A Comparative Study of Four Parallel and Distributed PSO Methods

We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an “island model”-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, an...

Full description

Saved in:
Bibliographic Details
Published in:New generation computing Vol. 29; no. 2; pp. 129 - 161
Main Authors: Vanneschi, Leonardo, Codecasa, Daniele, Mauri, Giancarlo
Format: Journal Article
Language:English
Published: Heidelberg Verlag Omsha Tokio 01.04.2011
Subjects:
ISSN:0288-3635, 1882-7055
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an “island model”-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, and their respective variants enriched by adding a repulsive component to the particles. We study the proposed methods on a wide set of problems including theoretically hand-tailored benchmarks and complex real-life applications from the field of drug discovery, with a particular focus on the generalization ability of the obtained solutions. We show that the proposed repulsive multi-swarm system has a better optimization ability than all the other presented methods on all the studied problems. Interestingly, the proposed repulsive multi-swarm system is also the one that returns the most general solutions.
AbstractList We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an “island model”-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, and their respective variants enriched by adding a repulsive component to the particles. We study the proposed methods on a wide set of problems including theoretically hand-tailored benchmarks and complex real-life applications from the field of drug discovery, with a particular focus on the generalization ability of the obtained solutions. We show that the proposed repulsive multi-swarm system has a better optimization ability than all the other presented methods on all the studied problems. Interestingly, the proposed repulsive multi-swarm system is also the one that returns the most general solutions.
Author Vanneschi, Leonardo
Codecasa, Daniele
Mauri, Giancarlo
Author_xml – sequence: 1
  givenname: Leonardo
  surname: Vanneschi
  fullname: Vanneschi, Leonardo
  email: vanneschi@disco.unimib.it
  organization: Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca
– sequence: 2
  givenname: Daniele
  surname: Codecasa
  fullname: Codecasa, Daniele
  organization: Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca
– sequence: 3
  givenname: Giancarlo
  surname: Mauri
  fullname: Mauri, Giancarlo
  organization: Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca
BookMark eNp9kM1OAjEUhRuDiYA-gLu-QLU_M23ZSVDQBAMJum46nVaHDFPSFhN4ekvGlQsWJze5Od_9OSMw6HxnAbgn-IFgLB4jxqwsECb4LIpOV2BIpKRI4LIcgCGmUiLGWXkDRjFus5uzgg7B0xTO_G6vg07Nj4WbdKiP0Ds494cA17ndtraFuqvhcxNTaKpDsjVcb1bw3aZvX8dbcO10G-3dXx2Dz_nLx-wVLVeLt9l0iUzenJAtmZBaCow1N3xSUOoqI7kQEyotEbrgE40pKQlx1GjtClPVzAlWMV5ZW9RsDEQ_1wQfY7BOmSblo32Xgm5aRbA6B6H6IFQO4SyqTpkk_8h9aHY6HC8ytGdi9nZfNqhtDqTLD16AfgE8f3Hk
CitedBy_id crossref_primary_10_1002_cpe_5456
crossref_primary_10_1016_j_ijepes_2015_07_009
crossref_primary_10_1109_TIE_2016_2562613
crossref_primary_10_1016_j_medengphy_2013_07_010
crossref_primary_10_1002_cpe_4393
crossref_primary_10_1109_TII_2015_2440173
crossref_primary_10_3390_e23081065
crossref_primary_10_1007_s40295_023_00421_8
crossref_primary_10_3390_app7040353
Cites_doi 10.1145/1543834.1543886
10.1016/j.amc.2006.07.026
10.1109/ICMAS.1998.699217
10.1109/CEC.2005.1554727
10.1155/2008/685175
10.1016/j.asoc.2009.06.013
10.1007/978-3-540-78761-7_62
10.1093/oso/9780195131581.001.0001
10.1023/A:1021873026259
10.1007/978-3-540-24653-4_50
10.1109/TEVC.2007.896686
10.1109/WKDD.2008.78
10.1007/11730095_3
10.1016/j.asoc.2007.01.010
10.1109/CIS.2007.95
10.1038/73439
10.1002/9780470612163
10.1109/CEC.2003.1299599
10.1109/ICNC.2007.337
10.1109/ICNC.2008.313
10.1145/1830483.1830487
10.1038/73432
10.1145/1809018.1809022
10.1155/2008/289564
10.1007/s10710-007-9040-z
10.1007/s11721-007-0002-0
10.1109/WKDD.2009.202
10.1016/j.eswa.2008.09.017
ContentType Journal Article
Copyright Ohmsha and Springer Japan jointly hold copyright of the journal. 2011
Copyright_xml – notice: Ohmsha and Springer Japan jointly hold copyright of the journal. 2011
DBID AAYXX
CITATION
DOI 10.1007/s00354-010-0102-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1882-7055
EndPage 161
ExternalDocumentID 10_1007_s00354_010_0102_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c288t-e5378a8700a6c69422fbc8677928e17a469a021511f2caaf4cbd3f73b36bee4d3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290915600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0288-3635
IngestDate Sat Nov 29 08:12:14 EST 2025
Tue Nov 18 22:42:43 EST 2025
Fri Feb 21 02:34:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Parallel and Distributed Algorithms
Optimization
Swarm Intelligence
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-e5378a8700a6c69422fbc8677928e17a469a021511f2caaf4cbd3f73b36bee4d3
PageCount 33
ParticipantIDs crossref_citationtrail_10_1007_s00354_010_0102_z
crossref_primary_10_1007_s00354_010_0102_z
springer_journals_10_1007_s00354_010_0102_z
PublicationCentury 2000
PublicationDate 20110400
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 4
  year: 2011
  text: 20110400
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle New generation computing
PublicationTitleAbbrev New Gener. Comput
PublicationYear 2011
Publisher Verlag Omsha Tokio
Publisher_xml – name: Verlag Omsha Tokio
References Archetti, F., Giordani, I. and Vanneschi, L., “Genetic programming for anticancer therapeutic response prediction using the NCI-60 dataset,” Computers and Operations Research, 37, 8, pp. 1395–1405, 2010. Impact Factor: 1.789.
DiosanL.OlteanM.“What else is evolution of pso telling us?”Journal of Artificial Evolution and Applications20081511210.1155/2008/289564
KennedyJ.PoliR.BlackwellT.“Particle swarm optimization: an overview”Swarm Intelligence200711335710.1007/s11721-007-0002-0
Kameyama, K., “Particle swarm optimization - a survey,” IEICE Transactions, 92-D, 7, pp. 1354–1361, 2009.
Riget, J. and Vesterstrm, J., “A diversity-guided particle swarm optimizer - the arpso,” Technical report, Dept. of Comput. Sci., Aarhus Univ., Denmark, 2002.
Wang, Y. and Yang, Y., “An interactive multi-swarm pso for multiobjective optimization problems,” Expert Systems with Applications, In press, 2008. On-line version available at http://www.sciencedirect.com.
Kwong, H. and Jacob, C., “Evolutionary exploration of dynamic swarm behavior,” in IEEE Congress on Evolutionary Computation, CEC'03, IEEE Press, pp. 367–374, 2003.
Poli, R., “Analysis of the publications on the applications of particle swarm optimisation,” J. Artif. Evol. App., 2008, 1, pp. 1–10, January 2008.
Kennedy, J. and Eberhart, R. C., Swarm Intelligence, Morgan Kaufmann Publishers, 2001.
Wu, Z. and Zhou, J., “A self-adaptive particle swarm optimization algorithm with individual coefficients adjustment,” in Proc. IEEE International Conference on Computational Intelligence and Security, CIS'07, IEEE Computer Society, pp. 133–136, 2007.
Jiang, Y., Huang, W., Chen, L., “Applying multi-swarm accelerating particle swarm optimization to dynamic continuous functions,” in 2009 Second International Workshop on Knowledge Discovery and Data Mining, pp. 710–713, 2009.
SherfU.“A gene expression database for the molecular pharmacology of cancer”Nat Genet200024323624410.1038/73439
Clerc, M. ed., Particle Swarm Optimization, ISTE, 2006.
Kennedy, J. and Mendes, R., “Population structure and particle swarm performance,” in IEEE Congress on Evolutionary Computation, CEC'02, IEEE Computer Society, pp. 1671–1676, 2002.
RossD.T.“Systematic variation in gene expression patterns in human cancer cell lines”Nat Genet200024322723510.1038/73432
Cagnoni, S., Vanneschi, L., Azzini, A. and Tettamanzi, A., “A critical assessment of some variants of particle swarm optimization,” in European Workshop on Bio-inspired algorithms for continuous parameter optimisation, EvoNUM'08, Springer Verlag, pp. 565–574, 2008.
NiuB.ZhuY.HeX.WuH.“MCPSO: A multi-swarm cooperative particle swarm optimizer”Applied Mathematics and Computation200721851050106210.1016/j.amc.2006.07.026
Blackwell, T. and Branke, J., “Multi-swarm optimization in dynamic environments,” in EvoWorkshops (Raidl, G. R. et al. eds.), LNCS, Springer, pp. 489–500, 2004.
Zhigljavsky, A. and Zilinskas, A., “Stochastic Global Optimization,” Springer Optimization and Its Applications, 9, Springer, 2008.
ArchettiF.GiordaniI.VanneschiL.“Genetic programming for QSAR investigation of docking energy”Applied Soft Computing201010117018210.1016/j.asoc.2009.06.013
Lu, F.-Q., Huang, M., Ching, W.-K., Wang, X.-W. and Sun, X.-l., “Multi-swarm particle swarm optimization based risk management model for virtual enterprise,” in GEC '09: Proc. of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, New York, NY, USA, ACM, pp. 387–392, 2009.
Blackwell, T. M., “Swarm music: improvised music with multi-swarms,” in Proc. of the 2003 AISB Symp. on Artificial Intelligence and Creativity in Arts and Science, pp. 41–49, 2003.
FernándezF.TomassiniM.VanneschiL.“An empirical study of multipopulation genetic programming”Genetic Programming and Evolvable Machines.20034121521009.6857010.1023/A:1021873026259
Diosan, L. and Oltean, M., “Evolving the structure of the particle swarm optimization algorithms,” in EvoCOP'06, Springer Verlag, pp. 25–36, 2006.
N. C. M. Project, National Cancer Institute, Bethesda MD, 2008. See http://genome-www.stanford.edu/nci60/.
ValleY.D.VenayagamoorthyG.MohagheghiS.HernandezJ.HarleyR.“Particle swarm optimization: Basic concepts, variants and applications in power systems”IEEE Transactions on Evolutionary Computation200812217119510.1109/TEVC.2007.896686
Weka, A multi-task machine learning software developed by Waikato University, 2006. See http://www.cs.waikato.ac.nz/ml/weka.
Vanneschi, L., Codecasa, D. and Mauri, G., “A study of parallel and distributed particle swarm optimization methods,” in Proc. of the 2nd workshop on Bio-inspired algorithms for distributed systems, BADS'10, New York, NY, USA, ACM, pp. 9–16, 2010.
You, X., Liu, S. and Zheng, W., “Double-particle swarm optimization with induction enhanced evolutionary strategy to solve constrained optimization problems,” in IEEE International Conference on Natural Computing, ICNC'07, IEEE Computer Society, pp. 527–531, 2007.
ArchettiF.MessinaE.LanzeniS.VanneschiL.“Genetic programming for computational pharmacokinetics in drug discovery and development”Genetic Programming and Evolvable Machines200784172610.1007/s10710-007-9040-z
Srinivasan, D. and Seow, T. H., “Particle swarm inspired evolutionary algorithm (ps-ea) for multi-objective optimization problem,” in IEEE Congress on Evolutionary Computation, CEC03, IEEE Press, pp. 2292–2297, 2003.
Vanneschi, L., Codecasa, D. and Mauri, G., “An empirical comparison of parallel and distributed particle swarm optimization methods,” in Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2010 (Branke, J. et al. eds.), ACM Press, 2010. To appear.
Shi, Y. H. and Eberhart, R., “A modified particle swarm optimizer,” in Proc. IEEE Int. Conference on Evolutionary Computation, IEEE Computer Society, pp. 69–73, 1998.
Smola, A. J. and Scholkopf, B., “A Tutorial on Support Vector Regression,” Technical Report Technical Report Series - NC2-TR-1998-030, NeuroCOLT2, 1999.
Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (Santa Fe Institute Studies in the Sciences of Complexity), Oxford University Press, New York, NY, 1999.
ArumugamM.S.RaoM.“On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (rms) variants for computing optimal control of a class of hybrid systems”Journal of Applied Soft Computing2008832433610.1016/j.asoc.2007.01.010
Vanneschi, L., “Theory and Practice for Efficient Genetic Programming,” Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland, 2004.
RossS.M.Introduction to Probability and Statistics for Engineers and scientists2000NewYorkAcademic Press0942.62001
Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A. and Tiwari, S., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical Report Number 2005005, Nanyang Technological University, 2005.
White, T. and Pagurek, B., “Towards multi-swarm problem solving in networks,” in Proc. of Third International Conference on Multi-Agent Systems (ICMAS'98), IEEE Computer Society, pp. 333–340, 1998.
Zhiming, L., Cheng, W. and Jian, L., “Solving constrained optimization via a modified genetic particle swarm optimization,” in Workshop on Knowledge Discovery and Data Mining, WKDD'08, IEEE Computer Society, pp. 217–220, 2008.
Poli, R., “Analysis of the publications on the applications of particle swarm optimization,” Journal of Artificial Evolution and Applications, 2009, (in press).
Kennedy, J. and Eberhart, R., “Particle swarm optimization,” in Proc. IEEE Int. conf. on Neural Networks, 4, IEEE Computer Society, pp. 1942–1948, 1995.
Li, C. and Yang, S., “Fast multi-swarm optimization for dynamic optimization problems,” in ICNC '08: Proc. of the 2008 Fourth International Conference on Natural Computation, Washington, DC, USA, IEEE Computer Society, pp. 624–628, 2008.
Liang, J. J. and Suganthan, P. N., “Dynamic multi-swarm particle swarm optimizer with local search,” in 2005 IEEE Congress on Evolutionary Computation, CEC 2005, 1, pp. 522–528, 2005.
F. Fernández (102_CR12) 2003; 4
102_CR40
102_CR20
S.M. Ross (102_CR28) 2000
102_CR42
102_CR41
102_CR22
102_CR44
102_CR21
102_CR43
102_CR24
102_CR45
102_CR26
102_CR25
102_CR39
102_CR16
B. Niu (102_CR23) 2007; 2
102_CR38
F. Archetti (102_CR2) 2010; 10
102_CR19
102_CR18
F. Archetti (102_CR3) 2007; 8
Y.D. Valle (102_CR35) 2008; 12
102_CR31
U. Sherf (102_CR30) 2000; 24
102_CR33
M.S. Arumugam (102_CR4) 2008; 8
102_CR10
L. Diosan (102_CR11) 2008; 1
102_CR32
102_CR13
102_CR34
102_CR15
102_CR37
102_CR14
102_CR36
102_CR1
102_CR27
D.T. Ross (102_CR29) 2000; 24
J. Kennedy (102_CR17) 2007; 1
102_CR9
102_CR7
102_CR8
102_CR5
102_CR6
References_xml – reference: Shi, Y. H. and Eberhart, R., “A modified particle swarm optimizer,” in Proc. IEEE Int. Conference on Evolutionary Computation, IEEE Computer Society, pp. 69–73, 1998.
– reference: SherfU.“A gene expression database for the molecular pharmacology of cancer”Nat Genet200024323624410.1038/73439
– reference: Jiang, Y., Huang, W., Chen, L., “Applying multi-swarm accelerating particle swarm optimization to dynamic continuous functions,” in 2009 Second International Workshop on Knowledge Discovery and Data Mining, pp. 710–713, 2009.
– reference: Wang, Y. and Yang, Y., “An interactive multi-swarm pso for multiobjective optimization problems,” Expert Systems with Applications, In press, 2008. On-line version available at http://www.sciencedirect.com.
– reference: Archetti, F., Giordani, I. and Vanneschi, L., “Genetic programming for anticancer therapeutic response prediction using the NCI-60 dataset,” Computers and Operations Research, 37, 8, pp. 1395–1405, 2010. Impact Factor: 1.789.
– reference: ArumugamM.S.RaoM.“On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (rms) variants for computing optimal control of a class of hybrid systems”Journal of Applied Soft Computing2008832433610.1016/j.asoc.2007.01.010
– reference: Zhiming, L., Cheng, W. and Jian, L., “Solving constrained optimization via a modified genetic particle swarm optimization,” in Workshop on Knowledge Discovery and Data Mining, WKDD'08, IEEE Computer Society, pp. 217–220, 2008.
– reference: Vanneschi, L., “Theory and Practice for Efficient Genetic Programming,” Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland, 2004.
– reference: Kennedy, J. and Eberhart, R. C., Swarm Intelligence, Morgan Kaufmann Publishers, 2001.
– reference: Vanneschi, L., Codecasa, D. and Mauri, G., “A study of parallel and distributed particle swarm optimization methods,” in Proc. of the 2nd workshop on Bio-inspired algorithms for distributed systems, BADS'10, New York, NY, USA, ACM, pp. 9–16, 2010.
– reference: You, X., Liu, S. and Zheng, W., “Double-particle swarm optimization with induction enhanced evolutionary strategy to solve constrained optimization problems,” in IEEE International Conference on Natural Computing, ICNC'07, IEEE Computer Society, pp. 527–531, 2007.
– reference: Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (Santa Fe Institute Studies in the Sciences of Complexity), Oxford University Press, New York, NY, 1999.
– reference: DiosanL.OlteanM.“What else is evolution of pso telling us?”Journal of Artificial Evolution and Applications20081511210.1155/2008/289564
– reference: NiuB.ZhuY.HeX.WuH.“MCPSO: A multi-swarm cooperative particle swarm optimizer”Applied Mathematics and Computation200721851050106210.1016/j.amc.2006.07.026
– reference: Smola, A. J. and Scholkopf, B., “A Tutorial on Support Vector Regression,” Technical Report Technical Report Series - NC2-TR-1998-030, NeuroCOLT2, 1999.
– reference: Liang, J. J. and Suganthan, P. N., “Dynamic multi-swarm particle swarm optimizer with local search,” in 2005 IEEE Congress on Evolutionary Computation, CEC 2005, 1, pp. 522–528, 2005.
– reference: Wu, Z. and Zhou, J., “A self-adaptive particle swarm optimization algorithm with individual coefficients adjustment,” in Proc. IEEE International Conference on Computational Intelligence and Security, CIS'07, IEEE Computer Society, pp. 133–136, 2007.
– reference: ValleY.D.VenayagamoorthyG.MohagheghiS.HernandezJ.HarleyR.“Particle swarm optimization: Basic concepts, variants and applications in power systems”IEEE Transactions on Evolutionary Computation200812217119510.1109/TEVC.2007.896686
– reference: Riget, J. and Vesterstrm, J., “A diversity-guided particle swarm optimizer - the arpso,” Technical report, Dept. of Comput. Sci., Aarhus Univ., Denmark, 2002.
– reference: Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A. and Tiwari, S., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical Report Number 2005005, Nanyang Technological University, 2005.
– reference: White, T. and Pagurek, B., “Towards multi-swarm problem solving in networks,” in Proc. of Third International Conference on Multi-Agent Systems (ICMAS'98), IEEE Computer Society, pp. 333–340, 1998.
– reference: Kwong, H. and Jacob, C., “Evolutionary exploration of dynamic swarm behavior,” in IEEE Congress on Evolutionary Computation, CEC'03, IEEE Press, pp. 367–374, 2003.
– reference: Blackwell, T. M., “Swarm music: improvised music with multi-swarms,” in Proc. of the 2003 AISB Symp. on Artificial Intelligence and Creativity in Arts and Science, pp. 41–49, 2003.
– reference: Srinivasan, D. and Seow, T. H., “Particle swarm inspired evolutionary algorithm (ps-ea) for multi-objective optimization problem,” in IEEE Congress on Evolutionary Computation, CEC03, IEEE Press, pp. 2292–2297, 2003.
– reference: ArchettiF.MessinaE.LanzeniS.VanneschiL.“Genetic programming for computational pharmacokinetics in drug discovery and development”Genetic Programming and Evolvable Machines200784172610.1007/s10710-007-9040-z
– reference: N. C. M. Project, National Cancer Institute, Bethesda MD, 2008. See http://genome-www.stanford.edu/nci60/.
– reference: RossS.M.Introduction to Probability and Statistics for Engineers and scientists2000NewYorkAcademic Press0942.62001
– reference: Vanneschi, L., Codecasa, D. and Mauri, G., “An empirical comparison of parallel and distributed particle swarm optimization methods,” in Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2010 (Branke, J. et al. eds.), ACM Press, 2010. To appear.
– reference: ArchettiF.GiordaniI.VanneschiL.“Genetic programming for QSAR investigation of docking energy”Applied Soft Computing201010117018210.1016/j.asoc.2009.06.013
– reference: Zhigljavsky, A. and Zilinskas, A., “Stochastic Global Optimization,” Springer Optimization and Its Applications, 9, Springer, 2008.
– reference: Kennedy, J. and Mendes, R., “Population structure and particle swarm performance,” in IEEE Congress on Evolutionary Computation, CEC'02, IEEE Computer Society, pp. 1671–1676, 2002.
– reference: Kennedy, J. and Eberhart, R., “Particle swarm optimization,” in Proc. IEEE Int. conf. on Neural Networks, 4, IEEE Computer Society, pp. 1942–1948, 1995.
– reference: KennedyJ.PoliR.BlackwellT.“Particle swarm optimization: an overview”Swarm Intelligence200711335710.1007/s11721-007-0002-0
– reference: Poli, R., “Analysis of the publications on the applications of particle swarm optimization,” Journal of Artificial Evolution and Applications, 2009, (in press).
– reference: Diosan, L. and Oltean, M., “Evolving the structure of the particle swarm optimization algorithms,” in EvoCOP'06, Springer Verlag, pp. 25–36, 2006.
– reference: Kameyama, K., “Particle swarm optimization - a survey,” IEICE Transactions, 92-D, 7, pp. 1354–1361, 2009.
– reference: Lu, F.-Q., Huang, M., Ching, W.-K., Wang, X.-W. and Sun, X.-l., “Multi-swarm particle swarm optimization based risk management model for virtual enterprise,” in GEC '09: Proc. of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, New York, NY, USA, ACM, pp. 387–392, 2009.
– reference: Blackwell, T. and Branke, J., “Multi-swarm optimization in dynamic environments,” in EvoWorkshops (Raidl, G. R. et al. eds.), LNCS, Springer, pp. 489–500, 2004.
– reference: Cagnoni, S., Vanneschi, L., Azzini, A. and Tettamanzi, A., “A critical assessment of some variants of particle swarm optimization,” in European Workshop on Bio-inspired algorithms for continuous parameter optimisation, EvoNUM'08, Springer Verlag, pp. 565–574, 2008.
– reference: RossD.T.“Systematic variation in gene expression patterns in human cancer cell lines”Nat Genet200024322723510.1038/73432
– reference: Weka, A multi-task machine learning software developed by Waikato University, 2006. See http://www.cs.waikato.ac.nz/ml/weka.
– reference: Clerc, M. ed., Particle Swarm Optimization, ISTE, 2006.
– reference: Poli, R., “Analysis of the publications on the applications of particle swarm optimisation,” J. Artif. Evol. App., 2008, 1, pp. 1–10, January 2008.
– reference: FernándezF.TomassiniM.VanneschiL.“An empirical study of multipopulation genetic programming”Genetic Programming and Evolvable Machines.20034121521009.6857010.1023/A:1021873026259
– reference: Li, C. and Yang, S., “Fast multi-swarm optimization for dynamic optimization problems,” in ICNC '08: Proc. of the 2008 Fourth International Conference on Natural Computation, Washington, DC, USA, IEEE Computer Society, pp. 624–628, 2008.
– ident: 102_CR22
  doi: 10.1145/1543834.1543886
– volume: 2
  start-page: 1050
  issue: 185
  year: 2007
  ident: 102_CR23
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.026
– ident: 102_CR41
  doi: 10.1109/ICMAS.1998.699217
– ident: 102_CR26
– ident: 102_CR21
  doi: 10.1109/CEC.2005.1554727
– ident: 102_CR25
  doi: 10.1155/2008/685175
– ident: 102_CR34
– volume: 10
  start-page: 170
  issue: 1
  year: 2010
  ident: 102_CR2
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.06.013
– volume-title: Introduction to Probability and Statistics for Engineers and scientists
  year: 2000
  ident: 102_CR28
– ident: 102_CR32
– ident: 102_CR8
  doi: 10.1007/978-3-540-78761-7_62
– ident: 102_CR7
  doi: 10.1093/oso/9780195131581.001.0001
– volume: 4
  start-page: 21
  issue: 1
  year: 2003
  ident: 102_CR12
  publication-title: Genetic Programming and Evolvable Machines.
  doi: 10.1023/A:1021873026259
– ident: 102_CR5
  doi: 10.1007/978-3-540-24653-4_50
– ident: 102_CR15
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 102_CR35
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.896686
– ident: 102_CR36
– ident: 102_CR45
  doi: 10.1109/WKDD.2008.78
– ident: 102_CR10
  doi: 10.1007/11730095_3
– volume: 8
  start-page: 324
  year: 2008
  ident: 102_CR4
  publication-title: Journal of Applied Soft Computing
  doi: 10.1016/j.asoc.2007.01.010
– ident: 102_CR6
– ident: 102_CR42
  doi: 10.1109/CIS.2007.95
– ident: 102_CR27
– volume: 24
  start-page: 236
  issue: 3
  year: 2000
  ident: 102_CR30
  publication-title: Nat Genet
  doi: 10.1038/73439
– ident: 102_CR31
– ident: 102_CR9
  doi: 10.1002/9780470612163
– ident: 102_CR33
– ident: 102_CR24
  doi: 10.1155/2008/685175
– ident: 102_CR19
  doi: 10.1109/CEC.2003.1299599
– ident: 102_CR16
– ident: 102_CR43
  doi: 10.1109/ICNC.2007.337
– ident: 102_CR20
  doi: 10.1109/ICNC.2008.313
– ident: 102_CR14
– ident: 102_CR38
  doi: 10.1145/1830483.1830487
– ident: 102_CR40
– ident: 102_CR18
– ident: 102_CR44
– volume: 24
  start-page: 227
  issue: 3
  year: 2000
  ident: 102_CR29
  publication-title: Nat Genet
  doi: 10.1038/73432
– ident: 102_CR37
  doi: 10.1145/1809018.1809022
– volume: 1
  start-page: 1
  issue: 5
  year: 2008
  ident: 102_CR11
  publication-title: Journal of Artificial Evolution and Applications
  doi: 10.1155/2008/289564
– volume: 8
  start-page: 17
  issue: 4
  year: 2007
  ident: 102_CR3
  publication-title: Genetic Programming and Evolvable Machines
  doi: 10.1007/s10710-007-9040-z
– ident: 102_CR1
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 102_CR17
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-007-0002-0
– ident: 102_CR13
  doi: 10.1109/WKDD.2009.202
– ident: 102_CR39
  doi: 10.1016/j.eswa.2008.09.017
SSID ssj0036342
Score 1.9424111
Snippet We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Artificial Intelligence
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Software Engineering/Programming and Operating Systems
Title A Comparative Study of Four Parallel and Distributed PSO Methods
URI https://link.springer.com/article/10.1007/s00354-010-0102-z
Volume 29
WOSCitedRecordID wos000290915600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1882-7055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036342
  issn: 0288-3635
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-Ynzixw8KYGuydrm5pgODzqHU9mtpPkAoXSyVsH99SZZMxmooIce2qahfc3LL-177_cDOGPSoJYkAmechphqpTEnRGMtAk0Zt9WXjmf2Nh4MkvGYDes67tJnu_uQpJupF8VuNuhlMyZsIpVx49kqrBm0S6w3Poye_fRLIuIUcwxuJtjsdHwo87sulsFoORLqAKbf_NetbcFmvZ5E3fkA2IYVVexA02s1oNp1d-Gyi3pfRN_Ipg9-oIlGfdMBGprDea5yxAuJriyVrlXBUhINR_fozmlMl3vw1L9-7N3gWj0BC_PoFVYdEifcuGPAIxExGoY6E5a9joWJasfcfBdzB_htHQrONRWZJDomGYkypagk-9AoJoU6ANTWnIjMnGKBopm0az7SUbEIhWaB1KIFgTdjKmpqcatwkacLUmRnodRYx25hOmvB-eKS1zmvxm-NL7zd09rFyp9bH_6p9RFszH8T2_d3DI1q-qZOYF28Vy_l9NQNrU-LMMhB
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecV5zYNPSqBr0tubYzombnO4KXsraS4glE7WKbhfb5K1k4EK-tCHtmloT3PypT3nfB_ARSQ0agnCccKoi6mSCjNCFFbcUTRipvrS8sx2gl4vHI2iflHHnZfZ7mVI0s7Ui2I3E_QyGRMmkUq78WwV1qgGLJPH9zh4Lqdf4hOrmKNxM8R6xytDmd91sQxGy5FQCzCt6r9ubRu2ivUkaswHwA6syGwXqqVWAypcdw-uG6j5RfSNTPrgBxor1NIdoL4-nKYyRSwT6MZQ6RoVLClQf_CAulZjOt-Hp9btsNnGhXoC5vrRp1h6JAiZdkeH-dyPqOuqhBv2usgNZT1g-ruYWcCvK5czpihPBFEBSYifSEkFOYBKNs7kIaC6YoQn-lTkSJoIs-Yjngy4y1XkCMVr4JRmjHlBLW4ULtJ4QYpsLRRr65jNjWc1uFxc8jrn1fit8VVp97hwsfzn1kd_an0OG-1htxN37nr3x7A5_2Vs3uUJVKaTN3kK6_x9-pJPzuww-wT4qssl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrE-9-BJWZpmt3ncLK1FsdZAVXoLm32AENLSRMH-enfzqBRUEA85JJksYXYnM5uZ-T6AC19oryUIxxGjNqZKKswIUVhxS1Gfme7LHGd24A6H3njsByXPaVpVu1cpyaKnwaA0JVlzKlRz0fhmEmCmesIUVWmTnq_CGjWcQWa7PnqpPsXEITl7jvahHtYn7Sqt-d0Qy45pOSuaO5t-_d-vuQ1bZZyJOsXC2IEVmexCveJwQKVJ78F1B3W_AMCRKSv8QBOF-noAFOjLcSxjxBKBegZi17BjSYGC0SN6yLmn03147t88dW9xyaqAuVZDhmWbuB7TZmoxhzs-tW0VcYNq59uebLlM75dZHgi0lM0ZU5RHgiiXRMSJpKSCHEAtmSTyEFBLMcIjfcu3JI2EiQVJW7rc5sq3hOINsCqVhryEHDfMF3G4AEvONRRq7ZjDDucNuFw8Mi3wNn4TvqrmICxNL_1Z-uhP0uewEfT64eBueH8Mm8WfZDOVJ1DLZm_yFNb5e_aazs7yFfcJNyfUCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Four+Parallel+and+Distributed+PSO+Methods&rft.jtitle=New+generation+computing&rft.au=Vanneschi%2C+Leonardo&rft.au=Codecasa%2C+Daniele&rft.au=Mauri%2C+Giancarlo&rft.date=2011-04-01&rft.issn=0288-3635&rft.eissn=1882-7055&rft.volume=29&rft.issue=2&rft.spage=129&rft.epage=161&rft_id=info:doi/10.1007%2Fs00354-010-0102-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00354_010_0102_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-3635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-3635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-3635&client=summon