1016/j.solener.2019.03.016
10.1016/j.solener.2017.06.006
10.1016/j.isprsjprs.2010.11.001
10.1007/978-3-540-68017-8_131
10.1115/1.4038050
10.1016/j.enbuild.2014.06.009
10.1109/TPAMI.2015.2414422
10.1016/j.energy.2018.08.044
10.1016/j.enbuild.2011.05.003
10.1016/j.ijheatmasstransfer.2017.11.011
10.1016/j.solener.2018.07.051
10.1007/s00365-004-0585-2
10.1016/j.compstruct.2010.08.018
10.1016/j.enconman.2018.05.011
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.5323
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 5695
ExternalDocumentID 10_1002_er_5323
ER5323
Genre article
GrantInformation_xml – fundername: Universiti Kebangsaan Malaysia
  funderid: MI‐2019‐011
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
F00
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
CITATION
EBS
O8X
WXSBR
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c2893-e4eb6581096be889f3b9ba3e41d9fbc9b4bd908b4368e8504dec83694024c0ff3
IEDL.DBID DRFUL
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520577700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0363-907X
IngestDate Wed Aug 13 10:01:35 EDT 2025
Tue Nov 18 22:26:23 EST 2025
Sat Nov 29 02:58:46 EST 2025
Wed Jan 22 16:34:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2893-e4eb6581096be889f3b9ba3e41d9fbc9b4bd908b4368e8504dec83694024c0ff3
Notes Funding information
Universiti Kebangsaan Malaysia, Grant/Award Number: MI‐2019‐011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0493-898X
0000-0002-4675-3927
0000-0001-5064-9180
0000-0002-5625-1437
PQID 2404528215
PQPubID 996365
PageCount 21
ParticipantIDs proquest_journals_2404528215
crossref_citationtrail_10_1002_er_5323
crossref_primary_10_1002_er_5323
wiley_primary_10_1002_er_5323_ER5323
PublicationCentury 2000
PublicationDate 10 June 2020
PublicationDateYYYYMMDD 2020-06-10
PublicationDate_xml – month: 06
  year: 2020
  text: 10 June 2020
  day: 10
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 163
2015; 37
2018; 160
2013; 3
1990; 12
2018; 162
2013; 1
2013; 2
2018; 128
2018; 168
2015; 74
2019; 16
2005; 21
2018; 209
2016; 72
2017; 153
2001; 45
2017; 158
2017; 115
2002; 2001
2009; 11
2012; 134
2018; 173
2018; 172
2015; 87
1987
2016; 111
2016; 85
2011; 66
1992; 46
1988
1989; 2
1943; 5
2018; 140
1990; 247
2015; 93
2018; 228
2018; 146
1998
2008
2007
2006
2018; 66
2019; 183
2010; 84
2006; 81
2017; 109
2014; 81
2012; 1
2019; 43
2018; 118
2011; 93
2011; 43
2013
2018; 55
2012; 86
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Boztosun I (e_1_2_8_46_1) 2002; 2001
Raviya KH (e_1_2_8_54_1) 2013; 2
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
Broomhead DS (e_1_2_8_38_1) 1988
Cherkassky VS (e_1_2_8_51_1) 2006
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Ghosh S (e_1_2_8_57_1) 2012; 1
e_1_2_8_30_1
e_1_2_8_29_1
Vapnik V (e_1_2_8_50_1) 2013
e_1_2_8_25_1
Patil S (e_1_2_8_52_1) 2013; 3
e_1_2_8_27_1
e_1_2_8_48_1
Vijayarani S (e_1_2_8_58_1) 2013; 1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Soleymani F (e_1_2_8_45_1) 2018; 55
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
Makridakis S (e_1_2_8_33_1) 2008
e_1_2_8_12_1
References_xml – volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
– volume: 118
  start-page: 734
  year: 2018
  end-page: 745
  article-title: Multiquadric RBF‐FD method for the convection‐dominated diffusion problems base on Shishkin nodes
  publication-title: Int J Heat Mass Transf
– volume: 168
  start-page: 371
  year: 2018
  end-page: 381
  article-title: Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance
  publication-title: Energy Convers Manag
– volume: 93
  start-page: 611
  year: 2011
  end-page: 615
  article-title: Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates
  publication-title: Compos Struct
– volume: 37
  start-page: 2464
  year: 2015
  end-page: 2477
  article-title: Kernel methods on Riemannian manifolds with Gaussian RBF kernels
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 85
  start-page: 1052
  year: 2016
  end-page: 1067
  article-title: Bi‐fluid photovoltaic/thermal (PV/T) solar collector: experimental validation of a 2‐D theoretical model
  publication-title: Renew Energy
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  article-title: An introduction to kernel and nearest‐neighbor nonparametric regression
  publication-title: Am Stat
– volume: 162
  start-page: 682
  year: 2018
  end-page: 696
  article-title: Performance assessment of an innovative exhaust air energy recovery system based on the PV/T‐assisted thermal wheel
  publication-title: Energy
– volume: 1
  start-page: 7
  year: 2012
  article-title: A tutorial review on text mining algorithms
  publication-title: Int J Adv Res Comput Commun Eng
– volume: 21
  start-page: 293
  year: 2005
  end-page: 317
  article-title: Multivariate interpolation by polynomials and radial basis functions
  publication-title: Constr Approx
– volume: 173
  start-page: 1002
  year: 2018
  end-page: 1010
  article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: an experimental study
  publication-title: Sol Energy
– volume: 160
  start-page: 93
  year: 2018
  end-page: 108
  article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation
  publication-title: Energy Convers Manag
– year: 1998
– volume: 2001
  start-page: 267
  year: 2002
  end-page: 282
  article-title: Thin‐plate spline radial basis function scheme for advection‐diffusion problems
  publication-title: Electron J Bound Elem
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 158
  start-page: 380
  year: 2017
  end-page: 395
  article-title: Energy and exergy analysis and multi‐objective optimization of an air based building integrated photovoltaic/thermal (BIPV/T) system
  publication-title: Sol Energy
– volume: 72
  start-page: 178
  year: 2016
  end-page: 193
  article-title: A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems
  publication-title: Comput Math Appl
– year: 2008
– volume: 43
  start-page: 8100
  year: 2019
  end-page: 8117
  article-title: Mathematical and neural network models for predicting the electrical performance of a PV/T system
  publication-title: Int J Energy Res
– volume: 3
  start-page: 266
  year: 2013
  end-page: 275
  article-title: Identification of growth rate of plant based on leaf features using digital image processing techniques
  publication-title: Int J Emerging Technol Adv Eng
– volume: 172
  start-page: 343
  year: 2018
  end-page: 356
  article-title: Numerical simulation of a concentrating photovoltaic‐thermal solar system combined with thermoelectric modules by coupling finite volume and Monte Carlo ray‐tracing methods
  publication-title: Energy Convers Manag
– volume: 134
  year: 2012
  article-title: Energy and exergy analysis of a photovoltaic‐thermal collector with natural air flow
  publication-title: J Sol Energy Eng
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  article-title: Neural network ensembles
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 172
  start-page: 595
  year: 2018
  end-page: 610
  article-title: Energy analysis and multi‐objective optimization of a novel exhaust air heat recovery system consisting of an air‐based building integrated photovoltaic/thermal system and a thermal wheel
  publication-title: Energy Convers Manag
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J Photogramm Remote Sens
– volume: 115
  start-page: 178
  year: 2017
  end-page: 187
  article-title: Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid
  publication-title: Appl Therm Eng
– volume: 1
  start-page: 735
  year: 2013
  end-page: 741
  article-title: Comparative analysis of classification function techniques for heart disease prediction
  publication-title: Int J Innovative Res Comput Comm Eng
– volume: 84
  start-page: 1938
  year: 2010
  end-page: 1958
  article-title: Experimental investigation and modeling of a direct‐coupled PV/T air collector
  publication-title: Sol Energy
– volume: 209
  start-page: 355
  year: 2018
  end-page: 382
  article-title: Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: dynamic modelling and simulation
  publication-title: Appl Energy
– year: 1987
– year: 2007
– volume: 183
  start-page: 293
  year: 2019
  end-page: 305
  article-title: The feasibility of genetic programming and ANFIS in prediction energetic performance of a building integrated photovoltaic thermal (BIPVT) system
  publication-title: Sol Energy
– volume: 86
  start-page: 3378
  issue: 11
  year: 2012
  end-page: 3387
  article-title: Estimation of photovoltaic conversion efficiency of a building integrated photovoltaic/thermal (BIPV/T) collector array using an artificial neural network
  publication-title: Sol Energy
– volume: 66
  start-page: 208
  year: 2018
  end-page: 219
  article-title: Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods
  publication-title: Appl Soft Comput
– volume: 2
  start-page: 19
  year: 2013
  end-page: 21
  article-title: Performance evaluation of different data mining classification algorithm using WEKA
  publication-title: Indian J Res
– volume: 153
  start-page: 562
  year: 2017
  end-page: 573
  article-title: Performance of a building integrated photovoltaic/thermal concentrator for facade applications
  publication-title: Sol Energy
– volume: 93
  start-page: 908
  year: 2015
  end-page: 922
  article-title: Artificial neural network modeling of a photovoltaic‐thermal evaporator of solar assisted heat pumps
  publication-title: Energy
– volume: 55
  start-page: 51
  year: 2018
  article-title: A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator
  publication-title: CAL
– volume: 163
  start-page: 187
  year: 2018
  end-page: 195
  article-title: Numerical investigation of the effects of a copper foam filled with phase change materials in a water‐cooled photovoltaic/thermal system
  publication-title: Energy Convers Manag
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 228
  start-page: 1531
  year: 2018
  end-page: 1539
  article-title: Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures
  publication-title: Appl Energy
– volume: 43
  start-page: 8572
  year: 2019
  end-page: 8591
  article-title: Experimental and deep learning artificial neural network approach for evaluating grid‐connected photovoltaic systems
  publication-title: Int J Energy Res
– volume: 111
  start-page: 184
  year: 2016
  end-page: 194
  article-title: Artificial neural network model for forecasting sub‐hourly electricity usage in commercial buildings
  publication-title: Energ Buildings
– year: 1988
– volume: 81
  start-page: 498
  year: 2006
  end-page: 511
  article-title: Improved PV/T solar collectors with heat extraction by forced or natural air circulation
  publication-title: Sol Energy
– year: 2006
– volume: 87
  start-page: 470
  year: 2015
  end-page: 480
  article-title: Numerical simulation and experimental validation of tri‐functional photovoltaic/thermal solar collector
  publication-title: Energy
– volume: 109
  start-page: 168
  year: 2017
  end-page: 187
  article-title: Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium
  publication-title: Renew Energy
– volume: 247
  start-page: 978
  year: 1990
  end-page: 982
  article-title: Regularization algorithms for learning that are equivalent to multilayer networks
  publication-title: Science
– volume: 43
  start-page: 2219
  year: 2011
  end-page: 2226
  article-title: Energy saving in buildings by using the exhaust and ventilation air for cooling of photovoltaic panels
  publication-title: Energ Buildings
– volume: 128
  start-page: 541
  year: 2018
  end-page: 552
  article-title: Exergy analysis of a naturally ventilated building integrated photovoltaic/thermal (BIPV/T) system
  publication-title: Renew Energy
– volume: 140
  year: 2018
  article-title: Scenario‐based multi‐objective optimization of an air‐based building‐integrated photovoltaic/thermal system
  publication-title: J Sol Energy Eng
– volume: 146
  start-page: 104
  year: 2018
  end-page: 122
  article-title: Feasibility of a hybrid BIPV/T and thermal wheel system for exhaust air heat recovery: energy and exergy assessment and multi‐objective optimization
  publication-title: Appl Therm Eng
– volume: 74
  start-page: 835
  year: 2015
  end-page: 843
  article-title: Analysis of a hybrid solar collector photovoltaic thermal (PVT)
  publication-title: Energy Procedia
– volume: 16
  year: 2019
  article-title: Novel criteria for assessing PV/T solar energy production
  publication-title: Case Stud Therm Eng
– volume: 11
  start-page: 352
  year: 2009
  end-page: 359
  article-title: A kernel functions analysis for support vector machines for land cover classification
  publication-title: Int J Appl Earth Obs Geo Inf
– volume: 81
  start-page: 444
  year: 2014
  end-page: 456
  article-title: Multi‐objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application
  publication-title: Energ Buildings
– year: 2013
– ident: e_1_2_8_34_1
  doi: 10.1007/BF02478259
– ident: e_1_2_8_18_1
  doi: 10.1016/j.applthermaleng.2018.09.101
– ident: e_1_2_8_21_1
  doi: 10.1016/j.enbuild.2015.11.045
– ident: e_1_2_8_28_1
  doi: 10.1016/j.csite.2019.100547
– ident: e_1_2_8_20_1
  doi: 10.1002/er.4807
– ident: e_1_2_8_26_1
  doi: 10.1016/j.renene.2015.07.014
– volume: 1
  start-page: 735
  year: 2013
  ident: e_1_2_8_58_1
  article-title: Comparative analysis of classification function techniques for heart disease prediction
  publication-title: Int J Innovative Res Comput Comm Eng
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jag.2009.06.002
– ident: e_1_2_8_40_1
– ident: e_1_2_8_36_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_8_2_1
  doi: 10.1016/j.solener.2010.07.010
– ident: e_1_2_8_17_1
  doi: 10.1016/j.renene.2017.06.085
– volume-title: Forecasting Methods and Applications
  year: 2008
  ident: e_1_2_8_33_1
– volume: 2
  start-page: 19
  year: 2013
  ident: e_1_2_8_54_1
  article-title: Performance evaluation of different data mining classification algorithm using WEKA
  publication-title: Indian J Res
– ident: e_1_2_8_43_1
  doi: 10.1016/j.camwa.2016.04.048
– ident: e_1_2_8_23_1
  doi: 10.1016/j.renene.2017.01.062
– ident: e_1_2_8_4_1
  doi: 10.1016/j.solener.2017.09.056
– ident: e_1_2_8_14_1
  doi: 10.1016/j.apenergy.2017.09.039
– ident: e_1_2_8_32_1
  doi: 10.1016/j.solener.2006.08.002
– ident: e_1_2_8_6_1
  doi: 10.1115/1.4005250
– ident: e_1_2_8_31_1
  doi: 10.1002/9781118671603
– ident: e_1_2_8_53_1
– ident: e_1_2_8_27_1
  doi: 10.1016/j.solener.2012.09.001
– ident: e_1_2_8_60_1
  doi: 10.1109/34.58871
– ident: e_1_2_8_37_1
  doi: 10.1016/j.energy.2015.09.078
– ident: e_1_2_8_41_1
  doi: 10.1126/science.247.4945.978
– ident: e_1_2_8_24_1
  doi: 10.1016/j.energy.2015.05.017
– ident: e_1_2_8_56_1
  doi: 10.2307/2685209
– ident: e_1_2_8_22_1
  doi: 10.1016/j.egypro.2015.07.819
– ident: e_1_2_8_11_1
  doi: 10.1016/j.enconman.2018.02.039
– ident: e_1_2_8_8_1
  doi: 10.1016/j.apenergy.2018.07.055
– volume-title: Radial basis functions, multi‐variable functional interpolation and adaptive networks
  year: 1988
  ident: e_1_2_8_38_1
– ident: e_1_2_8_59_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_25_1
  doi: 10.1016/j.applthermaleng.2016.12.104
– volume: 55
  start-page: 51
  year: 2018
  ident: e_1_2_8_45_1
  article-title: A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator
  publication-title: CAL
– ident: e_1_2_8_35_1
  doi: 10.1016/j.asoc.2018.02.027
– ident: e_1_2_8_19_1
  doi: 10.1002/er.4855
– ident: e_1_2_8_10_1
  doi: 10.1016/j.enconman.2018.01.006
– ident: e_1_2_8_12_1
  doi: 10.1016/j.enconman.2018.07.034
– ident: e_1_2_8_16_1
  doi: 10.1016/j.enconman.2018.07.057
– ident: e_1_2_8_30_1
  doi: 10.1016/j.solener.2019.03.016
– volume: 2001
  start-page: 267
  year: 2002
  ident: e_1_2_8_46_1
  article-title: Thin‐plate spline radial basis function scheme for advection‐diffusion problems
  publication-title: Electron J Bound Elem
– ident: e_1_2_8_13_1
  doi: 10.1016/j.solener.2017.06.006
– volume: 1
  start-page: 7
  year: 2012
  ident: e_1_2_8_57_1
  article-title: A tutorial review on text mining algorithms
  publication-title: Int J Adv Res Comput Commun Eng
– ident: e_1_2_8_49_1
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: e_1_2_8_55_1
  doi: 10.1007/978-3-540-68017-8_131
– ident: e_1_2_8_5_1
  doi: 10.1115/1.4038050
– ident: e_1_2_8_29_1
  doi: 10.1016/j.enbuild.2014.06.009
– ident: e_1_2_8_42_1
  doi: 10.1109/TPAMI.2015.2414422
– ident: e_1_2_8_15_1
  doi: 10.1016/j.energy.2018.08.044
– volume: 3
  start-page: 266
  year: 2013
  ident: e_1_2_8_52_1
  article-title: Identification of growth rate of plant based on leaf features using digital image processing techniques
  publication-title: Int J Emerging Technol Adv Eng
– volume-title: Learning from Data: Concepts, Theory, and Methods
  year: 2006
  ident: e_1_2_8_51_1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.enbuild.2011.05.003
– volume-title: The Nature of Statistical Learning Theory
  year: 2013
  ident: e_1_2_8_50_1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ijheatmasstransfer.2017.11.011
– ident: e_1_2_8_9_1
  doi: 10.1016/j.solener.2018.07.051
– ident: e_1_2_8_39_1
  doi: 10.1007/s00365-004-0585-2
– ident: e_1_2_8_47_1
  doi: 10.1016/j.compstruct.2010.08.018
– ident: e_1_2_8_7_1
  doi: 10.1016/j.enconman.2018.05.011
SSID ssj0009917
Score 2.4224362
Snippet Summary This research article aims to examine the feasibility of several machine learning techniques to forecast the exergetic performance of a...
This research article aims to examine the feasibility of several machine learning techniques to forecast the exergetic performance of a building‐integrated...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5675
SubjectTerms Air flow
Air masses
Algorithms
BIPVT
Datasets
Decision trees
Design parameters
exergetic performance
Exergy
Feasibility studies
Flow rates
Learning algorithms
Machine learning
Mass flow rate
Mathematical models
Multilayer perceptrons
Optimization
Parameter identification
Parameters
Performance evaluation
performance evaluation criteria
Performance indices
Photovoltaic cells
Photovoltaics
Prediction models
predictive model
Radial basis function
Statistical analysis
Support vector machines
Thermodynamics
Training
Title Machine learning predictive models for optimal design of building‐integrated photovoltaic‐thermal collectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.5323
https://www.proquest.com/docview/2404528215
Volume 44
WOSCitedRecordID wos000520577700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5yQNiC01iJ8QjglYMUKEKpG6R7diABE2VFGZ-Ar-RX8LZSR8IISExZYjPinzn832x_X0Ax6GSVMQm8liAEIXFWehxZXlvz6Q06HKWicSJTZz1eslgwG_npL4qfojpDzc7M1y-thNcyLI9Iw3VxWlEQ7oIzRCjljWgednv3l_PGHe5k9t1G5WIAAfVjVlr3K5Nvy9Fs_pyvkp1y0x37R8fuA6rdW1Jzqtg2IAFPdyElTnGwS0Y3bjDk5rUahEPZFTYrRqb9IhTxSkJlrEkx0zygn1l7oAHyQ2RtX725_vHlGIiI6PHfJxjhhuLJ4VvbDVpzWx0ue2Achvuu527iyuvFl3wFGIv6mmmJVYlAUIbqZOEGyq5FFSzIONGKi6ZzLifSMtcr5PIZ5lWCY054lCmfGPoDjSG-VDvAvFFYiLsIaBaM_SGCGLNYp8rIbDv2LTgZDL-qaoZya0wxnNacSmHqS5SO4QtINOGo4qE42eTg4kD03oWlilWKyxCTBlELTh2rvrNPO307WPvb832YTm0sNtKGPkH0BgXr_oQltTb-KksjupA_ALRweW3
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BgkR7KKVQsRSoD6i3QBI7IT6idlcglhVCIO0tih0bVmo3q-zCmZ_Q39hf0hnHuwtCSEiccojHijLj8Rt_vAdwEGvFi9QmgYiwRBFpGQdSE-_tsVIWXS7KInNiE8f9fjYYyEt_qpLuwjT8EPMFNxoZLl_TAKcF6aMFa6ipDxMe82VYERhESQtWfl11b3oLyl3p9HbdTiWWgIPmyiwZH3nT53PRAmA-halunumuv-cLP8Mnjy7ZSRMOG7BkRl_g4xPOwU0YX7jjk4Z5vYhbNq5ps4bSHnO6OBOGQJZVmEv-YF-lO-LBKsuUV9D-9_h3TjJRsvFdNa0wx02LocY3hCfJjOLLbQhMtuCm27n-eRp42YVAY_XFAyOMQlwSYXGjTJZJy5VUBTciKqVVWiqhShlmirjrTZaEojQ646nESlTo0Fr-FVqjamS2gYVFZhPsIeLGCHRHEaVGpKHURYF9p7YNP2YOyLXnJCdpjN95w6Yc56bO6Re2gc0bjhsajpdNdmcezP04nOSIV0SCVWWUtOHA-eo187xzRY-dtzX7Dmun1xe9vHfWP_8GH2IqwknQKNyF1rS-N3uwqh-mw0m976PyP4d46ac
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB38QvTgt7i6ag7irdo2aW2O4roo6iKisLfSpIku6LZ0V8_-BH-jv8RJGncVEQRPPSQTSiczmdck7wHshVLQLNaRxwKEKCzOQ49Lw3t7JIRGl7M8S6zYxFGnk3S7_NqdqjR3YWp-iNEPNxMZNl-bAFdlrg_HrKGqOohoSCdhmkU8xqCcbt207y7HlLvc6u3anUqEgN36yqwxPnSm39eicYH5tUy160x78T9vuAQLrrokx_V0WIYJ1V-B-S-cg6tQXtnjk4o4vYh7UlZms8akPWJ1cQYEC1lSYC55wrFye8SDFJoIp6D9_vo2IpnISflQDAvMccOsJ7HF1JPGzMwvuyEwWIO79untyZnnZBc8ieiLeoopgXVJgOBGqCThmgouMqpYkHMtJBdM5NxPhOGuV0nks1zJhMYckSiTvtZ0Hab6RV9tAPGzREc4QkCVYuiOLIgVi30uswzHjnUD9j8dkErHSW6kMR7Tmk05TFWVmk_YADLqWNY0HD-7ND89mLo4HKRYr7AIUWUQNWDP-uo38_T0xjw2_9ZtF2avW-308rxzsQVzocHgRs_Ib8LUsHpW2zAjX4a9QbXjJuUHNZPpIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+predictive+models+for+optimal+design+of+building%E2%80%90integrated+photovoltaic%E2%80%90thermal+collectors&rft.jtitle=International+journal+of+energy+research&rft.au=Shahsavar%2C+Amin&rft.au=Moayedi%2C+Hossein&rft.au=Al%E2%80%90Waeli%2C+Ali+H.+A.&rft.au=Sopian%2C+Kamaruzzaman&rft.date=2020-06-10&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=44&rft.issue=7&rft.spage=5675&rft.epage=5695&rft_id=info:doi/10.1002%2Fer.5323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_5323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon