Comparison of Methods for Testing the Hypothesis of Independence of Random Variables Based on a Nonparametric Classifier and Pearson’s Chi-Squared Test

A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the analysis of ambiguous dependencies. The pattern recognition algorithm meets the maximum likelihood criterion. The assessment of distribution laws...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optoelectronics, instrumentation, and data processing Ročník 59; číslo 5; s. 551 - 560
Hlavní autoři: Lapko, A. V., Lapko, V. A., Bakhtina, A. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.10.2023
Témata:
ISSN:8756-6990, 1934-7944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the analysis of ambiguous dependencies. The pattern recognition algorithm meets the maximum likelihood criterion. The assessment of distribution laws in classes is carried out using initial statistical data under the assumption of independence and dependence of the random variables being compared. To estimate probability densities in classes, nonparametric Rosenblatt–Parzen statistics are used. The blurring coefficients of kernel functions in nonparametric estimates of probability densities in classes are determined from the condition of the minimum of their standard deviations. Under these conditions, estimates of the probabilities of pattern recognition errors in classes are calculated. Based on their minimum value, a decision is made on the independence or dependence of random variables. The hypothesis about a significant difference in the probabilities of pattern recognition errors in classes is tested. The use of the proposed technique allows us to bypass the problem of decomposing the range of values of random variables into intervals, which is characteristic of the Pearson criterion. The effectiveness of the proposed method is compared with the Pearson criterion. The results of computational experiments using the studied criteria in the analysis of ambiguous dependencies between random variables are presented.
AbstractList A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the analysis of ambiguous dependencies. The pattern recognition algorithm meets the maximum likelihood criterion. The assessment of distribution laws in classes is carried out using initial statistical data under the assumption of independence and dependence of the random variables being compared. To estimate probability densities in classes, nonparametric Rosenblatt–Parzen statistics are used. The blurring coefficients of kernel functions in nonparametric estimates of probability densities in classes are determined from the condition of the minimum of their standard deviations. Under these conditions, estimates of the probabilities of pattern recognition errors in classes are calculated. Based on their minimum value, a decision is made on the independence or dependence of random variables. The hypothesis about a significant difference in the probabilities of pattern recognition errors in classes is tested. The use of the proposed technique allows us to bypass the problem of decomposing the range of values of random variables into intervals, which is characteristic of the Pearson criterion. The effectiveness of the proposed method is compared with the Pearson criterion. The results of computational experiments using the studied criteria in the analysis of ambiguous dependencies between random variables are presented.
Author Lapko, A. V.
Bakhtina, A. V.
Lapko, V. A.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Lapko
  fullname: Lapko, A. V.
  email: lapko@icm.krasn.ru
  organization: Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology
– sequence: 2
  givenname: V. A.
  surname: Lapko
  fullname: Lapko, V. A.
  organization: Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology
– sequence: 3
  givenname: A. V.
  surname: Bakhtina
  fullname: Bakhtina, A. V.
  organization: Reshetnev Siberian State University of Science and Technology
BookMark eNp9kE1OwzAQhS1UJNrCAdj5AgHb-XGyhAhopfIjWthGk8RuXSV2sNNFd1yj1-MkOIIVSN3MaPTme08zEzTSRguELim5CikJr5cpj5MkywgLSUxIxE_QmGZhFPAsikZoPMjBoJ-hiXNbQuLYC2N0yE3bgVXOaGwkfhT9xtQOS2PxSrhe6TXuNwLP9p3x3Sk3bM11LTrhi67EML-Crk2L370PlI1w-BacqLG3BPxktPeHVvRWVThvwDkllbDYM_hFgPXJX58Hh_ONCpYfO7CeHKLP0amExomL3z5Fb_d3q3wWLJ4f5vnNIqhYmvZBLXgsszKJIaVMlryiYRqFTJKSJbWsgGaUQ5mUlDNISqAl45xKWrOU1RwkD6eI__hW1jhnhSwq1UOvjO4tqKagpBg-XPz7sCfpH7KzqgW7P8qwH8b5Xb0WttiandX-wCPQN7yOkhM
CitedBy_id crossref_primary_10_2478_amns_2024_1737
crossref_primary_10_31772_2712_8970_2025_26_1_48_59
Cites_doi 10.1214/088342304000000297
10.3103/S8756699021060078
10.1214/aos/1176346329
10.1137/1114019
10.1007/s10182-013-0216-y
10.1080/03610918.2013.862275
10.1214/aoms/1177704472
10.1080/00949658508810822
10.3103/S8756699021020114
10.1007/s11018-018-1447-9
10.1080/00949655.2012.721366
10.1002/9781118575574
ContentType Journal Article
Copyright Allerton Press, Inc. 2023
Copyright_xml – notice: Allerton Press, Inc. 2023
DBID AAYXX
CITATION
DOI 10.3103/S8756699023050047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1934-7944
EndPage 560
ExternalDocumentID 10_3103_S8756699023050047
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z7X
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c288t-de75f9b65a812fb7c138432f0b26dfca1917ab6b172a6ba1b2771f1d282d7af73
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001178230400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 8756-6990
IngestDate Tue Nov 18 20:59:12 EST 2025
Sat Nov 29 01:48:45 EST 2025
Fri Feb 21 02:41:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ambiguous functional dependences
kernel probability density estimate
testing the hypothesis of independence of random variables
two-dimensional random variables
nonparametric pattern recognition algorithm
Pearson’s chi-squared test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-de75f9b65a812fb7c138432f0b26dfca1917ab6b172a6ba1b2771f1d282d7af73
PageCount 10
ParticipantIDs crossref_citationtrail_10_3103_S8756699023050047
crossref_primary_10_3103_S8756699023050047
springer_journals_10_3103_S8756699023050047
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Optoelectronics, instrumentation, and data processing
PublicationTitleAbbrev Optoelectron.Instrument.Proc
PublicationYear 2023
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References EpanechnikovV. A.Non-parametric estimation of a multivariate probability densityTheory Probab. Its Appl.19691415315825042210.1137/1114019
BowmanA. W.A comparative study of some kernel-based nonparametric density estimatorsJ. Stat. Comput. Simul.19822131332710.1080/00949658508810822
HallP.Large sample optimality of least squares cross-validation in density estimationAnn. Stat.1983111156117472026110.1214/aos/1176346329
LapkoA. V.LapkoV. A.Estimation of parameters of the formula for optimal discretization of the range of values of a two-dimensional random variableMeas. Tech.20186142743310.1007/s11018-018-1447-9
LapkoA. V.LapkoV. A.BakhtinaA. V.Study of the method for verification of the hypothesis on independence of two-dimensional random quantities using a nonparametric classifierOptoelectron., Instrum. Data Process.20215763964810.3103/S8756699021060078
LiQ.RacineJ. S.Nonparametric Econometrics: Theory and Practice2007PrincetonPrinceton Univ. Press
V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002).
DuttaS.Cross-validation revisitedCommun. Stat.—Simul. Comput.201645472490345710210.1080/03610918.2013.862275
M. Rudemo, ‘‘Empirical choice of histogram and kernel density estimators,’’ Scand. J. Stat., No. 9, 65–78 (1982).
HeidenreichN.SchindlerA.SperlichS.Bandwidth selection for kernel density estimation: A review of fully automatic selectorsAStA Adv. Stat. Anal.201397403433310559010.1007/s10182-013-0216-y
LapkoA. V.LapkoV. A.Testing the hypothesis of the independence of two-dimensional random variables using a nonparametric algorithm for pattern recognitionOptoelectron., Instrum. Data Process.20215714915510.3103/S8756699021020114
ParzenE.On estimation of a probability density function and modeAnn. Math. Stat.1962331065107614328210.1214/aoms/1177704472
JiangM.ProvostS. B.A hybrid bandwidth selection methodology for kernel density estimationJ. Stat. Comput. Simul.201484614627316935110.1080/00949655.2012.721366
SheatherS. J.Density estimationStat. Sci.20041958859710.1214/088342304000000297
D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley Series in Probability and Statistics (Wiley, New Jersey, 2015). https://doi.org/10.1002/9781118575574
SilvermanB. W.Density Estimation for Statistics and Data Analysis1986LondonChapman and Hall
N. Heidenreich (8293_CR11) 2013; 97
A. V. Lapko (8293_CR16) 2018; 61
8293_CR6
M. Jiang (8293_CR9) 2014; 84
A. V. Lapko (8293_CR2) 2021; 57
P. Hall (8293_CR8) 1983; 11
8293_CR13
S. Dutta (8293_CR10) 2016; 45
8293_CR1
S. J. Sheather (8293_CR14) 2004; 19
Q. Li (8293_CR12) 2007
A. V. Lapko (8293_CR3) 2021; 57
B. W. Silverman (8293_CR15) 1986
A. W. Bowman (8293_CR7) 1982; 21
E. Parzen (8293_CR4) 1962; 33
V. A. Epanechnikov (8293_CR5) 1969; 14
References_xml – reference: BowmanA. W.A comparative study of some kernel-based nonparametric density estimatorsJ. Stat. Comput. Simul.19822131332710.1080/00949658508810822
– reference: DuttaS.Cross-validation revisitedCommun. Stat.—Simul. Comput.201645472490345710210.1080/03610918.2013.862275
– reference: EpanechnikovV. A.Non-parametric estimation of a multivariate probability densityTheory Probab. Its Appl.19691415315825042210.1137/1114019
– reference: LapkoA. V.LapkoV. A.Testing the hypothesis of the independence of two-dimensional random variables using a nonparametric algorithm for pattern recognitionOptoelectron., Instrum. Data Process.20215714915510.3103/S8756699021020114
– reference: LapkoA. V.LapkoV. A.Estimation of parameters of the formula for optimal discretization of the range of values of a two-dimensional random variableMeas. Tech.20186142743310.1007/s11018-018-1447-9
– reference: SheatherS. J.Density estimationStat. Sci.20041958859710.1214/088342304000000297
– reference: SilvermanB. W.Density Estimation for Statistics and Data Analysis1986LondonChapman and Hall
– reference: D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley Series in Probability and Statistics (Wiley, New Jersey, 2015). https://doi.org/10.1002/9781118575574
– reference: LiQ.RacineJ. S.Nonparametric Econometrics: Theory and Practice2007PrincetonPrinceton Univ. Press
– reference: JiangM.ProvostS. B.A hybrid bandwidth selection methodology for kernel density estimationJ. Stat. Comput. Simul.201484614627316935110.1080/00949655.2012.721366
– reference: ParzenE.On estimation of a probability density function and modeAnn. Math. Stat.1962331065107614328210.1214/aoms/1177704472
– reference: HallP.Large sample optimality of least squares cross-validation in density estimationAnn. Stat.1983111156117472026110.1214/aos/1176346329
– reference: M. Rudemo, ‘‘Empirical choice of histogram and kernel density estimators,’’ Scand. J. Stat., No. 9, 65–78 (1982).
– reference: LapkoA. V.LapkoV. A.BakhtinaA. V.Study of the method for verification of the hypothesis on independence of two-dimensional random quantities using a nonparametric classifierOptoelectron., Instrum. Data Process.20215763964810.3103/S8756699021060078
– reference: HeidenreichN.SchindlerA.SperlichS.Bandwidth selection for kernel density estimation: A review of fully automatic selectorsAStA Adv. Stat. Anal.201397403433310559010.1007/s10182-013-0216-y
– reference: V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002).
– volume: 19
  start-page: 588
  year: 2004
  ident: 8293_CR14
  publication-title: Stat. Sci.
  doi: 10.1214/088342304000000297
– volume: 57
  start-page: 639
  year: 2021
  ident: 8293_CR3
  publication-title: Optoelectron., Instrum. Data Process.
  doi: 10.3103/S8756699021060078
– volume: 11
  start-page: 1156
  year: 1983
  ident: 8293_CR8
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346329
– volume-title: Density Estimation for Statistics and Data Analysis
  year: 1986
  ident: 8293_CR15
– volume: 14
  start-page: 153
  year: 1969
  ident: 8293_CR5
  publication-title: Theory Probab. Its Appl.
  doi: 10.1137/1114019
– volume: 97
  start-page: 403
  year: 2013
  ident: 8293_CR11
  publication-title: AStA Adv. Stat. Anal.
  doi: 10.1007/s10182-013-0216-y
– volume-title: Nonparametric Econometrics: Theory and Practice
  year: 2007
  ident: 8293_CR12
– volume: 45
  start-page: 472
  year: 2016
  ident: 8293_CR10
  publication-title: Commun. Stat.—Simul. Comput.
  doi: 10.1080/03610918.2013.862275
– volume: 33
  start-page: 1065
  year: 1962
  ident: 8293_CR4
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– ident: 8293_CR6
– volume: 21
  start-page: 313
  year: 1982
  ident: 8293_CR7
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949658508810822
– ident: 8293_CR1
– volume: 57
  start-page: 149
  year: 2021
  ident: 8293_CR2
  publication-title: Optoelectron., Instrum. Data Process.
  doi: 10.3103/S8756699021020114
– volume: 61
  start-page: 427
  year: 2018
  ident: 8293_CR16
  publication-title: Meas. Tech.
  doi: 10.1007/s11018-018-1447-9
– volume: 84
  start-page: 614
  year: 2014
  ident: 8293_CR9
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2012.721366
– ident: 8293_CR13
  doi: 10.1002/9781118575574
SSID ssj0055944
Score 2.2593622
Snippet A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 551
SubjectTerms Analysis and Synthesis of Signals and Images
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Title Comparison of Methods for Testing the Hypothesis of Independence of Random Variables Based on a Nonparametric Classifier and Pearson’s Chi-Squared Test
URI https://link.springer.com/article/10.3103/S8756699023050047
Volume 59
WOSCitedRecordID wos001178230400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1934-7944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055944
  issn: 8756-6990
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46FfTBuzhv5MEnpbi2Wds86nBM0CFujr2NXBotuG4um-Cbf2N_z19iTtYOhxfQx8JJUnI55zvk5PsQOuYhFS4XzGE-8RyipHCYpHDwiCJA6SSYpcy_Duv1qN2mt9k7bp1Xu-dXktZT27yy5J81DLIOAuM8DWguA8nhPFooA9kMpOiNVu5-DUK2Cq5g7YD55Crz-y5mg9HsTagNMNW1f_3aOlrN8CQ-n2yADTQXp5to5RPL4CZaslWeQm-hcWWqOoh7Ct9Y9WiNDW7FTWDbSB-wwYO49tqHd1k60WB1NRXKFTF837FU9rq4ZfqBZ1caX5hAKLHpkuF6LwUu8S7IdAlsBTcTZQIvNm2w8b6A7t_fxhpXHhOn8TyC6nc79Da6r142KzUn02ZwhBdFQ0fGYVlRHpSZQQiKh8L1I-J7qsS9QCrBIA1kPOAGH7GAM5d7YegqV5oMT4ZMhf4OKqS9NN5FmHM_iKlLpS8l8RiJiCQ08CSRNC5RFRdRKV-kjsiIy0E_46ljEhiY_86X-S-ik2mT_oS14zfj03xVO9kB1j9b7_3Jeh8tgz79pPrvABWGg1F8iBbFyzDRgyO7cT8AeTvoRg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswEB3xugIWwOUhytMLVvcqokncJF5CBSqiVIgWxC7yI4ZKkAIuSOz4jf4eX4LHTSoQXKTLMtLYjvyYOSOPzwHYETGTvpDc4yENPKqV9LhiePCopkjpJLmjzG_GrVZyeclOi3fcpqx2L68knad2eWU13G1bZB1F1nla0FxDksNxmKSosoMpevuidL8WITsFV7T20Hx4lfl1Fx-D0cebUBdgDud_9GsLMFfgSbI33AC_YSzLF2H2HcvgIvxyVZ7SLMGgPlIdJD1NTpx6tCEWt5IOsm3kV8TiQdJ4vsN3WaZr0OpoJJQrM_w-47nq3ZIL2w8-uzJk3wZCRWyXnLR6OXKJ36JMlyROcLOrbeAltg2x3hfR_evLwJD6dddr3z9i9bsbehnODw869YZXaDN4MkiSvqeyuKaZiGrcIgQtYumHCQ0DXRVBpLTkmAZyEQmLj3gkuC-COPa1r2yGp2Ku43AFJvJenq0CESKMMuYzFSpFA04TqiiLAkUVy6pMZxWolouUyoK4HPUzblKbwOD8p5_mvwJ_Rk3uhqwd3xn_LVc1LQ6w-bf12n9Zb8N0o3PSTJtHreN1mEGt-mEl4AZM9B8es02Ykk_9rnnYcpv4DWTb6yo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKKg9lAJFpbTgQ09F0W4SbxIfy8IKBKwQSxG3yI-YrgTZBS-Veuvf4O_1l3TGSVagtkgVx0hjO_JrvpFnvg_gk0qFDpWWgYx5FHBrdCCNoIPHLSdKJy09Zf5R2u9nFxfipNY5dU22e_MkWdU0EEtTOWmNjW35GLMdtwaIspMEL1IE0B0iPJyFeY6BDOV0nQ7Om6sY0bJXcyXrgMyrZ82_d_HYMT1-FfXOprf07N98A69rnMm-VBtjGWaKcgVePWAfXIEFn_2p3Srcd6dqhGxk2bFXlXYM8Sw7IxaO8pIhTmT7P8ZUr-WGjqwOpgK6uqDvU1ma0TU7x36oHMuxHXSQhmGXkvVHJXGMX5N8l2ZeiHNo0SEzbMPwVibU_-vnvWPdb8NgcHNHWfF-6Lfwtbd31t0Pas2GQEdZNglMkXasUElHInKwKtVhnPE4sm0VJcZqSeGhVIlC3CQTJUMVpWloQ4ORn0mlTeM1mCtHZfEOmFJxUohQmNgYHkmeccNFEhluRNEWtliHdrNgua4JzUlX4yrHwIbmP_9j_tfh87TJuGLzeMp4u1nhvD7Y7t_W7__LegsWT3Z7-dFB_3ADXpKEfZUg-AHmJrd3xUd4ob9Phu520-_n3-YV9A4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Methods+for+Testing+the+Hypothesis+of+Independence+of+Random+Variables+Based+on+a+Nonparametric+Classifier+and+Pearson%E2%80%99s+Chi-Squared+Test&rft.jtitle=Optoelectronics%2C+instrumentation%2C+and+data+processing&rft.au=Lapko%2C+A.+V.&rft.au=Lapko%2C+V.+A.&rft.au=Bakhtina%2C+A.+V.&rft.date=2023-10-01&rft.pub=Pleiades+Publishing&rft.issn=8756-6990&rft.eissn=1934-7944&rft.volume=59&rft.issue=5&rft.spage=551&rft.epage=560&rft_id=info:doi/10.3103%2FS8756699023050047&rft.externalDocID=10_3103_S8756699023050047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-6990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-6990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-6990&client=summon