Comparison of Methods for Testing the Hypothesis of Independence of Random Variables Based on a Nonparametric Classifier and Pearson’s Chi-Squared Test
A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the analysis of ambiguous dependencies. The pattern recognition algorithm meets the maximum likelihood criterion. The assessment of distribution laws...
Uloženo v:
| Vydáno v: | Optoelectronics, instrumentation, and data processing Ročník 59; číslo 5; s. 551 - 560 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.10.2023
|
| Témata: | |
| ISSN: | 8756-6990, 1934-7944 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the analysis of ambiguous dependencies. The pattern recognition algorithm meets the maximum likelihood criterion. The assessment of distribution laws in classes is carried out using initial statistical data under the assumption of independence and dependence of the random variables being compared. To estimate probability densities in classes, nonparametric Rosenblatt–Parzen statistics are used. The blurring coefficients of kernel functions in nonparametric estimates of probability densities in classes are determined from the condition of the minimum of their standard deviations. Under these conditions, estimates of the probabilities of pattern recognition errors in classes are calculated. Based on their minimum value, a decision is made on the independence or dependence of random variables. The hypothesis about a significant difference in the probabilities of pattern recognition errors in classes is tested. The use of the proposed technique allows us to bypass the problem of decomposing the range of values of random variables into intervals, which is characteristic of the Pearson criterion. The effectiveness of the proposed method is compared with the Pearson criterion. The results of computational experiments using the studied criteria in the analysis of ambiguous dependencies between random variables are presented. |
|---|---|
| AbstractList | A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the analysis of ambiguous dependencies. The pattern recognition algorithm meets the maximum likelihood criterion. The assessment of distribution laws in classes is carried out using initial statistical data under the assumption of independence and dependence of the random variables being compared. To estimate probability densities in classes, nonparametric Rosenblatt–Parzen statistics are used. The blurring coefficients of kernel functions in nonparametric estimates of probability densities in classes are determined from the condition of the minimum of their standard deviations. Under these conditions, estimates of the probabilities of pattern recognition errors in classes are calculated. Based on their minimum value, a decision is made on the independence or dependence of random variables. The hypothesis about a significant difference in the probabilities of pattern recognition errors in classes is tested. The use of the proposed technique allows us to bypass the problem of decomposing the range of values of random variables into intervals, which is characteristic of the Pearson criterion. The effectiveness of the proposed method is compared with the Pearson criterion. The results of computational experiments using the studied criteria in the analysis of ambiguous dependencies between random variables are presented. |
| Author | Lapko, A. V. Bakhtina, A. V. Lapko, V. A. |
| Author_xml | – sequence: 1 givenname: A. V. surname: Lapko fullname: Lapko, A. V. email: lapko@icm.krasn.ru organization: Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology – sequence: 2 givenname: V. A. surname: Lapko fullname: Lapko, V. A. organization: Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology – sequence: 3 givenname: A. V. surname: Bakhtina fullname: Bakhtina, A. V. organization: Reshetnev Siberian State University of Science and Technology |
| BookMark | eNp9kE1OwzAQhS1UJNrCAdj5AgHb-XGyhAhopfIjWthGk8RuXSV2sNNFd1yj1-MkOIIVSN3MaPTme08zEzTSRguELim5CikJr5cpj5MkywgLSUxIxE_QmGZhFPAsikZoPMjBoJ-hiXNbQuLYC2N0yE3bgVXOaGwkfhT9xtQOS2PxSrhe6TXuNwLP9p3x3Sk3bM11LTrhi67EML-Crk2L370PlI1w-BacqLG3BPxktPeHVvRWVThvwDkllbDYM_hFgPXJX58Hh_ONCpYfO7CeHKLP0amExomL3z5Fb_d3q3wWLJ4f5vnNIqhYmvZBLXgsszKJIaVMlryiYRqFTJKSJbWsgGaUQ5mUlDNISqAl45xKWrOU1RwkD6eI__hW1jhnhSwq1UOvjO4tqKagpBg-XPz7sCfpH7KzqgW7P8qwH8b5Xb0WttiandX-wCPQN7yOkhM |
| CitedBy_id | crossref_primary_10_2478_amns_2024_1737 crossref_primary_10_31772_2712_8970_2025_26_1_48_59 |
| Cites_doi | 10.1214/088342304000000297 10.3103/S8756699021060078 10.1214/aos/1176346329 10.1137/1114019 10.1007/s10182-013-0216-y 10.1080/03610918.2013.862275 10.1214/aoms/1177704472 10.1080/00949658508810822 10.3103/S8756699021020114 10.1007/s11018-018-1447-9 10.1080/00949655.2012.721366 10.1002/9781118575574 |
| ContentType | Journal Article |
| Copyright | Allerton Press, Inc. 2023 |
| Copyright_xml | – notice: Allerton Press, Inc. 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.3103/S8756699023050047 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1934-7944 |
| EndPage | 560 |
| ExternalDocumentID | 10_3103_S8756699023050047 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7X Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION |
| ID | FETCH-LOGICAL-c288t-de75f9b65a812fb7c138432f0b26dfca1917ab6b172a6ba1b2771f1d282d7af73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001178230400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 8756-6990 |
| IngestDate | Tue Nov 18 20:59:12 EST 2025 Sat Nov 29 01:48:45 EST 2025 Fri Feb 21 02:41:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | ambiguous functional dependences kernel probability density estimate testing the hypothesis of independence of random variables two-dimensional random variables nonparametric pattern recognition algorithm Pearson’s chi-squared test |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-de75f9b65a812fb7c138432f0b26dfca1917ab6b172a6ba1b2771f1d282d7af73 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_3103_S8756699023050047 crossref_primary_10_3103_S8756699023050047 springer_journals_10_3103_S8756699023050047 |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Optoelectronics, instrumentation, and data processing |
| PublicationTitleAbbrev | Optoelectron.Instrument.Proc |
| PublicationYear | 2023 |
| Publisher | Pleiades Publishing |
| Publisher_xml | – name: Pleiades Publishing |
| References | EpanechnikovV. A.Non-parametric estimation of a multivariate probability densityTheory Probab. Its Appl.19691415315825042210.1137/1114019 BowmanA. W.A comparative study of some kernel-based nonparametric density estimatorsJ. Stat. Comput. Simul.19822131332710.1080/00949658508810822 HallP.Large sample optimality of least squares cross-validation in density estimationAnn. Stat.1983111156117472026110.1214/aos/1176346329 LapkoA. V.LapkoV. A.Estimation of parameters of the formula for optimal discretization of the range of values of a two-dimensional random variableMeas. Tech.20186142743310.1007/s11018-018-1447-9 LapkoA. V.LapkoV. A.BakhtinaA. V.Study of the method for verification of the hypothesis on independence of two-dimensional random quantities using a nonparametric classifierOptoelectron., Instrum. Data Process.20215763964810.3103/S8756699021060078 LiQ.RacineJ. S.Nonparametric Econometrics: Theory and Practice2007PrincetonPrinceton Univ. Press V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002). DuttaS.Cross-validation revisitedCommun. Stat.—Simul. Comput.201645472490345710210.1080/03610918.2013.862275 M. Rudemo, ‘‘Empirical choice of histogram and kernel density estimators,’’ Scand. J. Stat., No. 9, 65–78 (1982). HeidenreichN.SchindlerA.SperlichS.Bandwidth selection for kernel density estimation: A review of fully automatic selectorsAStA Adv. Stat. Anal.201397403433310559010.1007/s10182-013-0216-y LapkoA. V.LapkoV. A.Testing the hypothesis of the independence of two-dimensional random variables using a nonparametric algorithm for pattern recognitionOptoelectron., Instrum. Data Process.20215714915510.3103/S8756699021020114 ParzenE.On estimation of a probability density function and modeAnn. Math. Stat.1962331065107614328210.1214/aoms/1177704472 JiangM.ProvostS. B.A hybrid bandwidth selection methodology for kernel density estimationJ. Stat. Comput. Simul.201484614627316935110.1080/00949655.2012.721366 SheatherS. J.Density estimationStat. Sci.20041958859710.1214/088342304000000297 D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley Series in Probability and Statistics (Wiley, New Jersey, 2015). https://doi.org/10.1002/9781118575574 SilvermanB. W.Density Estimation for Statistics and Data Analysis1986LondonChapman and Hall N. Heidenreich (8293_CR11) 2013; 97 A. V. Lapko (8293_CR16) 2018; 61 8293_CR6 M. Jiang (8293_CR9) 2014; 84 A. V. Lapko (8293_CR2) 2021; 57 P. Hall (8293_CR8) 1983; 11 8293_CR13 S. Dutta (8293_CR10) 2016; 45 8293_CR1 S. J. Sheather (8293_CR14) 2004; 19 Q. Li (8293_CR12) 2007 A. V. Lapko (8293_CR3) 2021; 57 B. W. Silverman (8293_CR15) 1986 A. W. Bowman (8293_CR7) 1982; 21 E. Parzen (8293_CR4) 1962; 33 V. A. Epanechnikov (8293_CR5) 1969; 14 |
| References_xml | – reference: BowmanA. W.A comparative study of some kernel-based nonparametric density estimatorsJ. Stat. Comput. Simul.19822131332710.1080/00949658508810822 – reference: DuttaS.Cross-validation revisitedCommun. Stat.—Simul. Comput.201645472490345710210.1080/03610918.2013.862275 – reference: EpanechnikovV. A.Non-parametric estimation of a multivariate probability densityTheory Probab. Its Appl.19691415315825042210.1137/1114019 – reference: LapkoA. V.LapkoV. A.Testing the hypothesis of the independence of two-dimensional random variables using a nonparametric algorithm for pattern recognitionOptoelectron., Instrum. Data Process.20215714915510.3103/S8756699021020114 – reference: LapkoA. V.LapkoV. A.Estimation of parameters of the formula for optimal discretization of the range of values of a two-dimensional random variableMeas. Tech.20186142743310.1007/s11018-018-1447-9 – reference: SheatherS. J.Density estimationStat. Sci.20041958859710.1214/088342304000000297 – reference: SilvermanB. W.Density Estimation for Statistics and Data Analysis1986LondonChapman and Hall – reference: D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley Series in Probability and Statistics (Wiley, New Jersey, 2015). https://doi.org/10.1002/9781118575574 – reference: LiQ.RacineJ. S.Nonparametric Econometrics: Theory and Practice2007PrincetonPrinceton Univ. Press – reference: JiangM.ProvostS. B.A hybrid bandwidth selection methodology for kernel density estimationJ. Stat. Comput. Simul.201484614627316935110.1080/00949655.2012.721366 – reference: ParzenE.On estimation of a probability density function and modeAnn. Math. Stat.1962331065107614328210.1214/aoms/1177704472 – reference: HallP.Large sample optimality of least squares cross-validation in density estimationAnn. Stat.1983111156117472026110.1214/aos/1176346329 – reference: M. Rudemo, ‘‘Empirical choice of histogram and kernel density estimators,’’ Scand. J. Stat., No. 9, 65–78 (1982). – reference: LapkoA. V.LapkoV. A.BakhtinaA. V.Study of the method for verification of the hypothesis on independence of two-dimensional random quantities using a nonparametric classifierOptoelectron., Instrum. Data Process.20215763964810.3103/S8756699021060078 – reference: HeidenreichN.SchindlerA.SperlichS.Bandwidth selection for kernel density estimation: A review of fully automatic selectorsAStA Adv. Stat. Anal.201397403433310559010.1007/s10182-013-0216-y – reference: V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002). – volume: 19 start-page: 588 year: 2004 ident: 8293_CR14 publication-title: Stat. Sci. doi: 10.1214/088342304000000297 – volume: 57 start-page: 639 year: 2021 ident: 8293_CR3 publication-title: Optoelectron., Instrum. Data Process. doi: 10.3103/S8756699021060078 – volume: 11 start-page: 1156 year: 1983 ident: 8293_CR8 publication-title: Ann. Stat. doi: 10.1214/aos/1176346329 – volume-title: Density Estimation for Statistics and Data Analysis year: 1986 ident: 8293_CR15 – volume: 14 start-page: 153 year: 1969 ident: 8293_CR5 publication-title: Theory Probab. Its Appl. doi: 10.1137/1114019 – volume: 97 start-page: 403 year: 2013 ident: 8293_CR11 publication-title: AStA Adv. Stat. Anal. doi: 10.1007/s10182-013-0216-y – volume-title: Nonparametric Econometrics: Theory and Practice year: 2007 ident: 8293_CR12 – volume: 45 start-page: 472 year: 2016 ident: 8293_CR10 publication-title: Commun. Stat.—Simul. Comput. doi: 10.1080/03610918.2013.862275 – volume: 33 start-page: 1065 year: 1962 ident: 8293_CR4 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – ident: 8293_CR6 – volume: 21 start-page: 313 year: 1982 ident: 8293_CR7 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949658508810822 – ident: 8293_CR1 – volume: 57 start-page: 149 year: 2021 ident: 8293_CR2 publication-title: Optoelectron., Instrum. Data Process. doi: 10.3103/S8756699021020114 – volume: 61 start-page: 427 year: 2018 ident: 8293_CR16 publication-title: Meas. Tech. doi: 10.1007/s11018-018-1447-9 – volume: 84 start-page: 614 year: 2014 ident: 8293_CR9 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2012.721366 – ident: 8293_CR13 doi: 10.1002/9781118575574 |
| SSID | ssj0055944 |
| Score | 2.2593622 |
| Snippet | A technique for testing the hypothesis about the independence of random variables, based on a nonparametric pattern recognition algorithm, is used in the... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 551 |
| SubjectTerms | Analysis and Synthesis of Signals and Images Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
| Title | Comparison of Methods for Testing the Hypothesis of Independence of Random Variables Based on a Nonparametric Classifier and Pearson’s Chi-Squared Test |
| URI | https://link.springer.com/article/10.3103/S8756699023050047 |
| Volume | 59 |
| WOSCitedRecordID | wos001178230400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1934-7944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055944 issn: 8756-6990 databaseCode: RSV dateStart: 20070201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46FfTBuzhv5MEnpbi2Wds86nBM0CFujr2NXBotuG4um-Cbf2N_z19iTtYOhxfQx8JJUnI55zvk5PsQOuYhFS4XzGE-8RyipHCYpHDwiCJA6SSYpcy_Duv1qN2mt9k7bp1Xu-dXktZT27yy5J81DLIOAuM8DWguA8nhPFooA9kMpOiNVu5-DUK2Cq5g7YD55Crz-y5mg9HsTagNMNW1f_3aOlrN8CQ-n2yADTQXp5to5RPL4CZaslWeQm-hcWWqOoh7Ct9Y9WiNDW7FTWDbSB-wwYO49tqHd1k60WB1NRXKFTF837FU9rq4ZfqBZ1caX5hAKLHpkuF6LwUu8S7IdAlsBTcTZQIvNm2w8b6A7t_fxhpXHhOn8TyC6nc79Da6r142KzUn02ZwhBdFQ0fGYVlRHpSZQQiKh8L1I-J7qsS9QCrBIA1kPOAGH7GAM5d7YegqV5oMT4ZMhf4OKqS9NN5FmHM_iKlLpS8l8RiJiCQ08CSRNC5RFRdRKV-kjsiIy0E_46ljEhiY_86X-S-ik2mT_oS14zfj03xVO9kB1j9b7_3Jeh8tgz79pPrvABWGg1F8iBbFyzDRgyO7cT8AeTvoRg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswEB3xugIWwOUhytMLVvcqokncJF5CBSqiVIgWxC7yI4ZKkAIuSOz4jf4eX4LHTSoQXKTLMtLYjvyYOSOPzwHYETGTvpDc4yENPKqV9LhiePCopkjpJLmjzG_GrVZyeclOi3fcpqx2L68knad2eWU13G1bZB1F1nla0FxDksNxmKSosoMpevuidL8WITsFV7T20Hx4lfl1Fx-D0cebUBdgDud_9GsLMFfgSbI33AC_YSzLF2H2HcvgIvxyVZ7SLMGgPlIdJD1NTpx6tCEWt5IOsm3kV8TiQdJ4vsN3WaZr0OpoJJQrM_w-47nq3ZIL2w8-uzJk3wZCRWyXnLR6OXKJ36JMlyROcLOrbeAltg2x3hfR_evLwJD6dddr3z9i9bsbehnODw869YZXaDN4MkiSvqeyuKaZiGrcIgQtYumHCQ0DXRVBpLTkmAZyEQmLj3gkuC-COPa1r2yGp2Ku43AFJvJenq0CESKMMuYzFSpFA04TqiiLAkUVy6pMZxWolouUyoK4HPUzblKbwOD8p5_mvwJ_Rk3uhqwd3xn_LVc1LQ6w-bf12n9Zb8N0o3PSTJtHreN1mEGt-mEl4AZM9B8es02Ykk_9rnnYcpv4DWTb6yo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKKg9lAJFpbTgQ09F0W4SbxIfy8IKBKwQSxG3yI-YrgTZBS-Veuvf4O_1l3TGSVagtkgVx0hjO_JrvpFnvg_gk0qFDpWWgYx5FHBrdCCNoIPHLSdKJy09Zf5R2u9nFxfipNY5dU22e_MkWdU0EEtTOWmNjW35GLMdtwaIspMEL1IE0B0iPJyFeY6BDOV0nQ7Om6sY0bJXcyXrgMyrZ82_d_HYMT1-FfXOprf07N98A69rnMm-VBtjGWaKcgVePWAfXIEFn_2p3Srcd6dqhGxk2bFXlXYM8Sw7IxaO8pIhTmT7P8ZUr-WGjqwOpgK6uqDvU1ma0TU7x36oHMuxHXSQhmGXkvVHJXGMX5N8l2ZeiHNo0SEzbMPwVibU_-vnvWPdb8NgcHNHWfF-6Lfwtbd31t0Pas2GQEdZNglMkXasUElHInKwKtVhnPE4sm0VJcZqSeGhVIlC3CQTJUMVpWloQ4ORn0mlTeM1mCtHZfEOmFJxUohQmNgYHkmeccNFEhluRNEWtliHdrNgua4JzUlX4yrHwIbmP_9j_tfh87TJuGLzeMp4u1nhvD7Y7t_W7__LegsWT3Z7-dFB_3ADXpKEfZUg-AHmJrd3xUd4ob9Phu520-_n3-YV9A4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Methods+for+Testing+the+Hypothesis+of+Independence+of+Random+Variables+Based+on+a+Nonparametric+Classifier+and+Pearson%E2%80%99s+Chi-Squared+Test&rft.jtitle=Optoelectronics%2C+instrumentation%2C+and+data+processing&rft.au=Lapko%2C+A.+V.&rft.au=Lapko%2C+V.+A.&rft.au=Bakhtina%2C+A.+V.&rft.date=2023-10-01&rft.pub=Pleiades+Publishing&rft.issn=8756-6990&rft.eissn=1934-7944&rft.volume=59&rft.issue=5&rft.spage=551&rft.epage=560&rft_id=info:doi/10.3103%2FS8756699023050047&rft.externalDocID=10_3103_S8756699023050047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-6990&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-6990&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-6990&client=summon |