Fixed-Parameter Complexity of Minimum Profile Problems

The profile of a graph is an integer-valued parameter defined via vertex orderings; it is known that the profile of a graph equals the smallest number of edges of an interval supergraph. Since computing the profile of a graph is an NP-hard problem, we consider parameterized versions of the problem....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 52; číslo 2; s. 133 - 152
Hlavní autoři: Gutin, Gregory, Szeider, Stefan, Yeo, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer-Verlag 01.10.2008
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The profile of a graph is an integer-valued parameter defined via vertex orderings; it is known that the profile of a graph equals the smallest number of edges of an interval supergraph. Since computing the profile of a graph is an NP-hard problem, we consider parameterized versions of the problem. Namely, we study the problem of deciding whether the profile of a connected graph of order n is at most n −1+ k , considering k as the parameter; this is a parameterization above guaranteed value, since n −1 is a tight lower bound for the profile. We present two fixed-parameter algorithms for this problem. The first algorithm is based on a forbidden subgraph characterization of interval graphs. The second algorithm is based on two simple kernelization rules which allow us to produce a kernel with linear number of vertices and edges. For showing the correctness of the second algorithm we need to establish structural properties of graphs with small profile which are of independent interest.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-007-9144-0