All‐Electrical Programmable Domain‐Wall Spin Logic‐In‐Memory Device
Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switchin...
Uloženo v:
| Vydáno v: | Advanced electronic materials Ročník 8; číslo 10 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.10.2022
|
| Témata: | |
| ISSN: | 2199-160X, 2199-160X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switching for realizing multifunctional spin logic devices, simpler and more feasible approaches are still strongly desired. Here, field‐free current‐induced magnetization switching is achieved through magnetic domain wall (DW) motion in a dual‐channels device, where the chiral Néel DW is stabilized by the strong Dzyaloshinskii–Moriya interaction in Pt/Co/Ru asymmetric structure. By electrically programming the initial magnetization states of the device with two opposite switching modes, four Boolean logic gates of AND, NAND, OR, and NOR are demonstrated. This work demonstrates that ingenious geometry design can be important for developing the spin logic devices and in‐memory computing architectures.
All‐electrical programmable domain‐wall spin logic‐in‐memory device with dual conductive channels is demonstrated. Field‐free current‐induced magnetization switching is achieved through current‐driven domain wall reciprocating motion. Furthermore, four logic gates of AND, OR, NAND, and NOR are demonstrated in a single device, which is encoded in switching chirality (clockwise/anticlockwise) and initial magnetization state (up/down). |
|---|---|
| AbstractList | Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switching for realizing multifunctional spin logic devices, simpler and more feasible approaches are still strongly desired. Here, field‐free current‐induced magnetization switching is achieved through magnetic domain wall (DW) motion in a dual‐channels device, where the chiral Néel DW is stabilized by the strong Dzyaloshinskii–Moriya interaction in Pt/Co/Ru asymmetric structure. By electrically programming the initial magnetization states of the device with two opposite switching modes, four Boolean logic gates of AND, NAND, OR, and NOR are demonstrated. This work demonstrates that ingenious geometry design can be important for developing the spin logic devices and in‐memory computing architectures.
All‐electrical programmable domain‐wall spin logic‐in‐memory device with dual conductive channels is demonstrated. Field‐free current‐induced magnetization switching is achieved through current‐driven domain wall reciprocating motion. Furthermore, four logic gates of AND, OR, NAND, and NOR are demonstrated in a single device, which is encoded in switching chirality (clockwise/anticlockwise) and initial magnetization state (up/down). Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory computing architectures. Although various attempts have been proposed to avoid the participation of magnetic field during magnetization switching for realizing multifunctional spin logic devices, simpler and more feasible approaches are still strongly desired. Here, field‐free current‐induced magnetization switching is achieved through magnetic domain wall (DW) motion in a dual‐channels device, where the chiral Néel DW is stabilized by the strong Dzyaloshinskii–Moriya interaction in Pt/Co/Ru asymmetric structure. By electrically programming the initial magnetization states of the device with two opposite switching modes, four Boolean logic gates of AND, NAND, OR, and NOR are demonstrated. This work demonstrates that ingenious geometry design can be important for developing the spin logic devices and in‐memory computing architectures. |
| Author | Zheng, Yuanhui Ji, Yang Wang, Weiyang Sheng, Yu Wang, Kaiyou |
| Author_xml | – sequence: 1 givenname: Weiyang surname: Wang fullname: Wang, Weiyang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yu surname: Sheng fullname: Sheng, Yu organization: Chinese Academy of Sciences – sequence: 3 givenname: Yuanhui surname: Zheng fullname: Zheng, Yuanhui organization: Beijing Academy of Quantum Information Sciences – sequence: 4 givenname: Yang surname: Ji fullname: Ji, Yang email: jiyang@semi.ac.cn organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Kaiyou orcidid: 0000-0002-6017-7575 surname: Wang fullname: Wang, Kaiyou email: kywang@semi.ac.cn organization: University of Chinese Academy of Science |
| BookMark | eNqFkNFKwzAUhoNMcM7det0X6DxJszS5HNvUYYeCit6V0zQZkbQdaVF25yP4jD6JGxMVQbw6Pz__dy6-Y9Krm9oQckphRAHYGRpfjRgwBsApOyB9RpWKqYDH3o98RIZt-wQANBUJHyd9cjXx_v31be6N7oLT6KOb0KwCVhUW3kSzpkJXbwcP6H10u3Z1lDUrp7fNYlcvTdWETTQzz06bE3Jo0bdm-HkH5P58fje9jLPri8V0ksWaScVibSjalJaJTpUV1MpUA-cFRaaMTBMpSq6FLbEQ0o5BcFR8bGkpFYcCuUySAeH7vzo0bRuMzbXrsHNN3QV0PqeQ75zkOyf5l5MtNvqFrYOrMGz-BtQeeHHebP5Z55N5tvxmPwC003o4 |
| CitedBy_id | crossref_primary_10_1039_D4NR01003E crossref_primary_10_1038_s44306_025_00087_y crossref_primary_10_1002_aelm_202500091 crossref_primary_10_1021_acs_nanolett_4c04916 crossref_primary_10_1016_j_eng_2025_03_022 crossref_primary_10_1002_aelm_202300805 crossref_primary_10_1063_5_0283713 crossref_primary_10_1088_2631_7990_ad87cb crossref_primary_10_1063_5_0250440 crossref_primary_10_1063_5_0222239 crossref_primary_10_1063_5_0145497 |
| Cites_doi | 10.1038/s41563-021-00946-z 10.1126/science.aau7913 10.1038/s41586-020-2061-y 10.1021/acsaelm.1c00248 10.1038/s41563-018-0041-5 10.1103/PhysRevB.96.104412 10.1038/nnano.2013.102 10.1103/PhysRevApplied.10.044038 10.1103/PhysRevLett.120.117703 10.1063/1.4905600 10.1088/1674-1056/abcf9d 10.1002/aelm.202000296 10.1002/aelm.201800224 10.1002/adma.201801318 10.1007/s11432-020-3246-8 10.1038/nnano.2016.109 10.1038/s41467-018-08181-y 10.1002/adfm.201808104 10.1103/PhysRevB.99.184403 10.1038/srep23956 10.1002/adfm.201806371 10.1002/adma.201907929 10.1209/0295-5075/100/57002 10.1038/nmat4566 10.1038/s41586-020-2861-0 10.1103/PhysRevB.89.024418 10.1002/aelm.201600210 10.1021/acs.nanolett.0c00647 10.1038/nmat4886 10.1088/0953-8984/27/32/326002 10.1103/PhysRevB.91.214434 10.1038/s41565-020-0655-z 10.1038/s41598-018-22122-1 10.1038/nmat3675 10.1109/TMAG.2021.3078583 10.1038/s41565-020-00826-8 10.1021/acs.nanolett.8b00773 10.1103/PhysRevLett.109.096602 10.1103/PhysRevB.95.054428 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/aelm.202200412 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2199-160X |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_aelm_202200412 AELM202200412 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12104449 – fundername: Chinese Academy of Sciences – fundername: Natural Science Foundation of Beijing Municipality funderid: Z190007 |
| GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAMMB AAYXX ABJNI ADMLS AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION M~E |
| ID | FETCH-LOGICAL-c2892-ce1af71d3c79f61f87c044b1a29e87386d4c6fdab68f5064a945f1d8940ba4833 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821632900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-160X |
| IngestDate | Sat Nov 29 07:20:52 EST 2025 Tue Nov 18 21:47:59 EST 2025 Wed Jan 22 16:23:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2892-ce1af71d3c79f61f87c044b1a29e87386d4c6fdab68f5064a945f1d8940ba4833 |
| ORCID | 0000-0002-6017-7575 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1002_aelm_202200412 crossref_primary_10_1002_aelm_202200412 wiley_primary_10_1002_aelm_202200412_AELM202200412 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced electronic materials |
| PublicationYear | 2022 |
| References | 2018; 120 2021; 20 2012; 100 2021; 3 2020; 20 2019; 99 2019; 10 2020; 15 2020; 587 2022; 65 2015; 106 2020; 32 2013; 8 2021; 30 2016; 15 2014; 89 2012; 109 2016; 11 2019; 363 2017; 95 2021; 57 2020; 6 2016; 6 2021; 16 2018; 18 2017; 96 2018; 17 2018; 8 2015; 27 2016; 2 2018; 4 2017; 16 2013; 12 2019; 29 2020; 579 2018; 30 2015; 91 2018; 10 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_1_1 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
| References_xml | – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 579 start-page: 214 year: 2020 publication-title: Nature – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 4 year: 2018 publication-title: Adv. Electron. Mater. – volume: 100 year: 2012 publication-title: Europhys. Lett. – volume: 16 start-page: 277 year: 2021 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 611 year: 2013 publication-title: Nat. Mater. – volume: 20 start-page: 3703 year: 2020 publication-title: Nano Lett. – volume: 10 start-page: 233 year: 2019 publication-title: Nat. Commun. – volume: 57 year: 2021 publication-title: IEEE Trans. Magn. – volume: 11 start-page: 878 year: 2016 publication-title: Nat. Nanotechnol. – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 16 start-page: 712 year: 2017 publication-title: Nat. Mater. – volume: 587 start-page: 72 year: 2020 publication-title: Nature – volume: 363 start-page: 1435 year: 2019 publication-title: Science – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 27 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 3 start-page: 2646 year: 2021 publication-title: ACS Appl. Electron. Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3826 year: 2018 publication-title: Sci. Rep. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 15 start-page: 529 year: 2020 publication-title: Nat. Nanotechnol. – volume: 99 year: 2019 publication-title: Phys. Rev. B – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 15 start-page: 535 year: 2016 publication-title: Nat. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 18 start-page: 4669 year: 2018 publication-title: Nano Lett. – volume: 10 year: 2018 publication-title: Phys. Rev. Appl. – volume: 30 year: 2021 publication-title: Chin. Phys. B – volume: 20 start-page: 800 year: 2021 publication-title: Nat. Mater. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 17 start-page: 509 year: 2018 publication-title: Nat. Mater. – volume: 8 start-page: 527 year: 2013 publication-title: Nat. Nanotechnol. – volume: 65 year: 2022 publication-title: Sci. China Inf. Sci. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – ident: e_1_2_11_15_1 doi: 10.1038/s41563-021-00946-z – ident: e_1_2_11_25_1 doi: 10.1126/science.aau7913 – ident: e_1_2_11_30_1 doi: 10.1038/s41586-020-2061-y – ident: e_1_2_11_5_1 doi: 10.1021/acsaelm.1c00248 – ident: e_1_2_11_18_1 doi: 10.1038/s41563-018-0041-5 – ident: e_1_2_11_13_1 doi: 10.1103/PhysRevB.96.104412 – ident: e_1_2_11_35_1 doi: 10.1038/nnano.2013.102 – ident: e_1_2_11_8_1 doi: 10.1103/PhysRevApplied.10.044038 – ident: e_1_2_11_17_1 doi: 10.1103/PhysRevLett.120.117703 – ident: e_1_2_11_33_1 doi: 10.1063/1.4905600 – ident: e_1_2_11_39_1 doi: 10.1088/1674-1056/abcf9d – ident: e_1_2_11_4_1 doi: 10.1002/aelm.202000296 – ident: e_1_2_11_27_1 doi: 10.1002/aelm.201800224 – ident: e_1_2_11_23_1 doi: 10.1002/adma.201801318 – ident: e_1_2_11_11_1 doi: 10.1007/s11432-020-3246-8 – ident: e_1_2_11_20_1 doi: 10.1038/nnano.2016.109 – ident: e_1_2_11_24_1 doi: 10.1038/s41467-018-08181-y – ident: e_1_2_11_2_1 doi: 10.1002/adfm.201808104 – ident: e_1_2_11_22_1 doi: 10.1103/PhysRevB.99.184403 – ident: e_1_2_11_9_1 doi: 10.1038/srep23956 – ident: e_1_2_11_14_1 doi: 10.1002/adfm.201806371 – ident: e_1_2_11_28_1 doi: 10.1002/adma.201907929 – ident: e_1_2_11_34_1 doi: 10.1209/0295-5075/100/57002 – ident: e_1_2_11_19_1 doi: 10.1038/nmat4566 – ident: e_1_2_11_3_1 doi: 10.1038/s41586-020-2861-0 – ident: e_1_2_11_7_1 doi: 10.1103/PhysRevB.89.024418 – ident: e_1_2_11_38_1 doi: 10.1002/aelm.201600210 – ident: e_1_2_11_10_1 doi: 10.1021/acs.nanolett.0c00647 – ident: e_1_2_11_26_1 doi: 10.1038/nmat4886 – ident: e_1_2_11_36_1 doi: 10.1088/0953-8984/27/32/326002 – ident: e_1_2_11_12_1 doi: 10.1103/PhysRevB.91.214434 – ident: e_1_2_11_1_1 doi: 10.1038/s41565-020-0655-z – ident: e_1_2_11_21_1 doi: 10.1038/s41598-018-22122-1 – ident: e_1_2_11_31_1 doi: 10.1038/nmat3675 – ident: e_1_2_11_6_1 doi: 10.1109/TMAG.2021.3078583 – ident: e_1_2_11_16_1 doi: 10.1038/s41565-020-00826-8 – ident: e_1_2_11_29_1 doi: 10.1021/acs.nanolett.8b00773 – ident: e_1_2_11_37_1 doi: 10.1103/PhysRevLett.109.096602 – ident: e_1_2_11_32_1 doi: 10.1103/PhysRevB.95.054428 |
| SSID | ssj0001763453 |
| Score | 2.300141 |
| Snippet | Control of spins by spin–orbit torque brings novel strategies to design spintronic devices with potentially high impact in data storage and logic‐in‐memory... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | domain walls Dzyaloshinskii–Moriya interactions field‐free switching spin logic‐in‐memory spin–orbit torque |
| Title | All‐Electrical Programmable Domain‐Wall Spin Logic‐In‐Memory Device |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202200412 |
| Volume | 8 |
| WOSCitedRecordID | wos000821632900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2199-160X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001763453 issn: 2199-160X databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYW6IFL1QpQoRTlgMQpauI4iX1E7VZFsIjDou6eIttJ1EghrCiL4FL1EXiCPlyfpGM7drKi_BSJS7SanSSK58t4xhl_g9CuzGUoILPywRFKSFAK5otAYF_IWBARpnkp9Ebho_T4mE4m7GQw-G33wlzVadPQ62s2e1FTgwyMrbbO_oe53UVBAL_B6HAEs8PxSYbfr2tXwTDUTW60HU5MIdaZ3ir1-fxMrQhYNfN9elbpDr6VdPKDTmWkKnJvVI1RWyznqGttEUGvoQ5EweZJu-V641K-FdUNb-dKwwtp5NN5t4DtRLz5Pq9chY-uOpjak9t1CkhxbcVb687ANTI_TIKJmXn-IWv9Me3DLujNzG7euuP2DY0sL2rFLYCxJhHrJjj7Ud9pxg_rGjrg4dHI_b-EVnAaM1UyOPrZW8MD50w00al7EMsLGuCPi7dYiHv6eZAOZMZv0Os2A_H2DXLeokHRrKFDQM2fX7cdXrw-XjyDF1BQSPEUUjyNFJAcKLFBh2fQsY5OvwzHn776bZ8NX0K6jX1ZhLxMwzySKSuTsKSpDAi8qByzgqqmsDmRSZlzkdBS8RtyRuIyzCkjgeCERtEGWm7Om-Id8ojEJAa3AIE0IZzklAsIISMYAhELHiabyLejkMmWhF71QqkzQ5-NMzVqmRu1TbTn9GeGfuVeTawH9RG1bMGuW8856T1a7fC9jZYvL-bFB_RKXl1WPy52NEL-AoEsiE8 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90Electrical+Programmable+Domain%E2%80%90Wall+Spin+Logic%E2%80%90In%E2%80%90Memory+Device&rft.jtitle=Advanced+electronic+materials&rft.au=Wang%2C+Weiyang&rft.au=Sheng%2C+Yu&rft.au=Zheng%2C+Yuanhui&rft.au=Ji%2C+Yang&rft.date=2022-10-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=8&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202200412&rft.externalDBID=10.1002%252Faelm.202200412&rft.externalDocID=AELM202200412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |