High-performance parallel frequent subgraph discovery
Discovery of frequent subgraphs of an input network is one of the most important facilities for mining and analyzing complex networks. The most accurate solution to frequent subgraph discovery is to enumerate all subgraphs of size k and then count the frequency of each isomorphic class. However, the...
Uložené v:
| Vydané v: | The Journal of supercomputing Ročník 71; číslo 7; s. 2412 - 2432 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2015
|
| Predmet: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Discovery of frequent subgraphs of an input network is one of the most important facilities for mining and analyzing complex networks. The most accurate solution to frequent subgraph discovery is to enumerate all subgraphs of size k and then count the frequency of each isomorphic class. However, the process is much time consuming because the number of subgraphs grows exponentially with the growth of the input network, or by increasing the size of the subgraphs. Also, there is no known polynomial-time algorithm for subgraph isomorphism detection, and this issue makes the problem harder. Hence, the available solutions can just mine small input networks and small subgraph sizes. A parallel and load-balanced solution named Subdigger is proposed which is faster and more efficient compared to available solutions. Subdigger efficiently executes on current multicore and multiprocessor machines, and incorporates a fast heuristic with a high-performance concurrent data structure which significantly accelerates detection and counting of isomorphic subgraphs. Subdigger can also handle large networks and subgraph sizes using external memory and external sorting. We performed several experiments using real-world input networks. Compared to the available solutions, Subdigger can extract frequent subgraphs much faster and the performance scales almost linearly using additional processor cores. The experimental results show that Subdigger can be more than 100 times faster than other solutions on a 4-core Intel i7 machine. Besides performance, Subdigger can process larger subgraphs using external memory while other tools crash due to memory limitation. |
|---|---|
| AbstractList | Discovery of frequent subgraphs of an input network is one of the most important facilities for mining and analyzing complex networks. The most accurate solution to frequent subgraph discovery is to enumerate all subgraphs of size k and then count the frequency of each isomorphic class. However, the process is much time consuming because the number of subgraphs grows exponentially with the growth of the input network, or by increasing the size of the subgraphs. Also, there is no known polynomial-time algorithm for subgraph isomorphism detection, and this issue makes the problem harder. Hence, the available solutions can just mine small input networks and small subgraph sizes. A parallel and load-balanced solution named Subdigger is proposed which is faster and more efficient compared to available solutions. Subdigger efficiently executes on current multicore and multiprocessor machines, and incorporates a fast heuristic with a high-performance concurrent data structure which significantly accelerates detection and counting of isomorphic subgraphs. Subdigger can also handle large networks and subgraph sizes using external memory and external sorting. We performed several experiments using real-world input networks. Compared to the available solutions, Subdigger can extract frequent subgraphs much faster and the performance scales almost linearly using additional processor cores. The experimental results show that Subdigger can be more than 100 times faster than other solutions on a 4-core Intel i7 machine. Besides performance, Subdigger can process larger subgraphs using external memory while other tools crash due to memory limitation. |
| Author | Jalili, Saeed Shahrivari, Saeed |
| Author_xml | – sequence: 1 givenname: Saeed surname: Shahrivari fullname: Shahrivari, Saeed organization: Computer Engineering Department, Tarbiat Modares University (TMU) – sequence: 2 givenname: Saeed surname: Jalili fullname: Jalili, Saeed email: sjalili@modares.ac.ir organization: Computer Engineering Department, Tarbiat Modares University (TMU) |
| BookMark | eNp9z7FOwzAQgGELFYm28ABseQGDz45jZ0QVUKRKLDBbF8dOU6VOsFOkvj2pytSh0y33n-5bkFnogyPkEdgTMKaeEwDnijKQFEQJlN-QOUglKMt1PiNzVnJGtcz5HVmktGOM5UKJOZHrttnSwUXfxz0G67IBI3ad6zIf3c_BhTFLh6qJOGyzuk22_3XxeE9uPXbJPfzPJfl-e_1arenm8_1j9bKhlms9Uqtrjg61qwpZeAVQSeSFFl6jU-X0nQLBhZJ1JRVayyz3NfgCa4miUpaJJVHnuzb2KUXnjW1HHNs-jBHbzgAzJ705682kNye94VMJF-UQ2z3G49WGn5s07YbGRbPrDzFMwCvRH1jtbxk |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2846604 crossref_primary_10_1186_s40649_021_00087_y crossref_primary_10_1007_s13278_020_00682_3 |
| Cites_doi | 10.1145/2318857.2254795 10.1093/bioinformatics/bth163 10.1126/science.298.5594.824 10.1038/ng881 10.1007/978-3-540-71681-5_7 10.1109/TCBB.2012.167 10.1093/bioinformatics/btl038 10.1371/journal.pone.0050093 10.1109/TCBB.2006.51 10.1186/1471-2105-10-318 10.1142/S0219525903001067 10.1103/PhysRevE.68.065103 10.1016/j.jpdc.2011.08.007 10.1371/journal.pone.0068073 10.2307/2373127 10.1145/1077464.1077476 10.1109/MCSE.2009.120 10.3390/computers3040117 10.1145/1629175.1629198 10.1109/BIBE.2005.8 10.1007/978-3-642-28717-6_20 10.1109/IPDPS.2012.44 10.1007/978-3-642-16530-6_14 10.1109/ICPP.2010.67 10.1109/IPDPSW.2012.312 10.1109/INFCOM.2010.5462078 10.1145/800061.808746 10.1145/1217299.1217301 10.1137/1.9781611972870.13 10.1109/CLUSTER.2010.27 10.1145/1150402.1150479 10.1109/ICDE.2013.6544814 10.1109/GrC.2012.6468617 10.1145/1774088.1774422 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11227-015-1391-2 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 2432 |
| ExternalDocumentID | 10_1007_s11227_015_1391_2 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c288t-c8d2aea8eb656f711b5a2683f8ae795737132375db57acc0c2fd1f6ad5a3b7c03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357345600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sat Nov 29 06:13:07 EST 2025 Tue Nov 18 22:25:36 EST 2025 Fri Feb 21 02:27:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Parallel frequent subgraph discovery Multicore processing Parallel graph algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-c8d2aea8eb656f711b5a2683f8ae795737132375db57acc0c2fd1f6ad5a3b7c03 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1007_s11227_015_1391_2 crossref_primary_10_1007_s11227_015_1391_2 springer_journals_10_1007_s11227_015_1391_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-07-01 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2015 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | Kashtan, Itzkovitz, Milo, Alon (CR10) 2004; 20 Grochow, Kellis, Speed, Huang (CR5) 2007 Harary, Palmer (CR6) 1967; 89 Johnson (CR7) 2005; 1 CR17 CR16 CR38 CR15 CR37 CR13 CR11 CR33 Dean, Ghemawat (CR25) 2010; 53 CR32 Shen-Orr, Milo, Mangan, Alon (CR34) 2002; 31 Cohen (CR28) 2009; 11 CR31 CR30 Pablo, Danon (CR35) 2003; 6 Khakabimamaghani, Sharafuddin, Dichter, Koch, Masoudi-Nejad (CR18) 2013; 8 Li, Stones, Wang, Deng, Liu, Wang (CR21) 2012; 7 Guimerà, Danon, D’iaz-Guilera, Giralt, Arenas (CR36) 2003; 68 CR2 Shahrivari (CR39) 2014; 3 CR29 Ribeiro, Silva, Lopes (CR19) 2012; 72 CR9 CR27 Lee, Xu, Eun (CR12) 2012; 40 CR26 Wernicke (CR8) 2006; 3 CR24 CR23 CR22 CR20 Wernicke, Rasche (CR4) 2006; 22 Kashani, Ahrabian, Elahi, Nowzari-Dalini, Ansari, Asadi, Mohammadi, Schreiber, Masoudi-Nejad (CR3) 2009; 10 Rudi, Shahrivari, Jalili, Kashani (CR14) 2013; 10 Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii, Alon (CR1) 2002; 298 1391_CR30 1391_CR31 1391_CR32 1391_CR2 S Wernicke (1391_CR8) 2006; 3 1391_CR11 1391_CR33 1391_CR13 S Wernicke (1391_CR4) 2006; 22 1391_CR15 1391_CR37 1391_CR16 1391_CR38 1391_CR17 F Harary (1391_CR6) 1967; 89 S Khakabimamaghani (1391_CR18) 2013; 8 SS Shen-Orr (1391_CR34) 2002; 31 X Li (1391_CR21) 2012; 7 N Kashtan (1391_CR10) 2004; 20 C-H Lee (1391_CR12) 2012; 40 1391_CR20 J Cohen (1391_CR28) 2009; 11 1391_CR22 1391_CR23 1391_CR24 1391_CR26 1391_CR27 R Milo (1391_CR1) 2002; 298 1391_CR29 J Dean (1391_CR25) 2010; 53 DS Johnson (1391_CR7) 2005; 1 R Guimerà (1391_CR36) 2003; 68 ZRM Kashani (1391_CR3) 2009; 10 P Ribeiro (1391_CR19) 2012; 72 MG Pablo (1391_CR35) 2003; 6 J Grochow (1391_CR5) 2007 S Shahrivari (1391_CR39) 2014; 3 1391_CR9 AG Rudi (1391_CR14) 2013; 10 |
| References_xml | – ident: CR22 – volume: 40 start-page: 319 issue: 1 year: 2012 end-page: 330 ident: CR12 article-title: Beyond random walk and metropolis-hastings samplers: why you should not backtrack for unbiased graph sampling publication-title: ACM SIGMETRICS Perform Eval Rev doi: 10.1145/2318857.2254795 – volume: 20 start-page: 1746 issue: 11 year: 2004 end-page: 1758 ident: CR10 article-title: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth163 – volume: 298 start-page: 824 issue: 5594 year: 2002 end-page: 827 ident: CR1 article-title: Network motifs: simple building blocks of complex networks publication-title: Science doi: 10.1126/science.298.5594.824 – ident: CR2 – ident: CR16 – ident: CR37 – ident: CR30 – volume: 31 start-page: 64 issue: 1 year: 2002 end-page: 68 ident: CR34 article-title: Network motifs in the transcriptional regulation network of publication-title: Nat Genet doi: 10.1038/ng881 – ident: CR33 – ident: CR29 – start-page: 92 year: 2007 end-page: 106 ident: CR5 article-title: Network motif discovery using subgraph enumeration and symmetry-breaking publication-title: Research in computational molecular biology doi: 10.1007/978-3-540-71681-5_7 – volume: 10 start-page: 504 issue: 2 year: 2013 end-page: 513 ident: CR14 article-title: RANGI: a fast list-colored graph motif finding algorithm publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2012.167 – ident: CR27 – volume: 22 start-page: 1152 issue: 9 year: 2006 end-page: 1153 ident: CR4 article-title: FANMOD: a tool for fast network motif detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl038 – volume: 7 start-page: e50093 issue: 12 year: 2012 ident: CR21 article-title: NetMODE: network motif detection without Nauty publication-title: PloS one doi: 10.1371/journal.pone.0050093 – ident: CR23 – volume: 3 start-page: 347 issue: 4 year: 2006 end-page: 359 ident: CR8 article-title: Efficient detection of network motifs publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2006.51 – volume: 10 start-page: 318 issue: 1 year: 2009 ident: CR3 article-title: Kavosh: a new algorithm for finding network motifs publication-title: BMC Bioinform doi: 10.1186/1471-2105-10-318 – volume: 6 start-page: 565 issue: 04 year: 2003 end-page: 573 ident: CR35 article-title: Community structure in jazz publication-title: Adv Complex Syst doi: 10.1142/S0219525903001067 – ident: CR15 – volume: 68 start-page: 65103 issue: 6 year: 2003 ident: CR36 article-title: Self-similar community structure in a network of human interactions publication-title: Phys Rev E doi: 10.1103/PhysRevE.68.065103 – ident: CR38 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 72 start-page: 144 issue: 2 year: 2012 end-page: 154 ident: CR19 article-title: Parallel discovery of network motifs publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2011.08.007 – ident: CR32 – volume: 8 start-page: e68073 issue: 7 year: 2013 ident: CR18 article-title: QuateXelero: an accelerated exact network motif detection algorithm publication-title: PloS one doi: 10.1371/journal.pone.0068073 – volume: 89 start-page: 373 issue: 2 year: 1967 end-page: 384 ident: CR6 article-title: The enumeration methods of Redfield publication-title: Am J Math doi: 10.2307/2373127 – volume: 1 start-page: 160 issue: 1 year: 2005 end-page: 176 ident: CR7 article-title: The NP-completeness column publication-title: ACM Trans Algorithms doi: 10.1145/1077464.1077476 – volume: 11 start-page: 29 year: 2009 end-page: 41 ident: CR28 article-title: Graph twiddling in a MapReduce world publication-title: Comput Sci Eng doi: 10.1109/MCSE.2009.120 – ident: CR26 – volume: 3 start-page: 117 issue: 4 year: 2014 end-page: 129 ident: CR39 article-title: Beyond batch processing: towards real-time and streaming big data publication-title: Computers doi: 10.3390/computers3040117 – ident: CR24 – volume: 53 start-page: 72 issue: 1 year: 2010 end-page: 77 ident: CR25 article-title: MapReduce: a flexible data processing tool publication-title: Commun ACM doi: 10.1145/1629175.1629198 – ident: CR20 – ident: 1391_CR20 doi: 10.1109/BIBE.2005.8 – volume: 53 start-page: 72 issue: 1 year: 2010 ident: 1391_CR25 publication-title: Commun ACM doi: 10.1145/1629175.1629198 – ident: 1391_CR32 doi: 10.1007/978-3-642-28717-6_20 – ident: 1391_CR26 doi: 10.1109/IPDPS.2012.44 – volume: 6 start-page: 565 issue: 04 year: 2003 ident: 1391_CR35 publication-title: Adv Complex Syst doi: 10.1142/S0219525903001067 – start-page: 92 volume-title: Research in computational molecular biology year: 2007 ident: 1391_CR5 doi: 10.1007/978-3-540-71681-5_7 – volume: 11 start-page: 29 year: 2009 ident: 1391_CR28 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2009.120 – ident: 1391_CR29 doi: 10.1007/978-3-642-16530-6_14 – ident: 1391_CR23 doi: 10.1109/ICPP.2010.67 – ident: 1391_CR27 doi: 10.1109/IPDPSW.2012.312 – ident: 1391_CR16 – volume: 3 start-page: 347 issue: 4 year: 2006 ident: 1391_CR8 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2006.51 – volume: 68 start-page: 65103 issue: 6 year: 2003 ident: 1391_CR36 publication-title: Phys Rev E doi: 10.1103/PhysRevE.68.065103 – ident: 1391_CR11 doi: 10.1109/INFCOM.2010.5462078 – ident: 1391_CR31 doi: 10.1145/800061.808746 – volume: 89 start-page: 373 issue: 2 year: 1967 ident: 1391_CR6 publication-title: Am J Math doi: 10.2307/2373127 – ident: 1391_CR37 doi: 10.1145/1217299.1217301 – volume: 22 start-page: 1152 issue: 9 year: 2006 ident: 1391_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl038 – volume: 1 start-page: 160 issue: 1 year: 2005 ident: 1391_CR7 publication-title: ACM Trans Algorithms doi: 10.1145/1077464.1077476 – volume: 31 start-page: 64 issue: 1 year: 2002 ident: 1391_CR34 publication-title: Nat Genet doi: 10.1038/ng881 – ident: 1391_CR17 doi: 10.1137/1.9781611972870.13 – volume: 10 start-page: 504 issue: 2 year: 2013 ident: 1391_CR14 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2012.167 – volume: 10 start-page: 318 issue: 1 year: 2009 ident: 1391_CR3 publication-title: BMC Bioinform doi: 10.1186/1471-2105-10-318 – volume: 20 start-page: 1746 issue: 11 year: 2004 ident: 1391_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth163 – volume: 72 start-page: 144 issue: 2 year: 2012 ident: 1391_CR19 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2011.08.007 – ident: 1391_CR24 doi: 10.1109/CLUSTER.2010.27 – ident: 1391_CR9 doi: 10.1145/1150402.1150479 – volume: 8 start-page: e68073 issue: 7 year: 2013 ident: 1391_CR18 publication-title: PloS one doi: 10.1371/journal.pone.0068073 – volume: 7 start-page: e50093 issue: 12 year: 2012 ident: 1391_CR21 publication-title: PloS one doi: 10.1371/journal.pone.0050093 – volume: 40 start-page: 319 issue: 1 year: 2012 ident: 1391_CR12 publication-title: ACM SIGMETRICS Perform Eval Rev doi: 10.1145/2318857.2254795 – ident: 1391_CR13 – ident: 1391_CR15 – ident: 1391_CR30 doi: 10.1109/ICDE.2013.6544814 – ident: 1391_CR38 – volume: 298 start-page: 824 issue: 5594 year: 2002 ident: 1391_CR1 publication-title: Science doi: 10.1126/science.298.5594.824 – ident: 1391_CR33 doi: 10.1109/GrC.2012.6468617 – ident: 1391_CR2 doi: 10.1145/1774088.1774422 – ident: 1391_CR22 – volume: 3 start-page: 117 issue: 4 year: 2014 ident: 1391_CR39 publication-title: Computers doi: 10.3390/computers3040117 |
| SSID | ssj0004373 |
| Score | 2.063897 |
| Snippet | Discovery of frequent subgraphs of an input network is one of the most important facilities for mining and analyzing complex networks. The most accurate... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2412 |
| SubjectTerms | Compilers Computer Science Interpreters Processor Architectures Programming Languages |
| Title | High-performance parallel frequent subgraph discovery |
| URI | https://link.springer.com/article/10.1007/s11227-015-1391-2 |
| Volume | 71 |
| WOSCitedRecordID | wos000357345600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yevDi-sT1RQ6elECaR5MeRVw8yCK-2FtJ0gSEsi7bruC_N0lby4IKeulpGsKXTGaG-WYGgHOWYqWMZohR5T9WCaSx8eruXV2pZFowF6eW3InJRE6n2X1bx111bPcuJRlf6r7YLSEk0CQ58l5Lgvy7u-6tnQzzGh4eX_piSNqklTMfF0nOSJfK_G6JVWO0mgmNBmY8_NfWtsFW60_Cq-YC7IA1O9sFw25WA2xVdw_wQOhA875MAIam32VpS-gWkU5dw2qpY_9qGEp1A7XzYx88j2-erm9ROzIBGY9tjYwsiLJKWu39NCeSRHNFUkmdVFZkXFAfkxIqeKG5UMZgQ1yRuFQVXFEtDKYHYDB7m9lDADm2ChsfMWYexSAuCNM2Y6qwTppMjADusMtN2088jLUo874TcoAl97DkAZacjMDF1y_zppnGb8KXHdh5q1fVz9JHf5I-BpsknFak3Z6AQb1Y2lOwYd7r12pxFu_TJ48Hw_Y |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5kCvri_InzZx58UgJtmjTpo4hj4hyiU_ZWkjQFodSxdoL_vUnXWgYq6EufrqF8zeUu3HffAZzT0JNSK4ppIO3DSI6Vp62721RXSBEmNK2mlgz5aCQmk-ih7uMuGrZ7U5KsTuq22c0nxNEkGbZZi4_tubtKbcBygvmPTy9tM2SwKCtH9l4kGCVNKfO7JZaD0XIltAow_e6_Pm0LNut8El0tNsA2rJh8B7rNrAZUu-4uMEfowNO2TQA50e8sMxlKZxWdukTFXFX61ci16jpq58cePPdvxtcDXI9MwNpiW2ItEiKNFEbZPC3lvq-YJKEIUiENjxgP7J2UBJwlinGptadJmvhpKBMmA8W1F-xDJ3_LzQEg5hnpaXtjjCyKzpwTqkxEZWJSoSPeA6_BLta1nrgba5HFrRKygyW2sMQOlpj04OLrlelCTOM348sG7Lj2q-Jn68M_WZ_B-mB8P4yHt6O7I9gg7s9VFNxj6JSzuTmBNf1evhaz02pvfQLI68ba |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kFfHi-sT12YMnJWybJk16FHVRXJYFH-ytJGkCwlKXbVfw35v0YVlQQbz0NC3hS6aZYb75BuCcRL4QShJEQmEfWjAkfWXd3Ya6XPAoJaacWjJkoxGfTOJxPec0b9juTUmy6mlwKk1Z0Z-lpt82vgUYO8okRTaCCZD9B68Sx6N36frjS9sYGVYl5tjmSJwS3JQ1v_vE8sW0XBUtL5tB99_L3ILNOs70rqqDsQ0rOtuBbjPDwatdeheoI3qgWds-4Dkx8OlUTz0zL2nWhZcvZKlr7bkWXkf5_NiD58Ht0_UdqkcpIGUxL5DiKRZacC1t_GZYEEgqcMRDw4VmMWWhzVVxyGgqKRNK-QqbNDCRSKkIJVN-uA-d7C3TB-BRXwtf2Uwytog6c4aJ1DERqTZcxawHfoNjomqdcTfuYpq0CskOlsTCkjhYEtyDi69XZpXIxm_Glw3wSe1v-c_Wh3-yPoP18c0gGd6PHo5gA7uNK5m5x9Ap5gt9AmvqvXjN56flMfsElw_Pvg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+parallel+frequent+subgraph+discovery&rft.jtitle=The+Journal+of+supercomputing&rft.au=Shahrivari%2C+Saeed&rft.au=Jalili%2C+Saeed&rft.date=2015-07-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=71&rft.issue=7&rft.spage=2412&rft.epage=2432&rft_id=info:doi/10.1007%2Fs11227-015-1391-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_015_1391_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |