On sufficiency and duality in multiobjective programming problem under generalized α-type I univexity
In this paper, we are concerned with the multiobjective programming problem with inequality constraints. We introduce new classes of generalized α -univex type I vector valued functions. A number of Kuhn–Tucker type sufficient optimality conditions are obtained for a feasible solution to be an effic...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 46; číslo 2; s. 207 - 216 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.02.2010
|
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we are concerned with the multiobjective programming problem with inequality constraints. We introduce new classes of generalized
α
-univex type I vector valued functions. A number of Kuhn–Tucker type sufficient optimality conditions are obtained for a feasible solution to be an efficient solution. The Mond–Weir type duality results are also presented. |
|---|---|
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-009-9418-y |