Information-based branching schemes for binary linear mixed integer problems

Branching variable selection can greatly affect the effectiveness and efficiency of a branch-and-bound algorithm. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We propose an approach which is empowered by ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming computation Ročník 1; číslo 4; s. 249 - 293
Hlavní autoři: Kılınç Karzan, Fatma, Nemhauser, George L., Savelsbergh, Martin W. P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.12.2009
Témata:
ISSN:1867-2949, 1867-2957
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Branching variable selection can greatly affect the effectiveness and efficiency of a branch-and-bound algorithm. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We propose an approach which is empowered by exploiting the information contained in a family of fathomed subproblems, collected beforehand from an incomplete branch-and-bound tree. In particular, we use this information to define new branching rules that reduce the risk of incurring inappropriate branchings. We provide computational results that demonstrate the effectiveness of the new branching rules on various benchmark instances.
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-009-0009-1