Asynchronous multisource alignment-driven real-time online detection of ash content in flotation clean coal
Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation process, directly affecting product quality and the economic performance of coal preparation plants. To address the limitations of traditional app...
Saved in:
| Published in: | International journal of coal preparation and utilization Vol. 45; no. 12; pp. 2993 - 3020 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
02.12.2025
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1939-2699, 1939-2702 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation process, directly affecting product quality and the economic performance of coal preparation plants. To address the limitations of traditional approaches-namely response lag, insufficient accuracy, and inefficient fusion of multisource information-this study proposes an intelligent online sensing method based on multisource data fusion, with the prediction pipeline decoupled into three stages: alignment - representation - prediction. First, a multiscale, differentiable dynamic time-warping (MSSoftDTW) scheme is employed to precisely align asynchronous multisource time-series data, thereby enhancing cross-modal temporal consistency. Second, an interpretable Constructive algorithm with response-weight mechanism (ICA-RW) is introduced to enable feature learning and structural adaptation, suppressing redundancy and collinearity while improving feature robustness. Third, an ensemble regression model that combines a relevance vector machine with adaptive boosting (RVM-Adaboost) is developed to better accommodate nonlinear relationships and drifts in operating conditions. By fusing X-ray fluorescence (XRF) spectra, key process variables, and features extracted from tailings images, the method achieves high-accuracy, real-time prediction of clean-coal ash content. Validation on industrial-site data demonstrates significant gains in both accuracy and stability over conventional regression baselines, meeting the real-time requirements of online monitoring and control and providing deployable support for flotation process optimization and intelligent upgrading. |
|---|---|
| AbstractList | Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation process, directly affecting product quality and the economic performance of coal preparation plants. To address the limitations of traditional approaches-namely response lag, insufficient accuracy, and inefficient fusion of multisource information-this study proposes an intelligent online sensing method based on multisource data fusion, with the prediction pipeline decoupled into three stages: alignment - representation - prediction. First, a multiscale, differentiable dynamic time-warping (MSSoftDTW) scheme is employed to precisely align asynchronous multisource time-series data, thereby enhancing cross-modal temporal consistency. Second, an interpretable Constructive algorithm with response-weight mechanism (ICA-RW) is introduced to enable feature learning and structural adaptation, suppressing redundancy and collinearity while improving feature robustness. Third, an ensemble regression model that combines a relevance vector machine with adaptive boosting (RVM-Adaboost) is developed to better accommodate nonlinear relationships and drifts in operating conditions. By fusing X-ray fluorescence (XRF) spectra, key process variables, and features extracted from tailings images, the method achieves high-accuracy, real-time prediction of clean-coal ash content. Validation on industrial-site data demonstrates significant gains in both accuracy and stability over conventional regression baselines, meeting the real-time requirements of online monitoring and control and providing deployable support for flotation process optimization and intelligent upgrading. |
| Author | Wang, Lanhao Gui, Xiahui Liu, Jiahui Wang, Hongyan Dai, Wei |
| Author_xml | – sequence: 1 givenname: Lanhao surname: Wang fullname: Wang, Lanhao organization: China University of Mining and Technology – sequence: 2 givenname: Jiahui surname: Liu fullname: Liu, Jiahui organization: China University of Mining and Technology – sequence: 3 givenname: Wei surname: Dai fullname: Dai, Wei organization: China University of Mining and Technology – sequence: 4 givenname: Xiahui surname: Gui fullname: Gui, Xiahui organization: China University of Mining and Technology – sequence: 5 givenname: Hongyan surname: Wang fullname: Wang, Hongyan email: wanghongyan@cumt.edu.cn organization: China University of Mining and Technology |
| BookMark | eNp9UEtPAyEQJkYT6-MnmJB43jqw3bLcbBpfiYkXPRNkB0VZqEA1_fdSq1cvM5OZ75H5jsh-iAEJOWMwZdDDBZOt5HMppxx4N-Vdz5jo98hku2-4AL7_N1fQITnK-Q1gzpmcTcj7Im-CeU0xxHWm49oXl-M6GaTau5cwYijNkNwnBppQ-6a4EWkM3gWkAxY0xcVAo6U6v1ITQ6kE6gK1Phb9czMeda1R-xNyYLXPePrbj8nT9dXj8ra5f7i5Wy7uG8P7vjSml20HM-xBCmwFZ4Os40ywWcs1t6ztUEtr589iAGGlkPA8DDAIozu0gNAek_Od7irFjzXmot7qS6FaqpaLngMIkBXV7VAmxZwTWrVKbtRpoxioba7qL1e1zVX95lp5lzueCzamUX_F5AdV9MbHZJMOxlWb_yW-AbDSgnw |
| Cites_doi | 10.1080/19392699.2022.2139250 10.1145/3318299.3318394 10.1109/TII.2021.3092361 10.1016/j.mineng.2005.12.010 10.1016/j.powtec.2024.119866 10.1016/S0967-0661(99)00187-2 10.4028/www.scientific.net/AMR.524-527.1007 10.3390/pr13082650 10.1016/j.aca.2014.12.033 10.1515/revce-2024-0023 10.1162/15324430152748236 10.1109/DDCLS49620.2020.9275224 10.1109/CCDC62350.2024.10587915 10.1080/19392699.2024.2412749 10.1080/19392699.2024.2322701 10.1080/19392699.2023.2301312 10.1109/WI-IAT62293.2024.00142 10.1016/j.ijmst.2018.06.005 10.1080/19392699.2018.1455669 10.1080/19392699.2024.2341966 10.1109/TII.2024.3423487 10.1080/19392699.2024.2330421 10.1109/ICASSP48485.2024.10446578 10.1002/ente.202301139 10.1080/19392699.2020.1789973 |
| ContentType | Journal Article |
| Copyright | 2025 Taylor & Francis Group, LLC 2025 2025 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2025 Taylor & Francis Group, LLC 2025 – notice: 2025 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1080/19392699.2025.2581178 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-2702 |
| EndPage | 3020 |
| ExternalDocumentID | 10_1080_19392699_2025_2581178 2581178 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Key Research and Development Project of Liaoning Province grantid: 2024JH2/102400026 – fundername: Basic Research Program of Jiangsu grantid: BK20241636 – fundername: National Natural Science Foundation of China grantid: 52304309; 52504313 |
| GroupedDBID | .7F .QJ 0BK 0R~ 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DKSSO DU5 EAP EBS EDH ESX E~A E~B GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION DGEBU NX~ 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c288t-c893504e8097e3721d9809471432a2f135ea9ff6b7d07f9790bdd0d7ca5ef0e03 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604885800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-2699 |
| IngestDate | Tue Dec 02 12:10:56 EST 2025 Sat Nov 29 06:59:29 EST 2025 Tue Dec 02 04:10:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-c893504e8097e3721d9809471432a2f135ea9ff6b7d07f9790bdd0d7ca5ef0e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3278200709 |
| PQPubID | 105604 |
| PageCount | 28 |
| ParticipantIDs | crossref_primary_10_1080_19392699_2025_2581178 proquest_journals_3278200709 informaworld_taylorfrancis_310_1080_19392699_2025_2581178 |
| PublicationCentury | 2000 |
| PublicationDate | 12/02/2025 |
| PublicationDateYYYYMMDD | 2025-12-02 |
| PublicationDate_xml | – month: 12 year: 2025 text: 12/02/2025 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of coal preparation and utilization |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 |
| References_xml | – ident: e_1_3_2_6_1 doi: 10.1080/19392699.2022.2139250 – ident: e_1_3_2_12_1 doi: 10.1145/3318299.3318394 – ident: e_1_3_2_26_1 doi: 10.1109/TII.2021.3092361 – ident: e_1_3_2_23_1 doi: 10.1016/j.mineng.2005.12.010 – ident: e_1_3_2_2_1 doi: 10.1016/j.powtec.2024.119866 – ident: e_1_3_2_7_1 doi: 10.1016/S0967-0661(99)00187-2 – ident: e_1_3_2_22_1 doi: 10.4028/www.scientific.net/AMR.524-527.1007 – ident: e_1_3_2_5_1 doi: 10.3390/pr13082650 – ident: e_1_3_2_10_1 doi: 10.1016/j.aca.2014.12.033 – ident: e_1_3_2_4_1 doi: 10.1515/revce-2024-0023 – ident: e_1_3_2_18_1 doi: 10.1162/15324430152748236 – ident: e_1_3_2_19_1 doi: 10.1109/DDCLS49620.2020.9275224 – ident: e_1_3_2_24_1 doi: 10.1109/CCDC62350.2024.10587915 – ident: e_1_3_2_21_1 doi: 10.1080/19392699.2024.2412749 – ident: e_1_3_2_11_1 doi: 10.1080/19392699.2024.2322701 – ident: e_1_3_2_9_1 doi: 10.1080/19392699.2023.2301312 – ident: e_1_3_2_15_1 doi: 10.1109/WI-IAT62293.2024.00142 – ident: e_1_3_2_20_1 doi: 10.1016/j.ijmst.2018.06.005 – ident: e_1_3_2_17_1 doi: 10.1080/19392699.2018.1455669 – ident: e_1_3_2_3_1 doi: 10.1080/19392699.2024.2341966 – ident: e_1_3_2_14_1 doi: 10.1109/TII.2024.3423487 – ident: e_1_3_2_13_1 doi: 10.1080/19392699.2024.2330421 – ident: e_1_3_2_25_1 doi: 10.1109/ICASSP48485.2024.10446578 – ident: e_1_3_2_8_1 doi: 10.1002/ente.202301139 – ident: e_1_3_2_16_1 doi: 10.1080/19392699.2020.1789973 |
| SSID | ssj0062194 |
| Score | 2.3528867 |
| Snippet | Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2993 |
| SubjectTerms | Accuracy Alignment clean coal Closed loops Coal Coal flotation Collinearity Data integration Feature extraction Feedback control Flotation Fly ash interpretable constructive algorithm Machine learning Monitoring multi-timescale multisource information fusion Optimization Predictions Process variables Real time Regression models X-ray fluorescence |
| Title | Asynchronous multisource alignment-driven real-time online detection of ash content in flotation clean coal |
| URI | https://www.tandfonline.com/doi/abs/10.1080/19392699.2025.2581178 https://www.proquest.com/docview/3278200709 |
| Volume | 45 |
| WOSCitedRecordID | wos001604885800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1939-2702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062194 issn: 1939-2699 databaseCode: TFW dateStart: 20080314 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sLm5ejscKUTFVDEV0i-zYBkSVoCZF4t9z5yRSK4QYYImS4RzLZ58_n7-7I-SaR7AtGS4YYA903UQxU2AqWWy10prrUITKF5sQ02k6n8uHlk1YtbRKPEO7JlGEt9W4uJWuOkbcDWAOGSQSw0yCeBjEGCuJ4b6A7HGOzyZPnS1OYD2298qSoUgXw_NTKxu700bu0m-22m9Ak_1_6PoB2WvRJx030-WQbNniiOyu5SQ8Jm_j6rPIMWVuuaqo5xs2Dn4KiP3ZcweYWaKNpIA3FwyL09OmL9TY2jO7Clo6qqoXikR4EKCvBXWLsrn1p_BnBc9SLU7I4-RudnvP2ooMLA_StGY5oJuYRzblUtgQDo9GwmuENdQDFbhRGFslnUu0APU7KSTXxnAjchVbxy0PT0mvKAt7RijgRi6gFavTKIpNqHUqTDIycBxD1JL2ybDTRPbeJN7IRm0-024UMxzFrB3FPpHr-spq7_FwTXmSLPxFdtApN2vXMIgEmEsQTKI8_0PTF2QHPz0DJhiQXr1c2UuynX-A9pZXfrZ-AZ6F5rw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-QD34Ft_m4DWabZtNc1zEZUXd04reStIkKi6t7EPw3zuTtrAi4kEvpVAmDZlk8mXyzQwhZzyBbclyyQB7oOsmEUyDqWTCGW0MN7GMdSg2Ifv99PFRzcbCIK0Sz9C-ShQRbDUubnRGN5S4CwAdKmorjDOJxHkkMFgynSeLAvZapPUNug-NNW7DiqxvlhVDmSaK56dmvuxPX7KXfrPWYQvqrv9H5zfIWg1AaaeaMZtkzhVbZHUmLeE2ee2MP4ocs-aW0zENlMPKx08BtD8F-gCzIzSTFCDnkGF9elp1hlo3CeSugpae6vEzRS48CNCXgvphWV38U_izhmephzvkvns1uOyxuigDy6M0nbAcAI7giUu5ki6G86NV8JpgGfVIR74VC6eV920jYQZ4JRU31nIrcy2c547Hu2ShKAu3RyhARy6hFWfSJBE2NiaVtt2ycCJD4JLuk_NGFdlblXsja9UpTZtRzHAUs3oU94maVVg2CU4PX1UoyeJfZI8a7Wb1MgaRCNMJglVUB39o-pQs9wZ3t9ntdf_mkKzgp0CIiY7IwmQ0dcdkKX8HTY5OwtT9BCux6t0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46RfTgb3E6NQevmVl_LM1xqEVRxg4TdytJk6g42rFugv-9L2kLGyIe9FIK5aUhL3n5knz5HkKXNIBpSVFGAHvYrZsgJAJCJQm1FFJS6TNfuGQTrN-PRiM-qNiERUWrtGtoUwpFuFhtB_dEmZoRdwWYg3tdbq-ZeGHbC-1dyWgVrTlxLOjSw_i5DsZdGJDVwTIn1qa-xPNTMUvT05J46bdg7WageOcf6r6Ltiv4iXtlf9lDKzrbR1sLooQH6L1XfGap1czN5wV2hMNyhx8DZH9x5AGipjZIYgCcY2Kz0-OyLljpmaN2ZTg3WBSv2DLhwQC_ZdiM8_LYH8OfBTxzMT5ET_Ht8PqOVCkZSOpF0YykAG9CGuiIcqZ9WD0qDq-BTaLuCc90_FALbkxXMvC_4YxTqRRVLBWhNlRT_wg1sjzTxwgDcKQMStEyCoJQ-VJGTHU7CtZjFrZETdSuPZFMSuWNpFMJmtatmNhWTKpWbCK-6K9k5rY8TJmfJPF_sW3Vzk2qQQwmnhUThJjIT_5Q9AXaGNzEyeN9_-EUbdovjg3jtVBjNp3rM7SefoAjp-eu434BT-PpgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+multisource+alignment-driven+real-time+online+detection+of+ash+content+in+flotation+clean+coal&rft.jtitle=International+journal+of+coal+preparation+and+utilization&rft.au=Wang%2C+Lanhao&rft.au=Liu%2C+Jiahui&rft.au=Dai%2C+Wei&rft.au=Gui%2C+Xiahui&rft.date=2025-12-02&rft.pub=Taylor+%26+Francis&rft.issn=1939-2699&rft.eissn=1939-2702&rft.volume=45&rft.issue=12&rft.spage=2993&rft.epage=3020&rft_id=info:doi/10.1080%2F19392699.2025.2581178&rft.externalDocID=2581178 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-2699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-2699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-2699&client=summon |