All‐Electrical Programmable Domain‐Wall Spin Logic‐In‐Memory Device

Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switchin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced electronic materials Ročník 8; číslo 10
Hlavní autoři: Wang, Weiyang, Sheng, Yu, Zheng, Yuanhui, Ji, Yang, Wang, Kaiyou
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.10.2022
Témata:
ISSN:2199-160X, 2199-160X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switching for realizing multifunctional spin logic devices, simpler and more feasible approaches are still strongly desired. Here, field‐free current‐induced magnetization switching is achieved through magnetic domain wall (DW) motion in a dual‐channels device, where the chiral Néel DW is stabilized by the strong Dzyaloshinskii–Moriya interaction in Pt/Co/Ru asymmetric structure. By electrically programming the initial magnetization states of the device with two opposite switching modes, four Boolean logic gates of AND, NAND, OR, and NOR are demonstrated. This work demonstrates that ingenious geometry design can be important for developing the spin logic devices and in‐memory computing architectures. All‐electrical programmable domain‐wall spin logic‐in‐memory device with dual conductive channels is demonstrated. Field‐free current‐induced magnetization switching is achieved through current‐driven domain wall reciprocating motion. Furthermore, four logic gates of AND, OR, NAND, and NOR are demonstrated in a single device, which is encoded in switching chirality (clockwise/anticlockwise) and initial magnetization state (up/down).
AbstractList Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switching for realizing multifunctional spin logic devices, simpler and more feasible approaches are still strongly desired. Here, field‐free current‐induced magnetization switching is achieved through magnetic domain wall (DW) motion in a dual‐channels device, where the chiral Néel DW is stabilized by the strong Dzyaloshinskii–Moriya interaction in Pt/Co/Ru asymmetric structure. By electrically programming the initial magnetization states of the device with two opposite switching modes, four Boolean logic gates of AND, NAND, OR, and NOR are demonstrated. This work demonstrates that ingenious geometry design can be important for developing the spin logic devices and in‐memory computing architectures. All‐electrical programmable domain‐wall spin logic‐in‐memory device with dual conductive channels is demonstrated. Field‐free current‐induced magnetization switching is achieved through current‐driven domain wall reciprocating motion. Furthermore, four logic gates of AND, OR, NAND, and NOR are demonstrated in a single device, which is encoded in switching chirality (clockwise/anticlockwise) and initial magnetization state (up/down).
Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switching for realizing multifunctional spin logic devices, simpler and more feasible approaches are still strongly desired. Here, field‐free current‐induced magnetization switching is achieved through magnetic domain wall (DW) motion in a dual‐channels device, where the chiral Néel DW is stabilized by the strong Dzyaloshinskii–Moriya interaction in Pt/Co/Ru asymmetric structure. By electrically programming the initial magnetization states of the device with two opposite switching modes, four Boolean logic gates of AND, NAND, OR, and NOR are demonstrated. This work demonstrates that ingenious geometry design can be important for developing the spin logic devices and in‐memory computing architectures.
Author Zheng, Yuanhui
Ji, Yang
Wang, Weiyang
Sheng, Yu
Wang, Kaiyou
Author_xml – sequence: 1
  givenname: Weiyang
  surname: Wang
  fullname: Wang, Weiyang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yu
  surname: Sheng
  fullname: Sheng, Yu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yuanhui
  surname: Zheng
  fullname: Zheng, Yuanhui
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 4
  givenname: Yang
  surname: Ji
  fullname: Ji, Yang
  email: jiyang@semi.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Kaiyou
  orcidid: 0000-0002-6017-7575
  surname: Wang
  fullname: Wang, Kaiyou
  email: kywang@semi.ac.cn
  organization: University of Chinese Academy of Science
BookMark eNqFkNFKwzAUhoNMcM7det0X6DxJszS5HNvUYYeCit6V0zQZkbQdaVF25yP4jD6JGxMVQbw6Pz__dy6-Y9Krm9oQckphRAHYGRpfjRgwBsApOyB9RpWKqYDH3o98RIZt-wQANBUJHyd9cjXx_v31be6N7oLT6KOb0KwCVhUW3kSzpkJXbwcP6H10u3Z1lDUrp7fNYlcvTdWETTQzz06bE3Jo0bdm-HkH5P58fje9jLPri8V0ksWaScVibSjalJaJTpUV1MpUA-cFRaaMTBMpSq6FLbEQ0o5BcFR8bGkpFYcCuUySAeH7vzo0bRuMzbXrsHNN3QV0PqeQ75zkOyf5l5MtNvqFrYOrMGz-BtQeeHHebP5Z55N5tvxmPwC003o4
CitedBy_id crossref_primary_10_1039_D4NR01003E
crossref_primary_10_1038_s44306_025_00087_y
crossref_primary_10_1002_aelm_202500091
crossref_primary_10_1021_acs_nanolett_4c04916
crossref_primary_10_1016_j_eng_2025_03_022
crossref_primary_10_1002_aelm_202300805
crossref_primary_10_1063_5_0283713
crossref_primary_10_1088_2631_7990_ad87cb
crossref_primary_10_1063_5_0250440
crossref_primary_10_1063_5_0222239
crossref_primary_10_1063_5_0145497
Cites_doi 10.1038/s41563-021-00946-z
10.1126/science.aau7913
10.1038/s41586-020-2061-y
10.1021/acsaelm.1c00248
10.1038/s41563-018-0041-5
10.1103/PhysRevB.96.104412
10.1038/nnano.2013.102
10.1103/PhysRevApplied.10.044038
10.1103/PhysRevLett.120.117703
10.1063/1.4905600
10.1088/1674-1056/abcf9d
10.1002/aelm.202000296
10.1002/aelm.201800224
10.1002/adma.201801318
10.1007/s11432-020-3246-8
10.1038/nnano.2016.109
10.1038/s41467-018-08181-y
10.1002/adfm.201808104
10.1103/PhysRevB.99.184403
10.1038/srep23956
10.1002/adfm.201806371
10.1002/adma.201907929
10.1209/0295-5075/100/57002
10.1038/nmat4566
10.1038/s41586-020-2861-0
10.1103/PhysRevB.89.024418
10.1002/aelm.201600210
10.1021/acs.nanolett.0c00647
10.1038/nmat4886
10.1088/0953-8984/27/32/326002
10.1103/PhysRevB.91.214434
10.1038/s41565-020-0655-z
10.1038/s41598-018-22122-1
10.1038/nmat3675
10.1109/TMAG.2021.3078583
10.1038/s41565-020-00826-8
10.1021/acs.nanolett.8b00773
10.1103/PhysRevLett.109.096602
10.1103/PhysRevB.95.054428
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/aelm.202200412
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID 10_1002_aelm_202200412
AELM202200412
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12104449
– fundername: Chinese Academy of Sciences
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: Z190007
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJNI
ADMLS
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
M~E
ID FETCH-LOGICAL-c2892-ce1af71d3c79f61f87c044b1a29e87386d4c6fdab68f5064a945f1d8940ba4833
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821632900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-160X
IngestDate Sat Nov 29 07:20:52 EST 2025
Tue Nov 18 21:47:59 EST 2025
Wed Jan 22 16:23:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2892-ce1af71d3c79f61f87c044b1a29e87386d4c6fdab68f5064a945f1d8940ba4833
ORCID 0000-0002-6017-7575
PageCount 6
ParticipantIDs crossref_citationtrail_10_1002_aelm_202200412
crossref_primary_10_1002_aelm_202200412
wiley_primary_10_1002_aelm_202200412_AELM202200412
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2022
References 2018; 120
2021; 20
2012; 100
2021; 3
2020; 20
2019; 99
2019; 10
2020; 15
2020; 587
2022; 65
2015; 106
2020; 32
2013; 8
2021; 30
2016; 15
2014; 89
2012; 109
2016; 11
2019; 363
2017; 95
2021; 57
2020; 6
2016; 6
2021; 16
2018; 18
2017; 96
2018; 17
2018; 8
2015; 27
2016; 2
2018; 4
2017; 16
2013; 12
2019; 29
2020; 579
2018; 30
2015; 91
2018; 10
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_1_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 579
  start-page: 214
  year: 2020
  publication-title: Nature
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 4
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 100
  year: 2012
  publication-title: Europhys. Lett.
– volume: 16
  start-page: 277
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 611
  year: 2013
  publication-title: Nat. Mater.
– volume: 20
  start-page: 3703
  year: 2020
  publication-title: Nano Lett.
– volume: 10
  start-page: 233
  year: 2019
  publication-title: Nat. Commun.
– volume: 57
  year: 2021
  publication-title: IEEE Trans. Magn.
– volume: 11
  start-page: 878
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 712
  year: 2017
  publication-title: Nat. Mater.
– volume: 587
  start-page: 72
  year: 2020
  publication-title: Nature
– volume: 363
  start-page: 1435
  year: 2019
  publication-title: Science
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 27
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 3
  start-page: 2646
  year: 2021
  publication-title: ACS Appl. Electron. Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 3826
  year: 2018
  publication-title: Sci. Rep.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 15
  start-page: 529
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 15
  start-page: 535
  year: 2016
  publication-title: Nat. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 18
  start-page: 4669
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 30
  year: 2021
  publication-title: Chin. Phys. B
– volume: 20
  start-page: 800
  year: 2021
  publication-title: Nat. Mater.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 17
  start-page: 509
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  start-page: 527
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 65
  year: 2022
  publication-title: Sci. China Inf. Sci.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_11_15_1
  doi: 10.1038/s41563-021-00946-z
– ident: e_1_2_11_25_1
  doi: 10.1126/science.aau7913
– ident: e_1_2_11_30_1
  doi: 10.1038/s41586-020-2061-y
– ident: e_1_2_11_5_1
  doi: 10.1021/acsaelm.1c00248
– ident: e_1_2_11_18_1
  doi: 10.1038/s41563-018-0041-5
– ident: e_1_2_11_13_1
  doi: 10.1103/PhysRevB.96.104412
– ident: e_1_2_11_35_1
  doi: 10.1038/nnano.2013.102
– ident: e_1_2_11_8_1
  doi: 10.1103/PhysRevApplied.10.044038
– ident: e_1_2_11_17_1
  doi: 10.1103/PhysRevLett.120.117703
– ident: e_1_2_11_33_1
  doi: 10.1063/1.4905600
– ident: e_1_2_11_39_1
  doi: 10.1088/1674-1056/abcf9d
– ident: e_1_2_11_4_1
  doi: 10.1002/aelm.202000296
– ident: e_1_2_11_27_1
  doi: 10.1002/aelm.201800224
– ident: e_1_2_11_23_1
  doi: 10.1002/adma.201801318
– ident: e_1_2_11_11_1
  doi: 10.1007/s11432-020-3246-8
– ident: e_1_2_11_20_1
  doi: 10.1038/nnano.2016.109
– ident: e_1_2_11_24_1
  doi: 10.1038/s41467-018-08181-y
– ident: e_1_2_11_2_1
  doi: 10.1002/adfm.201808104
– ident: e_1_2_11_22_1
  doi: 10.1103/PhysRevB.99.184403
– ident: e_1_2_11_9_1
  doi: 10.1038/srep23956
– ident: e_1_2_11_14_1
  doi: 10.1002/adfm.201806371
– ident: e_1_2_11_28_1
  doi: 10.1002/adma.201907929
– ident: e_1_2_11_34_1
  doi: 10.1209/0295-5075/100/57002
– ident: e_1_2_11_19_1
  doi: 10.1038/nmat4566
– ident: e_1_2_11_3_1
  doi: 10.1038/s41586-020-2861-0
– ident: e_1_2_11_7_1
  doi: 10.1103/PhysRevB.89.024418
– ident: e_1_2_11_38_1
  doi: 10.1002/aelm.201600210
– ident: e_1_2_11_10_1
  doi: 10.1021/acs.nanolett.0c00647
– ident: e_1_2_11_26_1
  doi: 10.1038/nmat4886
– ident: e_1_2_11_36_1
  doi: 10.1088/0953-8984/27/32/326002
– ident: e_1_2_11_12_1
  doi: 10.1103/PhysRevB.91.214434
– ident: e_1_2_11_1_1
  doi: 10.1038/s41565-020-0655-z
– ident: e_1_2_11_21_1
  doi: 10.1038/s41598-018-22122-1
– ident: e_1_2_11_31_1
  doi: 10.1038/nmat3675
– ident: e_1_2_11_6_1
  doi: 10.1109/TMAG.2021.3078583
– ident: e_1_2_11_16_1
  doi: 10.1038/s41565-020-00826-8
– ident: e_1_2_11_29_1
  doi: 10.1021/acs.nanolett.8b00773
– ident: e_1_2_11_37_1
  doi: 10.1103/PhysRevLett.109.096602
– ident: e_1_2_11_32_1
  doi: 10.1103/PhysRevB.95.054428
SSID ssj0001763453
Score 2.300141
Snippet Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms domain walls
Dzyaloshinskii–Moriya interactions
field‐free switching
spin logic‐in‐memory
spin–orbit torque
Title All‐Electrical Programmable Domain‐Wall Spin Logic‐In‐Memory Device
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202200412
Volume 8
WOSCitedRecordID wos000821632900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYW6IFL1QpQoRTlgMQpauI4iX1E7VZFsIjDou6eIttJ1EghrCiL4FL1EXiCPlyfpGM7drKi_BSJS7SanSSK58t4xhl_g9CuzGUoILPywRFKSFAK5otAYF_IWBARpnkp9Ebho_T4mE4m7GQw-G33wlzVadPQ62s2e1FTgwyMrbbO_oe53UVBAL_B6HAEs8PxSYbfr2tXwTDUTW60HU5MIdaZ3ir1-fxMrQhYNfN9elbpDr6VdPKDTmWkKnJvVI1RWyznqGttEUGvoQ5EweZJu-V641K-FdUNb-dKwwtp5NN5t4DtRLz5Pq9chY-uOpjak9t1CkhxbcVb687ANTI_TIKJmXn-IWv9Me3DLujNzG7euuP2DY0sL2rFLYCxJhHrJjj7Ud9pxg_rGjrg4dHI_b-EVnAaM1UyOPrZW8MD50w00al7EMsLGuCPi7dYiHv6eZAOZMZv0Os2A_H2DXLeokHRrKFDQM2fX7cdXrw-XjyDF1BQSPEUUjyNFJAcKLFBh2fQsY5OvwzHn776bZ8NX0K6jX1ZhLxMwzySKSuTsKSpDAi8qByzgqqmsDmRSZlzkdBS8RtyRuIyzCkjgeCERtEGWm7Om-Id8ojEJAa3AIE0IZzklAsIISMYAhELHiabyLejkMmWhF71QqkzQ5-NMzVqmRu1TbTn9GeGfuVeTawH9RG1bMGuW8856T1a7fC9jZYvL-bFB_RKXl1WPy52NEL-AoEsiE8
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90Electrical+Programmable+Domain%E2%80%90Wall+Spin+Logic%E2%80%90In%E2%80%90Memory+Device&rft.jtitle=Advanced+electronic+materials&rft.au=Wang%2C+Weiyang&rft.au=Sheng%2C+Yu&rft.au=Zheng%2C+Yuanhui&rft.au=Ji%2C+Yang&rft.date=2022-10-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=8&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202200412&rft.externalDBID=10.1002%252Faelm.202200412&rft.externalDocID=AELM202200412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon