A scalable and flexible basket analysis system for big transaction data in Spark
Uložené v:
| Vydané v: | Information processing & management Ročník 61; číslo 2; s. 103577 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.03.2024
|
| ISSN: | 0306-4573 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| ArticleNumber | 103577 |
|---|---|
| Author | Cai, Yongda Wu, Dingming Sun, Xudong Ngueilbaye, Alladoumbaye Luo, Kaijing Huang, Joshua Zhexue |
| Author_xml | – sequence: 1 givenname: Xudong orcidid: 0009-0005-2171-0081 surname: Sun fullname: Sun, Xudong – sequence: 2 givenname: Alladoumbaye orcidid: 0000-0002-5853-9354 surname: Ngueilbaye fullname: Ngueilbaye, Alladoumbaye – sequence: 3 givenname: Kaijing surname: Luo fullname: Luo, Kaijing – sequence: 4 givenname: Yongda orcidid: 0000-0002-3321-879X surname: Cai fullname: Cai, Yongda – sequence: 5 givenname: Dingming surname: Wu fullname: Wu, Dingming – sequence: 6 givenname: Joshua Zhexue surname: Huang fullname: Huang, Joshua Zhexue |
| BookMark | eNp9kMtKxDAUhrMYwZnRB3CXF2jNtU2Xw-ANBhTUdThNE0mnN5Is7NvbMq5cuDr8B74f_m-HNsM4WITuKMkpocV9m_upzxlhfMlcluUGbQknRSZkya_RLsaWECIkZVv0dsDRQAd1ZzEMDXad_fZrqCGebVp-0M3RRxznmGyP3Rhw7b9wCjBEMMmPA24gAfYDfp8gnG_QlYMu2tvfu0efjw8fx-fs9Pr0cjycMsOUSllDuGK2rIRQrhYVYcIKqqy0taMKlHDSNsJUTFXCCNkwLgvBK14X0jQEyorvEb30mjDGGKzTU_A9hFlTolcNutWLBr1q0BcNC1P-YYxPsG5Y5vjuH_IH7jtnXA |
| CitedBy_id | crossref_primary_10_1007_s41870_024_02214_0 crossref_primary_10_1016_j_knosys_2025_113161 crossref_primary_10_1108_JFBM_03_2024_0066 crossref_primary_10_1007_s10586_024_04868_8 crossref_primary_10_1016_j_ipm_2024_103746 crossref_primary_10_1016_j_engappai_2023_107648 |
| Cites_doi | 10.1109/ICEBE.2017.24 10.1007/978-3-662-58415-6_7 10.1109/TPDS.2016.2560176 10.1016/j.jneb.2022.02.018 10.1186/s40537-019-0169-4 10.1016/j.ipm.2018.01.010 10.1093/bib/bbt074 10.1109/TII.2019.2912723 10.32604/jbd.2022.021744 10.1007/s12204-012-1246-4 10.1016/j.ipm.2010.12.003 10.1145/1454008.1454027 10.1002/widm.1329 10.47738/jads.v4i1.83 10.1016/j.knosys.2017.03.016 10.1145/3514221.3526165 10.1016/j.parco.2020.102738 10.1177/0260106018770942 10.1016/j.ipm.2012.09.003 10.1007/s10586-015-0477-1 10.1007/s00530-020-00725-x 10.1007/s11227-020-03253-7 10.1016/j.ipm.2019.102078 10.1016/j.future.2019.09.041 10.1021/acs.analchem.5b04182 10.1016/j.ipm.2021.102758 10.1109/TBDATA.2023.3255003 10.1007/s10586-018-1812-0 10.1109/TKDE.2019.2942594 10.1007/s10586-022-03673-5 10.2298/CSIS200124015V 10.1109/ACCESS.2021.3115514 10.26599/BDMA.2022.9020014 10.1016/j.ipm.2023.103271 10.1109/ACCESS.2018.2880275 10.1109/ACCESS.2018.2832185 10.1016/j.datak.2007.06.009 10.52549/ijeei.v7i4.1362 10.1080/2573234X.2020.1838958 10.1016/j.fcij.2017.04.003 10.1016/j.ipm.2021.102613 10.1080/03610926.2020.1716255 10.1007/s10115-020-01464-1 10.1016/j.procs.2018.08.263 10.1016/j.ins.2018.07.020 10.26599/BDMA.2019.9020015 10.1016/j.ipm.2020.102207 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ipm.2023.103577 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| ExternalDocumentID | 10_1016_j_ipm_2023_103577 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77I 77K 8P~ 9DU 9JN 9JO AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABWVN ABXDB ACDAQ ACGFS ACHQT ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMHG ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AOUOD APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-c288t-d0382e79448fb49024e418e5ebf18a84f5ed4c92894c45d23564393b65cd0a793 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124376500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-4573 |
| IngestDate | Sat Nov 29 07:22:18 EST 2025 Tue Nov 18 22:12:03 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c288t-d0382e79448fb49024e418e5ebf18a84f5ed4c92894c45d23564393b65cd0a793 |
| ORCID | 0000-0002-3321-879X 0000-0002-5853-9354 0009-0005-2171-0081 |
| OpenAccessLink | https://doi.org/10.1016/j.ipm.2023.103577 |
| ParticipantIDs | crossref_primary_10_1016_j_ipm_2023_103577 crossref_citationtrail_10_1016_j_ipm_2023_103577 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Information processing & management |
| PublicationYear | 2024 |
| References | Shiokawa (10.1016/j.ipm.2023.103577_b58) 2016; 88 Fournier-Viger (10.1016/j.ipm.2023.103577_b18) 2017; 1 Chon (10.1016/j.ipm.2023.103577_b8) 2018; 21 Mahmud (10.1016/j.ipm.2023.103577_b36) 2020; 3 Xun (10.1016/j.ipm.2023.103577_b68) 2016; 28 Zheng (10.1016/j.ipm.2023.103577_b75) 2018 Sreeyuktha (10.1016/j.ipm.2023.103577_b60) 2019 Tatiana (10.1016/j.ipm.2023.103577_b62) 2018; 136 Wei (10.1016/j.ipm.2023.103577_b66) 2018 Agarwal (10.1016/j.ipm.2023.103577_b1) 2016 Mahmud (10.1016/j.ipm.2023.103577_b35) 2023 Shawkat (10.1016/j.ipm.2023.103577_b55) 2022 Long (10.1016/j.ipm.2023.103577_b33) 2012; 17 Raj (10.1016/j.ipm.2023.103577_b47) 2021; 77 Vaishampayan (10.1016/j.ipm.2023.103577_b64) 2022 Pradana (10.1016/j.ipm.2023.103577_b42) 2022 Prajapati (10.1016/j.ipm.2023.103577_b43) 2017; 2 Shen (10.1016/j.ipm.2023.103577_b56) 2002 Zhou (10.1016/j.ipm.2023.103577_b76) 2010 Raj (10.1016/j.ipm.2023.103577_b46) 2022; 25 Rochd (10.1016/j.ipm.2023.103577_b51) 2019 Agrawal (10.1016/j.ipm.2023.103577_b4) 1993 10.1016/j.ipm.2023.103577_b28 Sun (10.1016/j.ipm.2023.103577_b61) 2023; 6 10.1016/j.ipm.2023.103577_b29 Liew (10.1016/j.ipm.2023.103577_b31) 2018; 24 Salloum (10.1016/j.ipm.2023.103577_b53) 2019; 15 Ragaventhiran (10.1016/j.ipm.2023.103577_b45) 2020; 103 Ünvan (10.1016/j.ipm.2023.103577_b63) 2021; 50 Zhang (10.1016/j.ipm.2023.103577_b74) 2015; 18 Valiullin (10.1016/j.ipm.2023.103577_b65) 2021; 18 Gan (10.1016/j.ipm.2023.103577_b21) 2019; 13 Xun (10.1016/j.ipm.2023.103577_b69) 2021; 101 Meida (10.1016/j.ipm.2023.103577_b38) 2019; 7 Naulaerts (10.1016/j.ipm.2023.103577_b39) 2015; 16 Hedrick (10.1016/j.ipm.2023.103577_b23) 2022; 54 Saputra (10.1016/j.ipm.2023.103577_b54) 2023; 4 Jashma Suresh (10.1016/j.ipm.2023.103577_b27) 2023 Agrawal (10.1016/j.ipm.2023.103577_b5) 1994 Renjith (10.1016/j.ipm.2023.103577_b49) 2020; 57 Li (10.1016/j.ipm.2023.103577_b30) 2008; 64 Delgado-Osuna (10.1016/j.ipm.2023.103577_b10) 2020; 57 Fumarola (10.1016/j.ipm.2023.103577_b19) 2014 Gan (10.1016/j.ipm.2023.103577_b20) 2021; 33 10.1016/j.ipm.2023.103577_b16 Han (10.1016/j.ipm.2023.103577_b22) 2012 Djenouri (10.1016/j.ipm.2023.103577_b13) 2018; 6 Shi (10.1016/j.ipm.2023.103577_b57) 2017 Saggi (10.1016/j.ipm.2023.103577_b52) 2018; 54 Djenouri (10.1016/j.ipm.2023.103577_b12) 2019; 496 Duong (10.1016/j.ipm.2023.103577_b14) 2017; Vol. 10438 Aggarwal (10.1016/j.ipm.2023.103577_b3) 2014 Pramudiono (10.1016/j.ipm.2023.103577_b44) 2003; Vol. 2637 Wicaksono (10.1016/j.ipm.2023.103577_b67) 2020 Yang (10.1016/j.ipm.2023.103577_b70) 2023; 60 Dahdouh (10.1016/j.ipm.2023.103577_b9) 2019; 6 Cheng (10.1016/j.ipm.2023.103577_b7) 2021; 58 Singh (10.1016/j.ipm.2023.103577_b59) 2020 Hossain (10.1016/j.ipm.2023.103577_b24) 2019 Dhanabhakyam (10.1016/j.ipm.2023.103577_b11) 2011; 11 Luna (10.1016/j.ipm.2023.103577_b34) 2019; 9 Riondato (10.1016/j.ipm.2023.103577_b50) 2014; 8 Patron (10.1016/j.ipm.2023.103577_b40) 2020; 3 Jain (10.1016/j.ipm.2023.103577_b26) 2022; 59 Yimin (10.1016/j.ipm.2023.103577_b71) 2021; 27 Agarwal (10.1016/j.ipm.2023.103577_b2) 2018 Yoon (10.1016/j.ipm.2023.103577_b72) 2013; 49 Fernandez-Basso (10.1016/j.ipm.2023.103577_b17) 2023 Alawadh (10.1016/j.ipm.2023.103577_b6) 2022; 4 Yun (10.1016/j.ipm.2023.103577_b73) 2017; 124 Duong (10.1016/j.ipm.2023.103577_b15) 2018 Liu (10.1016/j.ipm.2023.103577_b32) 2018; 6 Huang (10.1016/j.ipm.2023.103577_b25) 2021; 9 McCreadie (10.1016/j.ipm.2023.103577_b37) 2012; 48 Patwary (10.1016/j.ipm.2023.103577_b41) 2021 Raj (10.1016/j.ipm.2023.103577_b48) 2020; 62 |
| References_xml | – ident: 10.1016/j.ipm.2023.103577_b28 doi: 10.1109/ICEBE.2017.24 – start-page: 200 year: 2018 ident: 10.1016/j.ipm.2023.103577_b15 article-title: Mapfim+: Memory aware parallelized frequent itemset mining in very large datasets publication-title: Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXIX: Special Issue on Database-and Expert-Systems Applications doi: 10.1007/978-3-662-58415-6_7 – start-page: 335 year: 2014 ident: 10.1016/j.ipm.2023.103577_b19 article-title: A parallel algorithm for approximate frequent itemset mining using MapReduce – volume: 28 start-page: 101 issue: 1 year: 2016 ident: 10.1016/j.ipm.2023.103577_b68 article-title: FiDoop-DP: Data partitioning in frequent itemset mining on hadoop clusters publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2016.2560176 – volume: 54 start-page: 776 issue: 8 year: 2022 ident: 10.1016/j.ipm.2023.103577_b23 article-title: Validity of a market basket assessment tool for use in supplemental nutrition assistance program education healthy retail initiatives publication-title: Journal of Nutrition Education and Behavior doi: 10.1016/j.jneb.2022.02.018 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ipm.2023.103577_b9 article-title: Large-scale e-learning recommender system based on spark and hadoop publication-title: Journal of Big Data doi: 10.1186/s40537-019-0169-4 – start-page: 461 year: 2022 ident: 10.1016/j.ipm.2023.103577_b64 article-title: Market basket analysis recommender system using apriori algorithm – volume: 54 start-page: 758 issue: 5 year: 2018 ident: 10.1016/j.ipm.2023.103577_b52 article-title: A survey towards an integration of big data analytics to big insights for value-creation publication-title: Information Processingn and Management doi: 10.1016/j.ipm.2018.01.010 – volume: 16 start-page: 216 issue: 2 year: 2015 ident: 10.1016/j.ipm.2023.103577_b39 article-title: A primer to frequent itemset mining for bioinformatics publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbt074 – volume: 15 start-page: 5846 issue: 11 year: 2019 ident: 10.1016/j.ipm.2023.103577_b53 article-title: Random sample partition: A distributed data model for big data analysis publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2912723 – volume: 4 issue: 1 year: 2022 ident: 10.1016/j.ipm.2023.103577_b6 article-title: A survey on methods and applications of intelligent market basket analysis based on association rule publication-title: Journal on Big Data doi: 10.32604/jbd.2022.021744 – volume: 17 start-page: 161 year: 2012 ident: 10.1016/j.ipm.2023.103577_b33 article-title: Mining evolving association rules for e-business recommendation publication-title: Journal of Shanghai Jiaotong University (Science) doi: 10.1007/s12204-012-1246-4 – volume: 48 start-page: 873 issue: 5 year: 2012 ident: 10.1016/j.ipm.2023.103577_b37 article-title: MapReduce indexing strategies: Studying scalability and efficiency publication-title: Information Processing and Management doi: 10.1016/j.ipm.2010.12.003 – start-page: 1 year: 2022 ident: 10.1016/j.ipm.2023.103577_b55 article-title: An optimized FP-growth algorithm for discovery of association rules publication-title: The Journal of Supercomputing – ident: 10.1016/j.ipm.2023.103577_b29 doi: 10.1145/1454008.1454027 – volume: 9 issue: 6 year: 2019 ident: 10.1016/j.ipm.2023.103577_b34 article-title: Frequent itemset mining: A 25 years review publication-title: WIREs Data Mining Knowledge Discovery doi: 10.1002/widm.1329 – start-page: 347 year: 2018 ident: 10.1016/j.ipm.2023.103577_b66 article-title: A two-stage data processing algorithm to generate random sample partitions for big data analysis – start-page: 1725 year: 2017 ident: 10.1016/j.ipm.2023.103577_b57 article-title: DFPS: Distributed FP-growth algorithm based on Spark – start-page: 403 year: 2018 ident: 10.1016/j.ipm.2023.103577_b2 article-title: Review of parallel apriori algorithm on MapReduce framework for performance enhancement – volume: 4 start-page: 38 issue: 1 year: 2023 ident: 10.1016/j.ipm.2023.103577_b54 article-title: Market basket analysis using FP-growth algorithm to design marketing strategy by determining consumer purchasing patterns publication-title: Journal of Applied Data Sciences doi: 10.47738/jads.v4i1.83 – volume: 124 start-page: 188 year: 2017 ident: 10.1016/j.ipm.2023.103577_b73 article-title: An efficient algorithm for mining high utility patterns from incremental databases with one database scan publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.03.016 – start-page: 1 year: 2023 ident: 10.1016/j.ipm.2023.103577_b17 article-title: New spark solutions for distributed frequent itemset and association rule mining algorithms publication-title: Cluster Computing – volume: Vol. 2637 start-page: 467 year: 2003 ident: 10.1016/j.ipm.2023.103577_b44 article-title: Parallel FP-growth on PC cluster – ident: 10.1016/j.ipm.2023.103577_b16 doi: 10.1145/3514221.3526165 – volume: 101 year: 2021 ident: 10.1016/j.ipm.2023.103577_b69 article-title: HBPFP-DC: A parallel frequent itemset mining using Spark publication-title: Parallel Computing doi: 10.1016/j.parco.2020.102738 – volume: 11 start-page: 23 issue: 11 year: 2011 ident: 10.1016/j.ipm.2023.103577_b11 article-title: A survey on data mining algorithm for market basket analysis publication-title: Global Journal of Computer Science and Technology – volume: 24 start-page: 83 issue: 2 year: 2018 ident: 10.1016/j.ipm.2023.103577_b31 article-title: Dietary habits and physical activity: Results from cluster analysis and market basket analysis publication-title: Nutrition and Health doi: 10.1177/0260106018770942 – start-page: 19 year: 2014 ident: 10.1016/j.ipm.2023.103577_b3 article-title: Frequent pattern mining algorithms: A survey – volume: 49 start-page: 484 issue: 2 year: 2013 ident: 10.1016/j.ipm.2023.103577_b72 article-title: Two scalable algorithms for associative text classification publication-title: Information Processing and Management doi: 10.1016/j.ipm.2012.09.003 – volume: 13 start-page: 25:1 issue: 3 year: 2019 ident: 10.1016/j.ipm.2023.103577_b21 article-title: A survey of parallel sequential pattern mining publication-title: ACM Transactions on Knowledge Discovery Data – volume: 18 start-page: 1493 year: 2015 ident: 10.1016/j.ipm.2023.103577_b74 article-title: A distributed frequent itemset mining algorithm using Spark for Big Data analytics publication-title: Cluster Computing doi: 10.1007/s10586-015-0477-1 – start-page: 243 year: 2010 ident: 10.1016/j.ipm.2023.103577_b76 article-title: Balanced parallel fp-growth with mapreduce – start-page: 86 year: 2022 ident: 10.1016/j.ipm.2023.103577_b42 article-title: Market basket analysis using FP-growth algorithm on retail sales data – volume: 27 start-page: 709 issue: 4 year: 2021 ident: 10.1016/j.ipm.2023.103577_b71 article-title: PFIMD: a parallel MapReduce-based algorithm for frequent itemset mining publication-title: Multimedia Systems doi: 10.1007/s00530-020-00725-x – volume: 1 start-page: 54 issue: 1 year: 2017 ident: 10.1016/j.ipm.2023.103577_b18 article-title: A survey of sequential pattern mining publication-title: Data Science and Pattern Recognition – volume: 77 start-page: 133 issue: 1 year: 2021 ident: 10.1016/j.ipm.2023.103577_b47 article-title: A Spark-based Apriori algorithm with reduced shuffle overhead publication-title: The Journal of Supercomputing doi: 10.1007/s11227-020-03253-7 – volume: 57 issue: 1 year: 2020 ident: 10.1016/j.ipm.2023.103577_b49 article-title: An extensive study on the evolution of context-aware personalized travel recommender systems publication-title: Information Processing and Management doi: 10.1016/j.ipm.2019.102078 – start-page: 1 year: 2018 ident: 10.1016/j.ipm.2023.103577_b75 article-title: A novel method to generate frequent itemsets in distributed environment – volume: Vol. 10438 start-page: 478 year: 2017 ident: 10.1016/j.ipm.2023.103577_b14 article-title: MapFIM: Memory aware parallelized frequent itemset mining in very large datasets – volume: 103 start-page: 111 year: 2020 ident: 10.1016/j.ipm.2023.103577_b45 article-title: Map-optimize-reduce: CAN tree assisted FP-growth algorithm for clusters based FP mining on hadoop publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.09.041 – volume: 88 start-page: 2714 issue: 5 year: 2016 ident: 10.1016/j.ipm.2023.103577_b58 article-title: Application of market basket analysis for the visualization of transaction data based on human lifestyle and spectroscopic measurements publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.5b04182 – volume: 59 issue: 1 year: 2022 ident: 10.1016/j.ipm.2023.103577_b26 article-title: An intelligent cognitive-inspired computing with big data analytics framework for sentiment analysis and classification publication-title: Information Processing and Management doi: 10.1016/j.ipm.2021.102758 – year: 2023 ident: 10.1016/j.ipm.2023.103577_b35 article-title: Approximate clustering ensemble method for big data publication-title: IEEE Transactions on Big Data doi: 10.1109/TBDATA.2023.3255003 – start-page: 493 year: 2019 ident: 10.1016/j.ipm.2023.103577_b60 article-title: Partitioning in apache spark – volume: 21 start-page: 1507 issue: 3 year: 2018 ident: 10.1016/j.ipm.2023.103577_b8 article-title: BIGMiner: a fast and scalable distributed frequent pattern miner for big data publication-title: Cluster Computing doi: 10.1007/s10586-018-1812-0 – volume: 33 start-page: 1306 issue: 4 year: 2021 ident: 10.1016/j.ipm.2023.103577_b20 article-title: A survey of utility-oriented pattern mining publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2942594 – volume: 25 start-page: 4463 issue: 6 year: 2022 ident: 10.1016/j.ipm.2023.103577_b46 article-title: PartEclat: an improved eclat-based frequent itemset mining algorithm on spark clusters using partition technique publication-title: Cluster Computing doi: 10.1007/s10586-022-03673-5 – start-page: 426 year: 2002 ident: 10.1016/j.ipm.2023.103577_b56 article-title: Objective-oriented utility-based association mining – volume: 18 start-page: 641 issue: 3 year: 2021 ident: 10.1016/j.ipm.2023.103577_b65 article-title: A new approximate method for mining frequent itemsets from big data publication-title: Computer Science and Information Systems doi: 10.2298/CSIS200124015V – start-page: 90 year: 2019 ident: 10.1016/j.ipm.2023.103577_b51 article-title: A review of scalable algorithms for frequent itemset mining for big data using Hadoop and Spark publication-title: Lecture Notes in Real-Time Intelligent Systems – volume: 9 start-page: 135144 year: 2021 ident: 10.1016/j.ipm.2023.103577_b25 article-title: A distributed method for fast mining frequent patterns from big data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3115514 – volume: 6 start-page: 154 issue: 2 year: 2023 ident: 10.1016/j.ipm.2023.103577_b61 article-title: Survey of distributed computing frameworks for supporting big data analysis publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2022.9020014 – start-page: 755 year: 2020 ident: 10.1016/j.ipm.2023.103577_b59 article-title: RDD-Eclat: approaches to parallelize Eclat algorithm on spark RDD framework – start-page: 13 year: 2016 ident: 10.1016/j.ipm.2023.103577_b1 article-title: Implementation of an improved algorithm for frequent itemset mining using Hadoop – volume: 60 issue: 3 year: 2023 ident: 10.1016/j.ipm.2023.103577_b70 article-title: Optimized hadoop map reduce system for strong analytics of cloud big product data on amazon web service publication-title: Information Processing and Management doi: 10.1016/j.ipm.2023.103271 – volume: 8 start-page: 20:1 issue: 4 year: 2014 ident: 10.1016/j.ipm.2023.103577_b50 article-title: Efficient discovery of association rules and frequent itemsets through sampling with tight performance guarantees publication-title: ACM Transactions on Knowledge Discovery Data – start-page: 315 year: 2020 ident: 10.1016/j.ipm.2023.103577_b67 article-title: The comparison of apriori algorithm with preprocessing and FP-growth algorithm for finding frequent data pattern in association rule – volume: 6 start-page: 68013 year: 2018 ident: 10.1016/j.ipm.2023.103577_b13 article-title: Frequent itemset mining in big data with effective single scan algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880275 – start-page: 1 year: 2023 ident: 10.1016/j.ipm.2023.103577_b27 article-title: Mining frequent itemsets from transaction databases using hybrid switching framework publication-title: Multimedia Tools and Applications – volume: 6 start-page: 36420 year: 2018 ident: 10.1016/j.ipm.2023.103577_b32 article-title: Recommendation with social roles publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832185 – volume: 64 start-page: 198 issue: 1 year: 2008 ident: 10.1016/j.ipm.2023.103577_b30 article-title: Isolated items discarding strategy for discovering high utility itemsets publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2007.06.009 – volume: 7 start-page: 772 issue: 4 year: 2019 ident: 10.1016/j.ipm.2023.103577_b38 article-title: Pattern of E-marketplace customer shopping behavior using Tabu search and FP-growth algorithm publication-title: Indonesian Journal of Electrical Engineering and Informatics (IJEEI) doi: 10.52549/ijeei.v7i4.1362 – start-page: 207 year: 1993 ident: 10.1016/j.ipm.2023.103577_b4 article-title: Mining association rules between sets of items in large databases – start-page: 487 year: 1994 ident: 10.1016/j.ipm.2023.103577_b5 article-title: Fast algorithms for mining association rules in large databases – volume: 3 start-page: 79 issue: 2 year: 2020 ident: 10.1016/j.ipm.2023.103577_b40 article-title: A market basket analysis of the US auto-repair industry publication-title: Journal of Business Analytics doi: 10.1080/2573234X.2020.1838958 – volume: 2 start-page: 19 issue: 1 year: 2017 ident: 10.1016/j.ipm.2023.103577_b43 article-title: Interesting association rule mining with consistent and inconsistent rule detection from big sales data in distributed environment publication-title: Future Computing and Informatics Journal doi: 10.1016/j.fcij.2017.04.003 – volume: 58 issue: 5 year: 2021 ident: 10.1016/j.ipm.2023.103577_b7 article-title: User-defined SWOT analysis - A change mining perspective on user-generated content publication-title: Information Processing and Management doi: 10.1016/j.ipm.2021.102613 – volume: 50 start-page: 1615 issue: 7 year: 2021 ident: 10.1016/j.ipm.2023.103577_b63 article-title: Market basket analysis with association rules publication-title: Communications in Statistics. Theory and Methods doi: 10.1080/03610926.2020.1716255 – start-page: 1 year: 2019 ident: 10.1016/j.ipm.2023.103577_b24 article-title: Market basket analysis using apriori and FP growth algorithm – volume: 62 start-page: 3565 year: 2020 ident: 10.1016/j.ipm.2023.103577_b48 article-title: EAFIM: efficient apriori-based frequent itemset mining algorithm on spark for big transactional data publication-title: Knowledge and Information Systems doi: 10.1007/s10115-020-01464-1 – volume: 136 start-page: 246 year: 2018 ident: 10.1016/j.ipm.2023.103577_b62 article-title: Market basket analysis of heterogeneous data sources for recommendation system improvement publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.08.263 – start-page: 1 year: 2021 ident: 10.1016/j.ipm.2023.103577_b41 article-title: Market basket analysis approach to machine learning – volume: 496 start-page: 363 year: 2019 ident: 10.1016/j.ipm.2023.103577_b12 article-title: Exploiting GPU and cluster parallelism in single scan frequent itemset mining publication-title: Information Sciences doi: 10.1016/j.ins.2018.07.020 – volume: 3 start-page: 85 issue: 2 year: 2020 ident: 10.1016/j.ipm.2023.103577_b36 article-title: A survey of data partitioning and sampling methods to support big data analysis publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2019.9020015 – volume: 57 issue: 3 year: 2020 ident: 10.1016/j.ipm.2023.103577_b10 article-title: Heuristics for interesting class association rule mining a colorectal cancer database publication-title: Information Processing and Management doi: 10.1016/j.ipm.2020.102207 – start-page: 243 year: 2012 ident: 10.1016/j.ipm.2023.103577_b22 article-title: 6-mining frequent patterns, associations, and correlations: Basic concepts and methods publication-title: Data Mining: Concepts and Techniques |
| SSID | ssj0004512 |
| Score | 2.438691 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 103577 |
| Title | A scalable and flexible basket analysis system for big transaction data in Spark |
| Volume | 61 |
| WOSCitedRecordID | wos001124376500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0306-4573 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004512 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvqPShUqDyAfVQFJT4kXWOK0RVekBIUGk5RY7tVNlusxFsEPwDfjbj2M6mIKRy4JKXnFGS-TKeTL6ZQWgPnE5JqeQRlyWNWEFkJBVVEVeSMM3BQ09012xifHIiptPsdDS6C7kw1_NxXYubm6x5UVXDMVC2TZ19hrp7oXAAtkHpsAS1w_K_FD_Zv4Ln3mVE2aB4aSte2h2Yr_7YAG-oQuJqODu6ZtX1iugbh1vaqA2EnDUhk2cWCO99suN-41IMXKgh9TTYIY_mrO0s2rTVCz892qDz79ZU80LeukAqgFAv2r92v6cGtQtH86hm1eq8Q9c2-wJE-RiCD1UQtuJqhRStOI0Yd71LgvlNkwHMyMCWJjHlrsXLIzPvIg6zg6qxxQQIPViN_bek9oOpricgBm7bLAcRuRWROxGv0DoZ8wzs4_rk-Gj6c1B5PvF_pNwthD_kHVfwwXUMfJyBs3L-Fm34rww8cejYRCNTv0O7PkcFf8UDPWJv3d-j0wkOyMGAHByQgx1ycEAOdsjBIAIDcvAAOdgiB1cg1CLnA_r1_ej88EfkG25EigixjHRMBTFgoZkoC5aBBg1LhOGmKBMhBSu50Uxl8I3OFOOaUG79WVqkXOlYgqX_iNbqRW0-ISzhrecF16kowEcspYS1HIPLZKRRpEy2UBweUa58NXrbFGWeP6maLfStP6VxpVieHvz5OYO30ZsVXHfQ2vKyNbvotbpeVleXXzwS7gGlQ4Nb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scalable+and+flexible+basket+analysis+system+for+big+transaction+data+in+Spark&rft.jtitle=Information+processing+%26+management&rft.au=Sun%2C+Xudong&rft.au=Ngueilbaye%2C+Alladoumbaye&rft.au=Luo%2C+Kaijing&rft.au=Cai%2C+Yongda&rft.date=2024-03-01&rft.issn=0306-4573&rft.volume=61&rft.issue=2&rft.spage=103577&rft_id=info:doi/10.1016%2Fj.ipm.2023.103577&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipm_2023_103577 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |