A Comparative Study of Four Parallel and Distributed PSO Methods
We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an “island model”-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, an...
Saved in:
| Published in: | New generation computing Vol. 29; no. 2; pp. 129 - 161 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Heidelberg
Verlag Omsha Tokio
01.04.2011
|
| Subjects: | |
| ISSN: | 0288-3635, 1882-7055 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an “island model”-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, and their respective variants enriched by adding a repulsive component to the particles. We study the proposed methods on a wide set of problems including theoretically hand-tailored benchmarks and complex real-life applications from the field of drug discovery, with a particular focus on the generalization ability of the obtained solutions. We show that the proposed repulsive multi-swarm system has a better optimization ability than all the other presented methods on all the studied problems. Interestingly, the proposed repulsive multi-swarm system is also the one that returns the most general solutions. |
|---|---|
| AbstractList | We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an “island model”-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, and their respective variants enriched by adding a repulsive component to the particles. We study the proposed methods on a wide set of problems including theoretically hand-tailored benchmarks and complex real-life applications from the field of drug discovery, with a particular focus on the generalization ability of the obtained solutions. We show that the proposed repulsive multi-swarm system has a better optimization ability than all the other presented methods on all the studied problems. Interestingly, the proposed repulsive multi-swarm system is also the one that returns the most general solutions. |
| Author | Vanneschi, Leonardo Codecasa, Daniele Mauri, Giancarlo |
| Author_xml | – sequence: 1 givenname: Leonardo surname: Vanneschi fullname: Vanneschi, Leonardo email: vanneschi@disco.unimib.it organization: Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca – sequence: 2 givenname: Daniele surname: Codecasa fullname: Codecasa, Daniele organization: Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca – sequence: 3 givenname: Giancarlo surname: Mauri fullname: Mauri, Giancarlo organization: Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca |
| BookMark | eNp9kM1OAjEUhRuDiYA-gLu-QLU_M23ZSVDQBAMJum46nVaHDFPSFhN4ekvGlQsWJze5Od_9OSMw6HxnAbgn-IFgLB4jxqwsECb4LIpOV2BIpKRI4LIcgCGmUiLGWXkDRjFus5uzgg7B0xTO_G6vg07Nj4WbdKiP0Ds494cA17ndtraFuqvhcxNTaKpDsjVcb1bw3aZvX8dbcO10G-3dXx2Dz_nLx-wVLVeLt9l0iUzenJAtmZBaCow1N3xSUOoqI7kQEyotEbrgE40pKQlx1GjtClPVzAlWMV5ZW9RsDEQ_1wQfY7BOmSblo32Xgm5aRbA6B6H6IFQO4SyqTpkk_8h9aHY6HC8ytGdi9nZfNqhtDqTLD16AfgE8f3Hk |
| CitedBy_id | crossref_primary_10_1002_cpe_5456 crossref_primary_10_1016_j_ijepes_2015_07_009 crossref_primary_10_1109_TIE_2016_2562613 crossref_primary_10_1016_j_medengphy_2013_07_010 crossref_primary_10_1002_cpe_4393 crossref_primary_10_1109_TII_2015_2440173 crossref_primary_10_3390_e23081065 crossref_primary_10_1007_s40295_023_00421_8 crossref_primary_10_3390_app7040353 |
| Cites_doi | 10.1145/1543834.1543886 10.1016/j.amc.2006.07.026 10.1109/ICMAS.1998.699217 10.1109/CEC.2005.1554727 10.1155/2008/685175 10.1016/j.asoc.2009.06.013 10.1007/978-3-540-78761-7_62 10.1093/oso/9780195131581.001.0001 10.1023/A:1021873026259 10.1007/978-3-540-24653-4_50 10.1109/TEVC.2007.896686 10.1109/WKDD.2008.78 10.1007/11730095_3 10.1016/j.asoc.2007.01.010 10.1109/CIS.2007.95 10.1038/73439 10.1002/9780470612163 10.1109/CEC.2003.1299599 10.1109/ICNC.2007.337 10.1109/ICNC.2008.313 10.1145/1830483.1830487 10.1038/73432 10.1145/1809018.1809022 10.1155/2008/289564 10.1007/s10710-007-9040-z 10.1007/s11721-007-0002-0 10.1109/WKDD.2009.202 10.1016/j.eswa.2008.09.017 |
| ContentType | Journal Article |
| Copyright | Ohmsha and Springer Japan jointly hold copyright of the journal. 2011 |
| Copyright_xml | – notice: Ohmsha and Springer Japan jointly hold copyright of the journal. 2011 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00354-010-0102-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1882-7055 |
| EndPage | 161 |
| ExternalDocumentID | 10_1007_s00354_010_0102_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- MK~ ML~ N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c288t-e5378a8700a6c69422fbc8677928e17a469a021511f2caaf4cbd3f73b36bee4d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290915600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0288-3635 |
| IngestDate | Sat Nov 29 08:12:14 EST 2025 Tue Nov 18 22:42:43 EST 2025 Fri Feb 21 02:34:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Parallel and Distributed Algorithms Optimization Swarm Intelligence |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-e5378a8700a6c69422fbc8677928e17a469a021511f2caaf4cbd3f73b36bee4d3 |
| PageCount | 33 |
| ParticipantIDs | crossref_citationtrail_10_1007_s00354_010_0102_z crossref_primary_10_1007_s00354_010_0102_z springer_journals_10_1007_s00354_010_0102_z |
| PublicationCentury | 2000 |
| PublicationDate | 20110400 |
| PublicationDateYYYYMMDD | 2011-04-01 |
| PublicationDate_xml | – month: 4 year: 2011 text: 20110400 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | New generation computing |
| PublicationTitleAbbrev | New Gener. Comput |
| PublicationYear | 2011 |
| Publisher | Verlag Omsha Tokio |
| Publisher_xml | – name: Verlag Omsha Tokio |
| References | Archetti, F., Giordani, I. and Vanneschi, L., “Genetic programming for anticancer therapeutic response prediction using the NCI-60 dataset,” Computers and Operations Research, 37, 8, pp. 1395–1405, 2010. Impact Factor: 1.789. DiosanL.OlteanM.“What else is evolution of pso telling us?”Journal of Artificial Evolution and Applications20081511210.1155/2008/289564 KennedyJ.PoliR.BlackwellT.“Particle swarm optimization: an overview”Swarm Intelligence200711335710.1007/s11721-007-0002-0 Kameyama, K., “Particle swarm optimization - a survey,” IEICE Transactions, 92-D, 7, pp. 1354–1361, 2009. Riget, J. and Vesterstrm, J., “A diversity-guided particle swarm optimizer - the arpso,” Technical report, Dept. of Comput. Sci., Aarhus Univ., Denmark, 2002. Wang, Y. and Yang, Y., “An interactive multi-swarm pso for multiobjective optimization problems,” Expert Systems with Applications, In press, 2008. On-line version available at http://www.sciencedirect.com. Kwong, H. and Jacob, C., “Evolutionary exploration of dynamic swarm behavior,” in IEEE Congress on Evolutionary Computation, CEC'03, IEEE Press, pp. 367–374, 2003. Poli, R., “Analysis of the publications on the applications of particle swarm optimisation,” J. Artif. Evol. App., 2008, 1, pp. 1–10, January 2008. Kennedy, J. and Eberhart, R. C., Swarm Intelligence, Morgan Kaufmann Publishers, 2001. Wu, Z. and Zhou, J., “A self-adaptive particle swarm optimization algorithm with individual coefficients adjustment,” in Proc. IEEE International Conference on Computational Intelligence and Security, CIS'07, IEEE Computer Society, pp. 133–136, 2007. Jiang, Y., Huang, W., Chen, L., “Applying multi-swarm accelerating particle swarm optimization to dynamic continuous functions,” in 2009 Second International Workshop on Knowledge Discovery and Data Mining, pp. 710–713, 2009. SherfU.“A gene expression database for the molecular pharmacology of cancer”Nat Genet200024323624410.1038/73439 Clerc, M. ed., Particle Swarm Optimization, ISTE, 2006. Kennedy, J. and Mendes, R., “Population structure and particle swarm performance,” in IEEE Congress on Evolutionary Computation, CEC'02, IEEE Computer Society, pp. 1671–1676, 2002. RossD.T.“Systematic variation in gene expression patterns in human cancer cell lines”Nat Genet200024322723510.1038/73432 Cagnoni, S., Vanneschi, L., Azzini, A. and Tettamanzi, A., “A critical assessment of some variants of particle swarm optimization,” in European Workshop on Bio-inspired algorithms for continuous parameter optimisation, EvoNUM'08, Springer Verlag, pp. 565–574, 2008. NiuB.ZhuY.HeX.WuH.“MCPSO: A multi-swarm cooperative particle swarm optimizer”Applied Mathematics and Computation200721851050106210.1016/j.amc.2006.07.026 Blackwell, T. and Branke, J., “Multi-swarm optimization in dynamic environments,” in EvoWorkshops (Raidl, G. R. et al. eds.), LNCS, Springer, pp. 489–500, 2004. Zhigljavsky, A. and Zilinskas, A., “Stochastic Global Optimization,” Springer Optimization and Its Applications, 9, Springer, 2008. ArchettiF.GiordaniI.VanneschiL.“Genetic programming for QSAR investigation of docking energy”Applied Soft Computing201010117018210.1016/j.asoc.2009.06.013 Lu, F.-Q., Huang, M., Ching, W.-K., Wang, X.-W. and Sun, X.-l., “Multi-swarm particle swarm optimization based risk management model for virtual enterprise,” in GEC '09: Proc. of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, New York, NY, USA, ACM, pp. 387–392, 2009. Blackwell, T. M., “Swarm music: improvised music with multi-swarms,” in Proc. of the 2003 AISB Symp. on Artificial Intelligence and Creativity in Arts and Science, pp. 41–49, 2003. FernándezF.TomassiniM.VanneschiL.“An empirical study of multipopulation genetic programming”Genetic Programming and Evolvable Machines.20034121521009.6857010.1023/A:1021873026259 Diosan, L. and Oltean, M., “Evolving the structure of the particle swarm optimization algorithms,” in EvoCOP'06, Springer Verlag, pp. 25–36, 2006. N. C. M. Project, National Cancer Institute, Bethesda MD, 2008. See http://genome-www.stanford.edu/nci60/. ValleY.D.VenayagamoorthyG.MohagheghiS.HernandezJ.HarleyR.“Particle swarm optimization: Basic concepts, variants and applications in power systems”IEEE Transactions on Evolutionary Computation200812217119510.1109/TEVC.2007.896686 Weka, A multi-task machine learning software developed by Waikato University, 2006. See http://www.cs.waikato.ac.nz/ml/weka. Vanneschi, L., Codecasa, D. and Mauri, G., “A study of parallel and distributed particle swarm optimization methods,” in Proc. of the 2nd workshop on Bio-inspired algorithms for distributed systems, BADS'10, New York, NY, USA, ACM, pp. 9–16, 2010. You, X., Liu, S. and Zheng, W., “Double-particle swarm optimization with induction enhanced evolutionary strategy to solve constrained optimization problems,” in IEEE International Conference on Natural Computing, ICNC'07, IEEE Computer Society, pp. 527–531, 2007. ArchettiF.MessinaE.LanzeniS.VanneschiL.“Genetic programming for computational pharmacokinetics in drug discovery and development”Genetic Programming and Evolvable Machines200784172610.1007/s10710-007-9040-z Srinivasan, D. and Seow, T. H., “Particle swarm inspired evolutionary algorithm (ps-ea) for multi-objective optimization problem,” in IEEE Congress on Evolutionary Computation, CEC03, IEEE Press, pp. 2292–2297, 2003. Vanneschi, L., Codecasa, D. and Mauri, G., “An empirical comparison of parallel and distributed particle swarm optimization methods,” in Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2010 (Branke, J. et al. eds.), ACM Press, 2010. To appear. Shi, Y. H. and Eberhart, R., “A modified particle swarm optimizer,” in Proc. IEEE Int. Conference on Evolutionary Computation, IEEE Computer Society, pp. 69–73, 1998. Smola, A. J. and Scholkopf, B., “A Tutorial on Support Vector Regression,” Technical Report Technical Report Series - NC2-TR-1998-030, NeuroCOLT2, 1999. Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (Santa Fe Institute Studies in the Sciences of Complexity), Oxford University Press, New York, NY, 1999. ArumugamM.S.RaoM.“On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (rms) variants for computing optimal control of a class of hybrid systems”Journal of Applied Soft Computing2008832433610.1016/j.asoc.2007.01.010 Vanneschi, L., “Theory and Practice for Efficient Genetic Programming,” Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland, 2004. RossS.M.Introduction to Probability and Statistics for Engineers and scientists2000NewYorkAcademic Press0942.62001 Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A. and Tiwari, S., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical Report Number 2005005, Nanyang Technological University, 2005. White, T. and Pagurek, B., “Towards multi-swarm problem solving in networks,” in Proc. of Third International Conference on Multi-Agent Systems (ICMAS'98), IEEE Computer Society, pp. 333–340, 1998. Zhiming, L., Cheng, W. and Jian, L., “Solving constrained optimization via a modified genetic particle swarm optimization,” in Workshop on Knowledge Discovery and Data Mining, WKDD'08, IEEE Computer Society, pp. 217–220, 2008. Poli, R., “Analysis of the publications on the applications of particle swarm optimization,” Journal of Artificial Evolution and Applications, 2009, (in press). Kennedy, J. and Eberhart, R., “Particle swarm optimization,” in Proc. IEEE Int. conf. on Neural Networks, 4, IEEE Computer Society, pp. 1942–1948, 1995. Li, C. and Yang, S., “Fast multi-swarm optimization for dynamic optimization problems,” in ICNC '08: Proc. of the 2008 Fourth International Conference on Natural Computation, Washington, DC, USA, IEEE Computer Society, pp. 624–628, 2008. Liang, J. J. and Suganthan, P. N., “Dynamic multi-swarm particle swarm optimizer with local search,” in 2005 IEEE Congress on Evolutionary Computation, CEC 2005, 1, pp. 522–528, 2005. F. Fernández (102_CR12) 2003; 4 102_CR40 102_CR20 S.M. Ross (102_CR28) 2000 102_CR42 102_CR41 102_CR22 102_CR44 102_CR21 102_CR43 102_CR24 102_CR45 102_CR26 102_CR25 102_CR39 102_CR16 B. Niu (102_CR23) 2007; 2 102_CR38 F. Archetti (102_CR2) 2010; 10 102_CR19 102_CR18 F. Archetti (102_CR3) 2007; 8 Y.D. Valle (102_CR35) 2008; 12 102_CR31 U. Sherf (102_CR30) 2000; 24 102_CR33 M.S. Arumugam (102_CR4) 2008; 8 102_CR10 L. Diosan (102_CR11) 2008; 1 102_CR32 102_CR13 102_CR34 102_CR15 102_CR37 102_CR14 102_CR36 102_CR1 102_CR27 D.T. Ross (102_CR29) 2000; 24 J. Kennedy (102_CR17) 2007; 1 102_CR9 102_CR7 102_CR8 102_CR5 102_CR6 |
| References_xml | – reference: Shi, Y. H. and Eberhart, R., “A modified particle swarm optimizer,” in Proc. IEEE Int. Conference on Evolutionary Computation, IEEE Computer Society, pp. 69–73, 1998. – reference: SherfU.“A gene expression database for the molecular pharmacology of cancer”Nat Genet200024323624410.1038/73439 – reference: Jiang, Y., Huang, W., Chen, L., “Applying multi-swarm accelerating particle swarm optimization to dynamic continuous functions,” in 2009 Second International Workshop on Knowledge Discovery and Data Mining, pp. 710–713, 2009. – reference: Wang, Y. and Yang, Y., “An interactive multi-swarm pso for multiobjective optimization problems,” Expert Systems with Applications, In press, 2008. On-line version available at http://www.sciencedirect.com. – reference: Archetti, F., Giordani, I. and Vanneschi, L., “Genetic programming for anticancer therapeutic response prediction using the NCI-60 dataset,” Computers and Operations Research, 37, 8, pp. 1395–1405, 2010. Impact Factor: 1.789. – reference: ArumugamM.S.RaoM.“On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (rms) variants for computing optimal control of a class of hybrid systems”Journal of Applied Soft Computing2008832433610.1016/j.asoc.2007.01.010 – reference: Zhiming, L., Cheng, W. and Jian, L., “Solving constrained optimization via a modified genetic particle swarm optimization,” in Workshop on Knowledge Discovery and Data Mining, WKDD'08, IEEE Computer Society, pp. 217–220, 2008. – reference: Vanneschi, L., “Theory and Practice for Efficient Genetic Programming,” Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland, 2004. – reference: Kennedy, J. and Eberhart, R. C., Swarm Intelligence, Morgan Kaufmann Publishers, 2001. – reference: Vanneschi, L., Codecasa, D. and Mauri, G., “A study of parallel and distributed particle swarm optimization methods,” in Proc. of the 2nd workshop on Bio-inspired algorithms for distributed systems, BADS'10, New York, NY, USA, ACM, pp. 9–16, 2010. – reference: You, X., Liu, S. and Zheng, W., “Double-particle swarm optimization with induction enhanced evolutionary strategy to solve constrained optimization problems,” in IEEE International Conference on Natural Computing, ICNC'07, IEEE Computer Society, pp. 527–531, 2007. – reference: Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (Santa Fe Institute Studies in the Sciences of Complexity), Oxford University Press, New York, NY, 1999. – reference: DiosanL.OlteanM.“What else is evolution of pso telling us?”Journal of Artificial Evolution and Applications20081511210.1155/2008/289564 – reference: NiuB.ZhuY.HeX.WuH.“MCPSO: A multi-swarm cooperative particle swarm optimizer”Applied Mathematics and Computation200721851050106210.1016/j.amc.2006.07.026 – reference: Smola, A. J. and Scholkopf, B., “A Tutorial on Support Vector Regression,” Technical Report Technical Report Series - NC2-TR-1998-030, NeuroCOLT2, 1999. – reference: Liang, J. J. and Suganthan, P. N., “Dynamic multi-swarm particle swarm optimizer with local search,” in 2005 IEEE Congress on Evolutionary Computation, CEC 2005, 1, pp. 522–528, 2005. – reference: Wu, Z. and Zhou, J., “A self-adaptive particle swarm optimization algorithm with individual coefficients adjustment,” in Proc. IEEE International Conference on Computational Intelligence and Security, CIS'07, IEEE Computer Society, pp. 133–136, 2007. – reference: ValleY.D.VenayagamoorthyG.MohagheghiS.HernandezJ.HarleyR.“Particle swarm optimization: Basic concepts, variants and applications in power systems”IEEE Transactions on Evolutionary Computation200812217119510.1109/TEVC.2007.896686 – reference: Riget, J. and Vesterstrm, J., “A diversity-guided particle swarm optimizer - the arpso,” Technical report, Dept. of Comput. Sci., Aarhus Univ., Denmark, 2002. – reference: Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A. and Tiwari, S., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical Report Number 2005005, Nanyang Technological University, 2005. – reference: White, T. and Pagurek, B., “Towards multi-swarm problem solving in networks,” in Proc. of Third International Conference on Multi-Agent Systems (ICMAS'98), IEEE Computer Society, pp. 333–340, 1998. – reference: Kwong, H. and Jacob, C., “Evolutionary exploration of dynamic swarm behavior,” in IEEE Congress on Evolutionary Computation, CEC'03, IEEE Press, pp. 367–374, 2003. – reference: Blackwell, T. M., “Swarm music: improvised music with multi-swarms,” in Proc. of the 2003 AISB Symp. on Artificial Intelligence and Creativity in Arts and Science, pp. 41–49, 2003. – reference: Srinivasan, D. and Seow, T. H., “Particle swarm inspired evolutionary algorithm (ps-ea) for multi-objective optimization problem,” in IEEE Congress on Evolutionary Computation, CEC03, IEEE Press, pp. 2292–2297, 2003. – reference: ArchettiF.MessinaE.LanzeniS.VanneschiL.“Genetic programming for computational pharmacokinetics in drug discovery and development”Genetic Programming and Evolvable Machines200784172610.1007/s10710-007-9040-z – reference: N. C. M. Project, National Cancer Institute, Bethesda MD, 2008. See http://genome-www.stanford.edu/nci60/. – reference: RossS.M.Introduction to Probability and Statistics for Engineers and scientists2000NewYorkAcademic Press0942.62001 – reference: Vanneschi, L., Codecasa, D. and Mauri, G., “An empirical comparison of parallel and distributed particle swarm optimization methods,” in Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2010 (Branke, J. et al. eds.), ACM Press, 2010. To appear. – reference: ArchettiF.GiordaniI.VanneschiL.“Genetic programming for QSAR investigation of docking energy”Applied Soft Computing201010117018210.1016/j.asoc.2009.06.013 – reference: Zhigljavsky, A. and Zilinskas, A., “Stochastic Global Optimization,” Springer Optimization and Its Applications, 9, Springer, 2008. – reference: Kennedy, J. and Mendes, R., “Population structure and particle swarm performance,” in IEEE Congress on Evolutionary Computation, CEC'02, IEEE Computer Society, pp. 1671–1676, 2002. – reference: Kennedy, J. and Eberhart, R., “Particle swarm optimization,” in Proc. IEEE Int. conf. on Neural Networks, 4, IEEE Computer Society, pp. 1942–1948, 1995. – reference: KennedyJ.PoliR.BlackwellT.“Particle swarm optimization: an overview”Swarm Intelligence200711335710.1007/s11721-007-0002-0 – reference: Poli, R., “Analysis of the publications on the applications of particle swarm optimization,” Journal of Artificial Evolution and Applications, 2009, (in press). – reference: Diosan, L. and Oltean, M., “Evolving the structure of the particle swarm optimization algorithms,” in EvoCOP'06, Springer Verlag, pp. 25–36, 2006. – reference: Kameyama, K., “Particle swarm optimization - a survey,” IEICE Transactions, 92-D, 7, pp. 1354–1361, 2009. – reference: Lu, F.-Q., Huang, M., Ching, W.-K., Wang, X.-W. and Sun, X.-l., “Multi-swarm particle swarm optimization based risk management model for virtual enterprise,” in GEC '09: Proc. of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, New York, NY, USA, ACM, pp. 387–392, 2009. – reference: Blackwell, T. and Branke, J., “Multi-swarm optimization in dynamic environments,” in EvoWorkshops (Raidl, G. R. et al. eds.), LNCS, Springer, pp. 489–500, 2004. – reference: Cagnoni, S., Vanneschi, L., Azzini, A. and Tettamanzi, A., “A critical assessment of some variants of particle swarm optimization,” in European Workshop on Bio-inspired algorithms for continuous parameter optimisation, EvoNUM'08, Springer Verlag, pp. 565–574, 2008. – reference: RossD.T.“Systematic variation in gene expression patterns in human cancer cell lines”Nat Genet200024322723510.1038/73432 – reference: Weka, A multi-task machine learning software developed by Waikato University, 2006. See http://www.cs.waikato.ac.nz/ml/weka. – reference: Clerc, M. ed., Particle Swarm Optimization, ISTE, 2006. – reference: Poli, R., “Analysis of the publications on the applications of particle swarm optimisation,” J. Artif. Evol. App., 2008, 1, pp. 1–10, January 2008. – reference: FernándezF.TomassiniM.VanneschiL.“An empirical study of multipopulation genetic programming”Genetic Programming and Evolvable Machines.20034121521009.6857010.1023/A:1021873026259 – reference: Li, C. and Yang, S., “Fast multi-swarm optimization for dynamic optimization problems,” in ICNC '08: Proc. of the 2008 Fourth International Conference on Natural Computation, Washington, DC, USA, IEEE Computer Society, pp. 624–628, 2008. – ident: 102_CR22 doi: 10.1145/1543834.1543886 – volume: 2 start-page: 1050 issue: 185 year: 2007 ident: 102_CR23 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.026 – ident: 102_CR41 doi: 10.1109/ICMAS.1998.699217 – ident: 102_CR26 – ident: 102_CR21 doi: 10.1109/CEC.2005.1554727 – ident: 102_CR25 doi: 10.1155/2008/685175 – ident: 102_CR34 – volume: 10 start-page: 170 issue: 1 year: 2010 ident: 102_CR2 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.06.013 – volume-title: Introduction to Probability and Statistics for Engineers and scientists year: 2000 ident: 102_CR28 – ident: 102_CR32 – ident: 102_CR8 doi: 10.1007/978-3-540-78761-7_62 – ident: 102_CR7 doi: 10.1093/oso/9780195131581.001.0001 – volume: 4 start-page: 21 issue: 1 year: 2003 ident: 102_CR12 publication-title: Genetic Programming and Evolvable Machines. doi: 10.1023/A:1021873026259 – ident: 102_CR5 doi: 10.1007/978-3-540-24653-4_50 – ident: 102_CR15 – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 102_CR35 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.896686 – ident: 102_CR36 – ident: 102_CR45 doi: 10.1109/WKDD.2008.78 – ident: 102_CR10 doi: 10.1007/11730095_3 – volume: 8 start-page: 324 year: 2008 ident: 102_CR4 publication-title: Journal of Applied Soft Computing doi: 10.1016/j.asoc.2007.01.010 – ident: 102_CR6 – ident: 102_CR42 doi: 10.1109/CIS.2007.95 – ident: 102_CR27 – volume: 24 start-page: 236 issue: 3 year: 2000 ident: 102_CR30 publication-title: Nat Genet doi: 10.1038/73439 – ident: 102_CR31 – ident: 102_CR9 doi: 10.1002/9780470612163 – ident: 102_CR33 – ident: 102_CR24 doi: 10.1155/2008/685175 – ident: 102_CR19 doi: 10.1109/CEC.2003.1299599 – ident: 102_CR16 – ident: 102_CR43 doi: 10.1109/ICNC.2007.337 – ident: 102_CR20 doi: 10.1109/ICNC.2008.313 – ident: 102_CR14 – ident: 102_CR38 doi: 10.1145/1830483.1830487 – ident: 102_CR40 – ident: 102_CR18 – ident: 102_CR44 – volume: 24 start-page: 227 issue: 3 year: 2000 ident: 102_CR29 publication-title: Nat Genet doi: 10.1038/73432 – ident: 102_CR37 doi: 10.1145/1809018.1809022 – volume: 1 start-page: 1 issue: 5 year: 2008 ident: 102_CR11 publication-title: Journal of Artificial Evolution and Applications doi: 10.1155/2008/289564 – volume: 8 start-page: 17 issue: 4 year: 2007 ident: 102_CR3 publication-title: Genetic Programming and Evolvable Machines doi: 10.1007/s10710-007-9040-z – ident: 102_CR1 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 102_CR17 publication-title: Swarm Intelligence doi: 10.1007/s11721-007-0002-0 – ident: 102_CR13 doi: 10.1109/WKDD.2009.202 – ident: 102_CR39 doi: 10.1016/j.eswa.2008.09.017 |
| SSID | ssj0036342 |
| Score | 1.9424111 |
| Snippet | We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129 |
| SubjectTerms | Artificial Intelligence Computer Hardware Computer Science Computer Systems Organization and Communication Networks Software Engineering/Programming and Operating Systems |
| Title | A Comparative Study of Four Parallel and Distributed PSO Methods |
| URI | https://link.springer.com/article/10.1007/s00354-010-0102-z |
| Volume | 29 |
| WOSCitedRecordID | wos000290915600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1882-7055 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036342 issn: 0288-3635 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-Ynzixw8KYGuydrm5pgODzqHU9mtpPkAoXSyVsH99SZZMxmooIce2qahfc3LL-177_cDOGPSoJYkAmechphqpTEnRGMtAk0Zt9WXjmf2Nh4MkvGYDes67tJnu_uQpJupF8VuNuhlMyZsIpVx49kqrBm0S6w3Poye_fRLIuIUcwxuJtjsdHwo87sulsFoORLqAKbf_NetbcFmvZ5E3fkA2IYVVexA02s1oNp1d-Gyi3pfRN_Ipg9-oIlGfdMBGprDea5yxAuJriyVrlXBUhINR_fozmlMl3vw1L9-7N3gWj0BC_PoFVYdEifcuGPAIxExGoY6E5a9joWJasfcfBdzB_htHQrONRWZJDomGYkypagk-9AoJoU6ANTWnIjMnGKBopm0az7SUbEIhWaB1KIFgTdjKmpqcatwkacLUmRnodRYx25hOmvB-eKS1zmvxm-NL7zd09rFyp9bH_6p9RFszH8T2_d3DI1q-qZOYF28Vy_l9NQNrU-LMMhB |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecV5zYNPSqBr0tubYzombnO4KXsraS4glE7WKbhfb5K1k4EK-tCHtmloT3PypT3nfB_ARSQ0agnCccKoi6mSCjNCFFbcUTRipvrS8sx2gl4vHI2iflHHnZfZ7mVI0s7Ui2I3E_QyGRMmkUq78WwV1qgGLJPH9zh4Lqdf4hOrmKNxM8R6xytDmd91sQxGy5FQCzCt6r9ubRu2ivUkaswHwA6syGwXqqVWAypcdw-uG6j5RfSNTPrgBxor1NIdoL4-nKYyRSwT6MZQ6RoVLClQf_CAulZjOt-Hp9btsNnGhXoC5vrRp1h6JAiZdkeH-dyPqOuqhBv2usgNZT1g-ruYWcCvK5czpihPBFEBSYifSEkFOYBKNs7kIaC6YoQn-lTkSJoIs-Yjngy4y1XkCMVr4JRmjHlBLW4ULtJ4QYpsLRRr65jNjWc1uFxc8jrn1fit8VVp97hwsfzn1kd_an0OG-1htxN37nr3x7A5_2Vs3uUJVKaTN3kK6_x9-pJPzuww-wT4qssl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrE-9-BJWZpmt3ncLK1FsdZAVXoLm32AENLSRMH-enfzqBRUEA85JJksYXYnM5uZ-T6AC19oryUIxxGjNqZKKswIUVhxS1Gfme7LHGd24A6H3njsByXPaVpVu1cpyaKnwaA0JVlzKlRz0fhmEmCmesIUVWmTnq_CGjWcQWa7PnqpPsXEITl7jvahHtYn7Sqt-d0Qy45pOSuaO5t-_d-vuQ1bZZyJOsXC2IEVmexCveJwQKVJ78F1B3W_AMCRKSv8QBOF-noAFOjLcSxjxBKBegZi17BjSYGC0SN6yLmn03147t88dW9xyaqAuVZDhmWbuB7TZmoxhzs-tW0VcYNq59uebLlM75dZHgi0lM0ZU5RHgiiXRMSJpKSCHEAtmSTyEFBLMcIjfcu3JI2EiQVJW7rc5sq3hOINsCqVhryEHDfMF3G4AEvONRRq7ZjDDucNuFw8Mi3wNn4TvqrmICxNL_1Z-uhP0uewEfT64eBueH8Mm8WfZDOVJ1DLZm_yFNb5e_aazs7yFfcJNyfUCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Four+Parallel+and+Distributed+PSO+Methods&rft.jtitle=New+generation+computing&rft.au=Vanneschi%2C+Leonardo&rft.au=Codecasa%2C+Daniele&rft.au=Mauri%2C+Giancarlo&rft.date=2011-04-01&rft.issn=0288-3635&rft.eissn=1882-7055&rft.volume=29&rft.issue=2&rft.spage=129&rft.epage=161&rft_id=info:doi/10.1007%2Fs00354-010-0102-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00354_010_0102_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-3635&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-3635&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-3635&client=summon |