Algebra of Orthogonal Series

An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by series of classical orthogonal polynomials and functions. It is shown that the considered linear transformations for classical orthogonal po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis Jg. 33; H. 4; S. 1309 - 1314
Hauptverfasser: Pankratov, A. N., Tetuev, R. K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.12.2023
Schlagworte:
ISSN:1054-6618, 1555-6212
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by series of classical orthogonal polynomials and functions. It is shown that the considered linear transformations for classical orthogonal polynomials and functions are subject to recurrence relations of a special form, which makes it possible to perform these transformations over series in the space of expansion coefficients. A theorem on the condition for the existence of a recurrence relation for the inverse transformation is proven. A general scheme of an algorithm for calculating the coefficients of the resulting series from the coefficients of the original series through the coefficients of recurrent relations is proposed. It has been proven that the linear transformation of a series of length is executed by a linear complexity algorithm . Formulas for the Chebyshev, Jacobi, Laguerre, and Hermite polynomials are given.
AbstractList An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by series of classical orthogonal polynomials and functions. It is shown that the considered linear transformations for classical orthogonal polynomials and functions are subject to recurrence relations of a special form, which makes it possible to perform these transformations over series in the space of expansion coefficients. A theorem on the condition for the existence of a recurrence relation for the inverse transformation is proven. A general scheme of an algorithm for calculating the coefficients of the resulting series from the coefficients of the original series through the coefficients of recurrent relations is proposed. It has been proven that the linear transformation of a series of length is executed by a linear complexity algorithm . Formulas for the Chebyshev, Jacobi, Laguerre, and Hermite polynomials are given.
Author Pankratov, A. N.
Tetuev, R. K.
Author_xml – sequence: 1
  givenname: A. N.
  surname: Pankratov
  fullname: Pankratov, A. N.
  email: pan@impb.ru
  organization: Institute of Mathematical Problems of Biology ot the Russian Academy of Sciences - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
– sequence: 2
  givenname: R. K.
  surname: Tetuev
  fullname: Tetuev, R. K.
  email: ruslan.tetuev@gmail.ru
  organization: Institute of Mathematical Problems of Biology ot the Russian Academy of Sciences - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
BookMark eNp9j8tqwzAQRUVJoXn0Awpd-AfcakaSIy9D6AsCWaSF7Ixkj1wH1yqSu-jfVyFdtZDFMAP3noEzY5PBD8TYDfA7ACHvd8CVLArQKLjkQu4v2BSUUnmBgJN0pzg_5ldsFuOBc66hxCm7XfUt2WAy77JtGN996wfTZzsKHcUFu3Smj3T9u-fs7fHhdf2cb7ZPL-vVJq9R6zF3heboNKJw0hqlqUTHrbISbV2mgWZJILRVDZla6sYCUCMQnEDipSQxZ8vT3zr4GAO5qu5GM3Z-GIPp-gp4dZSs_kkmEv6Qn6H7MOH7LIMnJqbu0FKoDv4rJOt4BvoBY8Jjaw
CitedBy_id crossref_primary_10_1134_S1054661823040247
Cites_doi 10.1145/362003.362037
10.1016/0010-4655(83)90015-2
10.1137/1.9781611975949
10.1016/s0096-3003(03)00301-1
10.1145/362452.362478
10.1134/s1054661819040102
10.17537/2010.5.30
10.1090/s0025-5718-1955-0071856-0
10.1016/j.cam.2005.10.013
10.1080/13658816.2016.1188932
10.1016/0010-4655(88)90049-5
10.17537/2013.8.398
10.1007/978-3-642-74748-9
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 4, pp. 1309–1314. © Pleiades Publishing, Ltd., 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 4, pp. 1309–1314. © Pleiades Publishing, Ltd., 2023.
DBID AAYXX
CITATION
DOI 10.1134/S105466182304034X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1555-6212
EndPage 1314
ExternalDocumentID 10_1134_S105466182304034X
GroupedDBID -59
-5G
-BR
-DT
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5VS
642
6NX
7WY
88I
8FE
8FG
8FL
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
KZ1
L6V
LLZTM
LMP
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c288t-f6802f8223f4ba58e92f0b5b42bc92bc1d7e138b5deac48db11ed321f32e094e3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001187820900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1054-6618
IngestDate Sat Nov 29 04:21:30 EST 2025
Tue Nov 18 22:34:13 EST 2025
Fri Feb 21 02:39:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hermite
recurrence relations
differentiation
Jacobi
integration
Laguerre
polynomial algebra
orthogonal polynomials of Chebyshev
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-f6802f8223f4ba58e92f0b5b42bc92bc1d7e138b5deac48db11ed321f32e094e3
PageCount 6
ParticipantIDs crossref_citationtrail_10_1134_S105466182304034X
crossref_primary_10_1134_S105466182304034X
springer_journals_10_1134_S105466182304034X
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Pattern recognition and image analysis
PublicationTitleAbbrev Pattern Recognit. Image Anal
PublicationYear 2023
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References Clenshaw (CR4) 1955; 9
Delic, Malherbe (CR6) 1988; 48
Press, Teukolsky, Vetterling, Flannery (CR11) 2007
D’aguanno, Nobile, Roman (CR5) 1983; 29
Mathar (CR8) 2006; 196
CR9
Rudnev, Pankratov, Kulikova, Dedus, Tikhonov, Efimov (CR12) 2013; 8
CR10
Trefethen (CR14) 2019
Makhortykh, Kulikova, Pankratov, Tetuev (CR7) 2019; 29
Florinsky, Pankratov (CR15) 2016; 30
Broucke (CR2) 1971; 14
Barrio (CR1) 2004; 150
Broucke (CR3) 1973; 16
Tetuev, Nazipova, Pankratov, Dedus (CR13) 2010; 5
R. Barrio (8509_CR1) 2004; 150
R. A. Broucke (8509_CR3) 1973; 16
R. J. Mathar (8509_CR8) 2006; 196
8509_CR10
G. Delic (8509_CR6) 1988; 48
L. N. Trefethen (8509_CR14) 2019
R. K. Tetuev (8509_CR13) 2010; 5
8509_CR9
C. W. Clenshaw (8509_CR4) 1955; 9
V. R. Rudnev (8509_CR12) 2013; 8
B. D’aguanno (8509_CR5) 1983; 29
I. V. Florinsky (8509_CR15) 2016; 30
R. A. Broucke (8509_CR2) 1971; 14
W. H. Press (8509_CR11) 2007
S. A. Makhortykh (8509_CR7) 2019; 29
References_xml – volume: 16
  start-page: 254
  year: 1973
  end-page: 256
  ident: CR3
  article-title: Algorithm 446: Ten subroutines for the manipulation of Chebyshev series
  publication-title: Commun. ACM
  doi: 10.1145/362003.362037
– year: 2007
  ident: CR11
– volume: 29
  start-page: 361
  year: 1983
  end-page: 374
  ident: CR5
  article-title: CHPACK: A package for the manipulation of Chebyshev approximations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(83)90015-2
– year: 2019
  ident: CR14
  doi: 10.1137/1.9781611975949
– volume: 150
  start-page: 707
  year: 2004
  end-page: 717
  ident: CR1
  article-title: Algorithms for the integration and derivation of Chebyshev series
  publication-title: Appl. Math. Comput.
  doi: 10.1016/s0096-3003(03)00301-1
– volume: 14
  start-page: 32
  year: 1971
  end-page: 35
  ident: CR2
  article-title: Construction of rational and negative powers of a formal series
  publication-title: Commun. ACM
  doi: 10.1145/362452.362478
– volume: 29
  start-page: 621
  year: 2019
  end-page: 638
  ident: CR7
  article-title: Generalized spectral-analytical method and its applications in image analysis and pattern recognition problems
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/s1054661819040102
– volume: 5
  start-page: 30
  year: 2010
  end-page: 42
  ident: CR13
  article-title: Search for megasatellite tandem repeats in eukaryotic genomes by estimation of GC-content curve oscillations
  publication-title: Math. Biol. Bioinf.
  doi: 10.17537/2010.5.30
– volume: 9
  start-page: 118
  year: 1955
  end-page: 120
  ident: CR4
  article-title: A note on the summation of Chebyshev series
  publication-title: Math. Comput.
  doi: 10.1090/s0025-5718-1955-0071856-0
– volume: 196
  start-page: 596
  year: 2006
  end-page: 607
  ident: CR8
  article-title: Chebyshev series expansion of inverse polynomials
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.10.013
– ident: CR10
– ident: CR9
– volume: 30
  start-page: 2506
  year: 2016
  end-page: 2528
  ident: CR15
  article-title: A universal spectral analytical method for digital terrain modeling
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2016.1188932
– volume: 48
  start-page: 305
  year: 1988
  end-page: 312
  ident: CR6
  article-title: Subroutines for convolution sums of Chebyshev and Fourier series
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(88)90049-5
– volume: 8
  start-page: 398
  year: 2013
  end-page: 406
  ident: CR12
  article-title: Recognition and stability analysis of structural motifs of α-α-corner type in globular proteins
  publication-title: Math. Biol. Bioinf.
  doi: 10.17537/2013.8.398
– volume-title: Numerical Recipes. The Art of Scientific Computing
  year: 2007
  ident: 8509_CR11
– volume: 150
  start-page: 707
  year: 2004
  ident: 8509_CR1
  publication-title: Appl. Math. Comput.
  doi: 10.1016/s0096-3003(03)00301-1
– volume: 30
  start-page: 2506
  year: 2016
  ident: 8509_CR15
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2016.1188932
– volume: 14
  start-page: 32
  year: 1971
  ident: 8509_CR2
  publication-title: Commun. ACM
  doi: 10.1145/362452.362478
– volume: 29
  start-page: 361
  year: 1983
  ident: 8509_CR5
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(83)90015-2
– ident: 8509_CR9
  doi: 10.1007/978-3-642-74748-9
– ident: 8509_CR10
– volume: 16
  start-page: 254
  year: 1973
  ident: 8509_CR3
  publication-title: Commun. ACM
  doi: 10.1145/362003.362037
– volume: 48
  start-page: 305
  year: 1988
  ident: 8509_CR6
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(88)90049-5
– volume: 9
  start-page: 118
  year: 1955
  ident: 8509_CR4
  publication-title: Math. Comput.
  doi: 10.1090/s0025-5718-1955-0071856-0
– volume: 29
  start-page: 621
  year: 2019
  ident: 8509_CR7
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/s1054661819040102
– volume-title: Approximation Theory and Approximation Practice, Extended Edition
  year: 2019
  ident: 8509_CR14
  doi: 10.1137/1.9781611975949
– volume: 196
  start-page: 596
  year: 2006
  ident: 8509_CR8
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.10.013
– volume: 8
  start-page: 398
  year: 2013
  ident: 8509_CR12
  publication-title: Math. Biol. Bioinf.
  doi: 10.17537/2013.8.398
– volume: 5
  start-page: 30
  year: 2010
  ident: 8509_CR13
  publication-title: Math. Biol. Bioinf.
  doi: 10.17537/2010.5.30
SSID ssj0008192
Score 2.2841096
Snippet An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1309
SubjectTerms Computer Science
Image Processing and Computer Vision
Moscow Region
Pattern Recognition
Pushchino
Scientific School of the Institute of Mathematical Problems of Biology of the Russian Academy of Sciences–The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
the Russian Federation
Title Algebra of Orthogonal Series
URI https://link.springer.com/article/10.1134/S105466182304034X
Volume 33
WOSCitedRecordID wos001187820900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1555-6212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008192
  issn: 1054-6618
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHp1Nx_qIHT0qw-dEuOQ5xeHGKU9mtLGkyhbHJWv37TdJ0MPwBeuglvJYSkvd9r1_6PoAzS8FpautklPM8RkyQHAkjua15hGCJwjxWsTeb6PT7fDgU9-E_7qI-7V5Lkj5TV74j7HJgmQCzaOKVoZiy4SqsWbTjzq_hYfC8SL-uw5eXOBOGXHiQMr99xDIYLSuhHmB6zX-92jZsBT4ZdasFsAMretqCZuCWUdi5hR2q7RvqsRZs3i5atha7cNydjJ2IHM1MdDcvX2Zjx9Ej9_VMF3vw1Lt-vLpBwToBKcJ5iUzKY2Is-FPD5CjhWhATy0QyIpWwF847GlMuk9wmXsZzibHOKcGGEm0LPk33oTGdTfUBRBxrkRI2coqfRTwsOlhZnqBtHcdkkso2xPUcZir0FXf2FpPM1xeUZV-mpw3ni1veqqYavwVf1JOehf1V_Bx9-KfoI9hw9vHV8ZRjaJTzd30C6-qjfC3mp35dfQI228C-
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFNSD06k4ndqDJ6WYX-2S4xDHxG2Km7JbWdp0CqOTtfr3m7TpYPgD9NBLeCnlkbzvvX7J-wDOdQpOfV0nuxGPkMsEiVwRS65rHiGYF2KOQpSLTTT7fT4aiQd7jzstT7uXlGQeqQvdEXY10JkA02iSM0OIstEqrDENWKZh_uPgeRF-TYevnOL0mGvMLZX57SuWwWiZCc0Bpl3916ftwLbNJ51WsQB2YUUlNaja3NKxOzfVQ6V8QzlWg63eomVrugeN1nRiSGRnFjv38-xlNjE5umP-nql0H57aN8PrjmulE9yQcJ65sc8RiTX405jJsceVIDGSnmREhkI_OGoqTLn0Ih14GY8kxiqiBMeUKF3wKXoAlWSWqENwOFbCJ2xsGD-NeFg0cajdrnQdx6Tnyzqg0odBaPuKG3mLaZDXF5QFX9xTh4vFlLeiqcZvxpel0wO7v9KfrY_-ZH0GG51hrxt0b_t3x7BppOSLoyoNqGTzd3UC6-FH9prOT_M19glKK8Oi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFNEHp1NxOrUPPinF5qNd8jjUoahzMJW9laVJpjC2sVZ_v0mbDoYfID70JdyWkq97Tk96D8CpgeAkMjzZl0wGPuVY-lwLZjgP5zRMEAuSIDebaHY6rN_nXedzmpan3UtJsvinwVZpGmcXU6mdBwm96BlUQE1myVWigND-MqxQe47e0vXey3wrttW-crkzpL4Nd7Lmt49YTEyLqmiebNrVf7_mFmw6nOm1iomxDUtqXIOqw5yeW9GpaSptHcq2Gmw8zEu5pjvQaI2GVlz2Jtp7nGWvk6HF7p79qqbSXXhuXz9d3vjOUsFPMGOZryMWYG1AAdFUDEKmONaBCAXFIuHmQrKpEGEilGZDpkwKhJQkGGmClSGCiuxBZTwZq33wGFI8wnRglUCTCRFvosTgB2X4HRVhJOoQlP0ZJ67euLW9GMU57yA0_tI9dTib3zItim38FnxeDkDs1l36c_TBn6JPYK171Y7vbzt3h7BuHeaLEywNqGSzd3UEq8lH9pbOjvPp9glUQsyG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebra+of+Orthogonal+Series&rft.jtitle=Pattern+recognition+and+image+analysis&rft.au=Pankratov%2C+A.+N.&rft.au=Tetuev%2C+R.+K.&rft.date=2023-12-01&rft.pub=Pleiades+Publishing&rft.issn=1054-6618&rft.eissn=1555-6212&rft.volume=33&rft.issue=4&rft.spage=1309&rft.epage=1314&rft_id=info:doi/10.1134%2FS105466182304034X&rft.externalDocID=10_1134_S105466182304034X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-6618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-6618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-6618&client=summon