Algorithms, Convergence and Rate of Convergence for an Interpolation Model Between Lagrange and Hermite

The aim of this piece of work is to study an interpolation problem on the interval [ - 1 , 1 ] , which can be considered an intermediate case between the interpolation problems of Lagrange and Hermite. The nodal points belong to the Chebyshev–Lobatto nodal system and the novelty is that we use the c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Resultate der Mathematik Ročník 73; číslo 1
Hlavní autori: Berriochoa, Elías, Cachafeiro, Alicia, García-Amor, José M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.03.2018
Predmet:
ISSN:1422-6383, 1420-9012
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this piece of work is to study an interpolation problem on the interval [ - 1 , 1 ] , which can be considered an intermediate case between the interpolation problems of Lagrange and Hermite. The nodal points belong to the Chebyshev–Lobatto nodal system and the novelty is that we use the complete system for the Lagrange data and half of the nodes for the derivative data. When the extremal points are not used for the values of the derivative we have a quasi-interpolation problem. First we give two different types of algorithms for computing the interpolation polynomials. One of the expressions is given in terms of the Chebyshev basis of the first kind and the second one is based on a barycentric formula. The second part of the paper is devoted to obtain some results about the convergence and the rate of convergence of the interpolants when interpolating some type of smooth functions. We also consider the case of merely continuous functions obtaining a result of convergence which is closer to the Lagrange problem. Finally, we analyze the quasi-interpolation case.
AbstractList The aim of this piece of work is to study an interpolation problem on the interval [ - 1 , 1 ] , which can be considered an intermediate case between the interpolation problems of Lagrange and Hermite. The nodal points belong to the Chebyshev–Lobatto nodal system and the novelty is that we use the complete system for the Lagrange data and half of the nodes for the derivative data. When the extremal points are not used for the values of the derivative we have a quasi-interpolation problem. First we give two different types of algorithms for computing the interpolation polynomials. One of the expressions is given in terms of the Chebyshev basis of the first kind and the second one is based on a barycentric formula. The second part of the paper is devoted to obtain some results about the convergence and the rate of convergence of the interpolants when interpolating some type of smooth functions. We also consider the case of merely continuous functions obtaining a result of convergence which is closer to the Lagrange problem. Finally, we analyze the quasi-interpolation case.
ArticleNumber 40
Author Cachafeiro, Alicia
Berriochoa, Elías
García-Amor, José M.
Author_xml – sequence: 1
  givenname: Elías
  orcidid: 0000-0001-6170-6160
  surname: Berriochoa
  fullname: Berriochoa, Elías
  organization: Universidad de Vigo
– sequence: 2
  givenname: Alicia
  orcidid: 0000-0002-9413-7352
  surname: Cachafeiro
  fullname: Cachafeiro, Alicia
  email: acachafe@uvigo.es
  organization: Universidad de Vigo
– sequence: 3
  givenname: José M.
  surname: García-Amor
  fullname: García-Amor, José M.
  organization: Xunta de Galicia
BookMark eNp9kE1OwzAQhS1UJErhAOx8AAxjJ27cZamAVipCQrCOHHsSUqV2ZRsQtydt2MCiq_nT90bvnZOR8w4JueJwwwGK2wgAQjLgioECweCEjHkugM2Ai9GhF2yaqeyMnMe4AZBCcDEmzbxrfGjT-zZe04V3nxgadAapdpa-6ITU13_2tQ_9ja5cwrDznU6td_TJW-zoHaYvREfXugnaNYPGEsO2TXhBTmvdRbz8rRPy9nD_uliy9fPjajFfMyOUSsyKnIOoAFEYjSIzvC6mqsJcQqErUDNpKzlTmTVa59bm_QhVbWVljJzl0mQTwgddE3yMAetyF9qtDt8lh3KfVDkkVfZJlfukSuiZ4h9j2nQwloJuu6OkGMjYf-kdh3LjP4LrDR6BfgCP5oCb
CitedBy_id crossref_primary_10_3390_math12060869
Cites_doi 10.1016/j.cam.2014.10.001
10.1093/imanum/24.4.547
10.1016/0021-9045(79)90057-1
10.1016/j.jat.2016.12.004
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
DBID AAYXX
CITATION
DOI 10.1007/s00025-018-0802-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID 10_1007_s00025_018_0802_0
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: AGL2014-60412-R
  funderid: http://dx.doi.org/10.13039/501100003329
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c288t-d24102b0ee2cae23c1f768be4507ab0895db5983dcaa4dd45db0bfd5bcc5945c3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426765600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-6383
IngestDate Sat Nov 29 03:47:21 EST 2025
Tue Nov 18 21:16:53 EST 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interpolation
convergence
Lobatto–Chebyshev nodal systems
rate of convergence
65D05
41A05
Chebyshev polynomials
42C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-d24102b0ee2cae23c1f768be4507ab0895db5983dcaa4dd45db0bfd5bcc5945c3
ORCID 0000-0001-6170-6160
0000-0002-9413-7352
ParticipantIDs crossref_primary_10_1007_s00025_018_0802_0
crossref_citationtrail_10_1007_s00025_018_0802_0
springer_journals_10_1007_s00025_018_0802_0
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationYear 2018
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Higham (CR7) 2004; 24
Mason, Handscomb (CR9) 2003
Szegő (CR13) 1975
Berriochoa, Cachafeiro, Díaz (CR2) 2015; 284
Rivlin (CR11) 1974
CR14
Berriochoa, Cachafeiro, Díaz, Illán (CR4) 2014; 234
CR10
Berriochoa, Cachafeiro, García Amor (CR1) 2017; 215
Davis (CR6) 1975
Bojanic, Prasad, Saxena (CR5) 1979; 26
Berriochoa, Cachafeiro, Díaz (CR3) 2015; 253
Jackson (CR8) 1930
Saxena (CR12) 1974; 9
E Berriochoa (802_CR4) 2014; 234
G Szegő (802_CR13) 1975
T Rivlin (802_CR11) 1974
E Berriochoa (802_CR3) 2015; 253
802_CR10
RB Saxena (802_CR12) 1974; 9
802_CR14
R Bojanic (802_CR5) 1979; 26
D Jackson (802_CR8) 1930
JC Mason (802_CR9) 2003
PJ Davis (802_CR6) 1975
E Berriochoa (802_CR2) 2015; 284
E Berriochoa (802_CR1) 2017; 215
NJ Higham (802_CR7) 2004; 24
References_xml – ident: CR14
– volume: 284
  start-page: 58
  year: 2015
  end-page: 68
  ident: CR2
  article-title: Convergence of Hermite interpolants on the unit circle using two derivatives
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.10.001
– volume: 24
  start-page: 547
  year: 2004
  end-page: 556
  ident: CR7
  article-title: The numerical stability of barycentric Lagrange interpolation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/24.4.547
– volume: 234
  start-page: 223
  year: 2014
  end-page: 236
  ident: CR4
  article-title: Algorithms and convergence for Hermite interpolation based on extended Chebyshev nodal systems
  publication-title: Appl. Math. Comput.
– volume: 9
  start-page: 223
  year: 1974
  end-page: 232
  ident: CR12
  article-title: The Hermite–Fejér process on the Tchebycheff matrix of second kind
  publication-title: Stud. Sci. Math. Hungar.
– volume: 253
  start-page: 274
  year: 2015
  end-page: 286
  ident: CR3
  article-title: Gibbs phenomenon in the Hermite interpolation on the circle
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 195
  year: 1979
  end-page: 203
  ident: CR5
  article-title: An upper bound for the rate of convergence of the Hermite–Fejér process on the extended Chebyshev nodes of the second kind
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(79)90057-1
– ident: CR10
– year: 1975
  ident: CR6
  publication-title: Interpolation and Approximation
– year: 1930
  ident: CR8
  publication-title: The Theory of Approximation
– volume: 215
  start-page: 118
  year: 2017
  end-page: 144
  ident: CR1
  article-title: An interpolation problem on the circle between Lagrange and Hermite problems
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2016.12.004
– year: 2003
  ident: CR9
  publication-title: Chebyshev Polynomials
– year: 1974
  ident: CR11
  publication-title: The Chebyshev Polynomials, Pure and Applied Mathematics
– year: 1975
  ident: CR13
  publication-title: Orthogonal Polynomials, American Mathematical Society, Colloquium Publications
– volume-title: Interpolation and Approximation
  year: 1975
  ident: 802_CR6
– ident: 802_CR10
– volume: 9
  start-page: 223
  year: 1974
  ident: 802_CR12
  publication-title: Stud. Sci. Math. Hungar.
– volume: 284
  start-page: 58
  year: 2015
  ident: 802_CR2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.10.001
– ident: 802_CR14
– volume: 24
  start-page: 547
  year: 2004
  ident: 802_CR7
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/24.4.547
– volume: 253
  start-page: 274
  year: 2015
  ident: 802_CR3
  publication-title: Appl. Math. Comput.
– volume: 234
  start-page: 223
  year: 2014
  ident: 802_CR4
  publication-title: Appl. Math. Comput.
– volume-title: The Chebyshev Polynomials, Pure and Applied Mathematics
  year: 1974
  ident: 802_CR11
– volume: 26
  start-page: 195
  year: 1979
  ident: 802_CR5
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(79)90057-1
– volume-title: The Theory of Approximation
  year: 1930
  ident: 802_CR8
– volume: 215
  start-page: 118
  year: 2017
  ident: 802_CR1
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2016.12.004
– volume-title: Orthogonal Polynomials, American Mathematical Society, Colloquium Publications
  year: 1975
  ident: 802_CR13
– volume-title: Chebyshev Polynomials
  year: 2003
  ident: 802_CR9
SSID ssj0052212
Score 2.09025
Snippet The aim of this piece of work is to study an interpolation problem on the interval [ - 1 , 1 ] , which can be considered an intermediate case between the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Title Algorithms, Convergence and Rate of Convergence for an Interpolation Model Between Lagrange and Hermite
URI https://link.springer.com/article/10.1007/s00025-018-0802-0
Volume 73
WOSCitedRecordID wos000426765600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-9012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052212
  issn: 1422-6383
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60etCDu7gzB09qYLIMmRxrsfRQi1QtvYXZUgttIkn09_tmskBBBT0mmRnCm-V9w_ve9xC65iFLBA2Uo8GdO3Df4A53FXG48DnnhJPEZnhPhuFoxKbT6KnO4y4atnsTkrQndZvsRmzpVeIaRWVDm11HG-DtmKnXMH6eNMcv4IkqxBnALQsWl9-EMr8bYtUZrUZCrYPp7_7r1_bQTo0ncbdaAPtoTacHaPuxFWMtDtGsu5hl-bx8WxZ3uGdY5jbhUmOeKjwGrImzZOU94Fj4his-YlaR5bApmrbA9xWtCw_5LDdpCXaMgSHUlPoIvfYfXnoDp66v4EiPsdJR4L2JJ4jWnuTa86WbwOVD6AAwIheERVQJGjFfSc4DpQJ4JCJRVEhJo4BK_xh10izVJwj7Yci0G_qAJwHQeKERplJhElHPCJIl5BSRxtCxrMXHTQ2MRdzKJlsbxmDD2Ngwhi43bZf3Snnjt8a3zczE9SYsfm599qfW52jLs1NriGcXqFPmH_oSbcrPcl7kV3bxfQFuNdLI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60CurBXdydgyc1MNlIcqzFUjEtUmvpLcyWtlATSaK_3zeTBQoq6DHJzBDeLO8b3ve-h9A19fyYuY4wJLhzA-4b1KCmIAZlNqWUUBLrDO9x6A0G_mQSPFd53HnNdq9DkvqkbpLdiC69SkylqKxos6tozQGHpQTzhy_j-vgFPFGGOB24ZcHisutQ5ndDLDuj5UiodjDdnX_92i7arvAkbpcLYA-tyGQfbfUbMdb8AE3bi2mazYvZW36HO4plrhMuJaaJwEPAmjiNl94DjoVvuOQjpiVZDquiaQt8X9K6cEinmUpL0GP0FKGmkIfotfsw6vSMqr6CwS3fLwwB3ptYjEhpcSotm5sxXD6YdAAjUkb8wBXMDXxbcEodIRx4JCwWLuPcDRyX20eolaSJPEbY9jxfmp4NeBIAjeUpYSrhxYFrKUGymJwgUhs64pX4uKqBsYga2WRtwwhsGCkbRtDlpunyXipv_Nb4tp6ZqNqE-c-tT__U-gpt9Eb9MAofB09naNPS06xIaOeoVWQf8gKt889inmeXeiF-AVj-1aw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60iujBt_h2D57U0M2LJMdaLRVrKT6Kt7DPWqhJSaK_39lNUiioIB6T7C5hdpP5hvnmG4TOaRAq5nvCkuDOLYg3qEVtQSzKXEopoUSZCu9hL-j3w9fXaFD1Oc1rtnudkixrGrRKU1I0p0I1Z4VvxLRhJbZWV9YU2kW05GkevQ7Xn4b1rxiwRZnu9CDigoPm1mnN75aYd0zzWVHjbDob_37NTbRe4UzcKg_GFlqQyTZae5iJtOY7aNSajNJsXLy951e4rdnnphBTYpoI_AgYFKdq7j7gW3iGS55iWpLosG6mNsHXJd0L9-go0-UKZo2uJtoUche9dG6f212r6rtgcScMC0uAVycOI1I6nErH5baCoIRJD7AjZSSMfMH8KHQFp9QTwoNLwpTwGed-5Pnc3UONJE3kPsJuEITSDlzAmQB0nEALVolARb6jhcoUOUCkNnrMK1Fy3RtjEs_klI0NY7BhrG0Yw5SL2ZRpqcjx2-DLepfi6uPMfx59-KfRZ2hlcNOJe3f9-yO06phd1ty0Y9Qosg95gpb5ZzHOs1NzJr8Aw_bekA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms%2C+Convergence+and+Rate+of+Convergence+for+an+Interpolation+Model+Between+Lagrange+and+Hermite&rft.jtitle=Resultate+der+Mathematik&rft.au=Berriochoa%2C+El%C3%ADas&rft.au=Cachafeiro%2C+Alicia&rft.au=Garc%C3%ADa-Amor%2C+Jos%C3%A9+M.&rft.date=2018-03-01&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=73&rft.issue=1&rft_id=info:doi/10.1007%2Fs00025-018-0802-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00025_018_0802_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon