Algebra of Orthogonal Series
An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by series of classical orthogonal polynomials and functions. It is shown that the considered linear transformations for classical orthogonal po...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition and image analysis Jg. 33; H. 4; S. 1309 - 1314 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.12.2023
|
| Schlagworte: | |
| ISSN: | 1054-6618, 1555-6212 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by series of classical orthogonal polynomials and functions. It is shown that the considered linear transformations for classical orthogonal polynomials and functions are subject to recurrence relations of a special form, which makes it possible to perform these transformations over series in the space of expansion coefficients. A theorem on the condition for the existence of a recurrence relation for the inverse transformation is proven. A general scheme of an algorithm for calculating the coefficients of the resulting series from the coefficients of the original series through the coefficients of recurrent relations is proposed. It has been proven that the linear transformation of a series of length
is executed by a linear complexity algorithm
. Formulas for the Chebyshev, Jacobi, Laguerre, and Hermite polynomials are given. |
|---|---|
| AbstractList | An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by series of classical orthogonal polynomials and functions. It is shown that the considered linear transformations for classical orthogonal polynomials and functions are subject to recurrence relations of a special form, which makes it possible to perform these transformations over series in the space of expansion coefficients. A theorem on the condition for the existence of a recurrence relation for the inverse transformation is proven. A general scheme of an algorithm for calculating the coefficients of the resulting series from the coefficients of the original series through the coefficients of recurrent relations is proposed. It has been proven that the linear transformation of a series of length
is executed by a linear complexity algorithm
. Formulas for the Chebyshev, Jacobi, Laguerre, and Hermite polynomials are given. |
| Author | Pankratov, A. N. Tetuev, R. K. |
| Author_xml | – sequence: 1 givenname: A. N. surname: Pankratov fullname: Pankratov, A. N. email: pan@impb.ru organization: Institute of Mathematical Problems of Biology ot the Russian Academy of Sciences - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences – sequence: 2 givenname: R. K. surname: Tetuev fullname: Tetuev, R. K. email: ruslan.tetuev@gmail.ru organization: Institute of Mathematical Problems of Biology ot the Russian Academy of Sciences - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences |
| BookMark | eNp9j8tqwzAQRUVJoXn0Awpd-AfcakaSIy9D6AsCWaSF7Ixkj1wH1yqSu-jfVyFdtZDFMAP3noEzY5PBD8TYDfA7ACHvd8CVLArQKLjkQu4v2BSUUnmBgJN0pzg_5ldsFuOBc66hxCm7XfUt2WAy77JtGN996wfTZzsKHcUFu3Smj3T9u-fs7fHhdf2cb7ZPL-vVJq9R6zF3heboNKJw0hqlqUTHrbISbV2mgWZJILRVDZla6sYCUCMQnEDipSQxZ8vT3zr4GAO5qu5GM3Z-GIPp-gp4dZSs_kkmEv6Qn6H7MOH7LIMnJqbu0FKoDv4rJOt4BvoBY8Jjaw |
| CitedBy_id | crossref_primary_10_1134_S1054661823040247 |
| Cites_doi | 10.1145/362003.362037 10.1016/0010-4655(83)90015-2 10.1137/1.9781611975949 10.1016/s0096-3003(03)00301-1 10.1145/362452.362478 10.1134/s1054661819040102 10.17537/2010.5.30 10.1090/s0025-5718-1955-0071856-0 10.1016/j.cam.2005.10.013 10.1080/13658816.2016.1188932 10.1016/0010-4655(88)90049-5 10.17537/2013.8.398 10.1007/978-3-642-74748-9 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 4, pp. 1309–1314. © Pleiades Publishing, Ltd., 2023. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 4, pp. 1309–1314. © Pleiades Publishing, Ltd., 2023. |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S105466182304034X |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1555-6212 |
| EndPage | 1314 |
| ExternalDocumentID | 10_1134_S105466182304034X |
| GroupedDBID | -59 -5G -BR -DT -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5VS 642 6NX 7WY 88I 8FE 8FG 8FL 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV KZ1 L6V LLZTM LMP M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c288t-f6802f8223f4ba58e92f0b5b42bc92bc1d7e138b5deac48db11ed321f32e094e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001187820900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1054-6618 |
| IngestDate | Sat Nov 29 04:21:30 EST 2025 Tue Nov 18 22:34:13 EST 2025 Fri Feb 21 02:39:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Hermite recurrence relations differentiation Jacobi integration Laguerre polynomial algebra orthogonal polynomials of Chebyshev |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-f6802f8223f4ba58e92f0b5b42bc92bc1d7e138b5deac48db11ed321f32e094e3 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1134_S105466182304034X crossref_primary_10_1134_S105466182304034X springer_journals_10_1134_S105466182304034X |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Pattern recognition and image analysis |
| PublicationTitleAbbrev | Pattern Recognit. Image Anal |
| PublicationYear | 2023 |
| Publisher | Pleiades Publishing |
| Publisher_xml | – name: Pleiades Publishing |
| References | Clenshaw (CR4) 1955; 9 Delic, Malherbe (CR6) 1988; 48 Press, Teukolsky, Vetterling, Flannery (CR11) 2007 D’aguanno, Nobile, Roman (CR5) 1983; 29 Mathar (CR8) 2006; 196 CR9 Rudnev, Pankratov, Kulikova, Dedus, Tikhonov, Efimov (CR12) 2013; 8 CR10 Trefethen (CR14) 2019 Makhortykh, Kulikova, Pankratov, Tetuev (CR7) 2019; 29 Florinsky, Pankratov (CR15) 2016; 30 Broucke (CR2) 1971; 14 Barrio (CR1) 2004; 150 Broucke (CR3) 1973; 16 Tetuev, Nazipova, Pankratov, Dedus (CR13) 2010; 5 R. Barrio (8509_CR1) 2004; 150 R. A. Broucke (8509_CR3) 1973; 16 R. J. Mathar (8509_CR8) 2006; 196 8509_CR10 G. Delic (8509_CR6) 1988; 48 L. N. Trefethen (8509_CR14) 2019 R. K. Tetuev (8509_CR13) 2010; 5 8509_CR9 C. W. Clenshaw (8509_CR4) 1955; 9 V. R. Rudnev (8509_CR12) 2013; 8 B. D’aguanno (8509_CR5) 1983; 29 I. V. Florinsky (8509_CR15) 2016; 30 R. A. Broucke (8509_CR2) 1971; 14 W. H. Press (8509_CR11) 2007 S. A. Makhortykh (8509_CR7) 2019; 29 |
| References_xml | – volume: 16 start-page: 254 year: 1973 end-page: 256 ident: CR3 article-title: Algorithm 446: Ten subroutines for the manipulation of Chebyshev series publication-title: Commun. ACM doi: 10.1145/362003.362037 – year: 2007 ident: CR11 – volume: 29 start-page: 361 year: 1983 end-page: 374 ident: CR5 article-title: CHPACK: A package for the manipulation of Chebyshev approximations publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(83)90015-2 – year: 2019 ident: CR14 doi: 10.1137/1.9781611975949 – volume: 150 start-page: 707 year: 2004 end-page: 717 ident: CR1 article-title: Algorithms for the integration and derivation of Chebyshev series publication-title: Appl. Math. Comput. doi: 10.1016/s0096-3003(03)00301-1 – volume: 14 start-page: 32 year: 1971 end-page: 35 ident: CR2 article-title: Construction of rational and negative powers of a formal series publication-title: Commun. ACM doi: 10.1145/362452.362478 – volume: 29 start-page: 621 year: 2019 end-page: 638 ident: CR7 article-title: Generalized spectral-analytical method and its applications in image analysis and pattern recognition problems publication-title: Pattern Recognit. Image Anal. doi: 10.1134/s1054661819040102 – volume: 5 start-page: 30 year: 2010 end-page: 42 ident: CR13 article-title: Search for megasatellite tandem repeats in eukaryotic genomes by estimation of GC-content curve oscillations publication-title: Math. Biol. Bioinf. doi: 10.17537/2010.5.30 – volume: 9 start-page: 118 year: 1955 end-page: 120 ident: CR4 article-title: A note on the summation of Chebyshev series publication-title: Math. Comput. doi: 10.1090/s0025-5718-1955-0071856-0 – volume: 196 start-page: 596 year: 2006 end-page: 607 ident: CR8 article-title: Chebyshev series expansion of inverse polynomials publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.10.013 – ident: CR10 – ident: CR9 – volume: 30 start-page: 2506 year: 2016 end-page: 2528 ident: CR15 article-title: A universal spectral analytical method for digital terrain modeling publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2016.1188932 – volume: 48 start-page: 305 year: 1988 end-page: 312 ident: CR6 article-title: Subroutines for convolution sums of Chebyshev and Fourier series publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(88)90049-5 – volume: 8 start-page: 398 year: 2013 end-page: 406 ident: CR12 article-title: Recognition and stability analysis of structural motifs of α-α-corner type in globular proteins publication-title: Math. Biol. Bioinf. doi: 10.17537/2013.8.398 – volume-title: Numerical Recipes. The Art of Scientific Computing year: 2007 ident: 8509_CR11 – volume: 150 start-page: 707 year: 2004 ident: 8509_CR1 publication-title: Appl. Math. Comput. doi: 10.1016/s0096-3003(03)00301-1 – volume: 30 start-page: 2506 year: 2016 ident: 8509_CR15 publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2016.1188932 – volume: 14 start-page: 32 year: 1971 ident: 8509_CR2 publication-title: Commun. ACM doi: 10.1145/362452.362478 – volume: 29 start-page: 361 year: 1983 ident: 8509_CR5 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(83)90015-2 – ident: 8509_CR9 doi: 10.1007/978-3-642-74748-9 – ident: 8509_CR10 – volume: 16 start-page: 254 year: 1973 ident: 8509_CR3 publication-title: Commun. ACM doi: 10.1145/362003.362037 – volume: 48 start-page: 305 year: 1988 ident: 8509_CR6 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(88)90049-5 – volume: 9 start-page: 118 year: 1955 ident: 8509_CR4 publication-title: Math. Comput. doi: 10.1090/s0025-5718-1955-0071856-0 – volume: 29 start-page: 621 year: 2019 ident: 8509_CR7 publication-title: Pattern Recognit. Image Anal. doi: 10.1134/s1054661819040102 – volume-title: Approximation Theory and Approximation Practice, Extended Edition year: 2019 ident: 8509_CR14 doi: 10.1137/1.9781611975949 – volume: 196 start-page: 596 year: 2006 ident: 8509_CR8 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.10.013 – volume: 8 start-page: 398 year: 2013 ident: 8509_CR12 publication-title: Math. Biol. Bioinf. doi: 10.17537/2013.8.398 – volume: 5 start-page: 30 year: 2010 ident: 8509_CR13 publication-title: Math. Biol. Bioinf. doi: 10.17537/2010.5.30 |
| SSID | ssj0008192 |
| Score | 2.2841096 |
| Snippet | An algebra of orthogonal series has been developed for the operations of multiplication and division, differentiation and integration of signals represented by... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1309 |
| SubjectTerms | Computer Science Image Processing and Computer Vision Moscow Region Pattern Recognition Pushchino Scientific School of the Institute of Mathematical Problems of Biology of the Russian Academy of Sciences–The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences the Russian Federation |
| Title | Algebra of Orthogonal Series |
| URI | https://link.springer.com/article/10.1134/S105466182304034X |
| Volume | 33 |
| WOSCitedRecordID | wos001187820900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1555-6212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008192 issn: 1054-6618 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHp1Nx_qIHT0qw-dEuOQ5xeHGKU9mtLGkyhbHJWv37TdJ0MPwBeuglvJYSkvd9r1_6PoAzS8FpautklPM8RkyQHAkjua15hGCJwjxWsTeb6PT7fDgU9-E_7qI-7V5Lkj5TV74j7HJgmQCzaOKVoZiy4SqsWbTjzq_hYfC8SL-uw5eXOBOGXHiQMr99xDIYLSuhHmB6zX-92jZsBT4ZdasFsAMretqCZuCWUdi5hR2q7RvqsRZs3i5atha7cNydjJ2IHM1MdDcvX2Zjx9Ej9_VMF3vw1Lt-vLpBwToBKcJ5iUzKY2Is-FPD5CjhWhATy0QyIpWwF847GlMuk9wmXsZzibHOKcGGEm0LPk33oTGdTfUBRBxrkRI2coqfRTwsOlhZnqBtHcdkkso2xPUcZir0FXf2FpPM1xeUZV-mpw3ni1veqqYavwVf1JOehf1V_Bx9-KfoI9hw9vHV8ZRjaJTzd30C6-qjfC3mp35dfQI228C- |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFNSD06k4ndqDJ6WYX-2S4xDHxG2Km7JbWdp0CqOTtfr3m7TpYPgD9NBLeCnlkbzvvX7J-wDOdQpOfV0nuxGPkMsEiVwRS65rHiGYF2KOQpSLTTT7fT4aiQd7jzstT7uXlGQeqQvdEXY10JkA02iSM0OIstEqrDENWKZh_uPgeRF-TYevnOL0mGvMLZX57SuWwWiZCc0Bpl3916ftwLbNJ51WsQB2YUUlNaja3NKxOzfVQ6V8QzlWg63eomVrugeN1nRiSGRnFjv38-xlNjE5umP-nql0H57aN8PrjmulE9yQcJ65sc8RiTX405jJsceVIDGSnmREhkI_OGoqTLn0Ih14GY8kxiqiBMeUKF3wKXoAlWSWqENwOFbCJ2xsGD-NeFg0cajdrnQdx6Tnyzqg0odBaPuKG3mLaZDXF5QFX9xTh4vFlLeiqcZvxpel0wO7v9KfrY_-ZH0GG51hrxt0b_t3x7BppOSLoyoNqGTzd3UC6-FH9prOT_M19glKK8Oi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFNEHp1NxOrUPPinF5qNd8jjUoahzMJW9laVJpjC2sVZ_v0mbDoYfID70JdyWkq97Tk96D8CpgeAkMjzZl0wGPuVY-lwLZjgP5zRMEAuSIDebaHY6rN_nXedzmpan3UtJsvinwVZpGmcXU6mdBwm96BlUQE1myVWigND-MqxQe47e0vXey3wrttW-crkzpL4Nd7Lmt49YTEyLqmiebNrVf7_mFmw6nOm1iomxDUtqXIOqw5yeW9GpaSptHcq2Gmw8zEu5pjvQaI2GVlz2Jtp7nGWvk6HF7p79qqbSXXhuXz9d3vjOUsFPMGOZryMWYG1AAdFUDEKmONaBCAXFIuHmQrKpEGEilGZDpkwKhJQkGGmClSGCiuxBZTwZq33wGFI8wnRglUCTCRFvosTgB2X4HRVhJOoQlP0ZJ67euLW9GMU57yA0_tI9dTib3zItim38FnxeDkDs1l36c_TBn6JPYK171Y7vbzt3h7BuHeaLEywNqGSzd3UEq8lH9pbOjvPp9glUQsyG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebra+of+Orthogonal+Series&rft.jtitle=Pattern+recognition+and+image+analysis&rft.au=Pankratov%2C+A.+N.&rft.au=Tetuev%2C+R.+K.&rft.date=2023-12-01&rft.pub=Pleiades+Publishing&rft.issn=1054-6618&rft.eissn=1555-6212&rft.volume=33&rft.issue=4&rft.spage=1309&rft.epage=1314&rft_id=info:doi/10.1134%2FS105466182304034X&rft.externalDocID=10_1134_S105466182304034X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-6618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-6618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-6618&client=summon |