D-Optimal Design for Network A/B Testing

A/B testing refers to the statistical procedure of experimental design and analysis to compare two treatments, A and B, applied to different testing subjects. It is widely used by technology companies such as Facebook, LinkedIn, and Netflix, to compare different algorithms, web-designs, and other on...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical theory and practice Ročník 13; číslo 4
Hlavní autori: Pokhilko, Victoria, Zhang, Qiong, Kang, Lulu, Mays, D’arcy P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2019
Predmet:
ISSN:1559-8608, 1559-8616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A/B testing refers to the statistical procedure of experimental design and analysis to compare two treatments, A and B, applied to different testing subjects. It is widely used by technology companies such as Facebook, LinkedIn, and Netflix, to compare different algorithms, web-designs, and other online products and services. The subjects participating in these online A/B testing experiments are users who are connected in different scales of social networks. Two connected subjects are similar in terms of their social behaviors, education and financial background, and other demographic aspects. Hence, it is only natural to assume that their reactions to online products and services are related to their network adjacency. In this paper, we propose to use the conditional auto-regressive model to present the network structure and include the network effects in the estimation and inference of the treatment effect. A D-optimal design criterion is developed based on the proposed model. Mixed integer programming formulations are developed to obtain the D-optimal designs. The effectiveness of the proposed method is shown through numerical results with synthetic networks and real social networks.
AbstractList A/B testing refers to the statistical procedure of experimental design and analysis to compare two treatments, A and B, applied to different testing subjects. It is widely used by technology companies such as Facebook, LinkedIn, and Netflix, to compare different algorithms, web-designs, and other online products and services. The subjects participating in these online A/B testing experiments are users who are connected in different scales of social networks. Two connected subjects are similar in terms of their social behaviors, education and financial background, and other demographic aspects. Hence, it is only natural to assume that their reactions to online products and services are related to their network adjacency. In this paper, we propose to use the conditional auto-regressive model to present the network structure and include the network effects in the estimation and inference of the treatment effect. A D-optimal design criterion is developed based on the proposed model. Mixed integer programming formulations are developed to obtain the D-optimal designs. The effectiveness of the proposed method is shown through numerical results with synthetic networks and real social networks.
ArticleNumber 61
Author Kang, Lulu
Zhang, Qiong
Mays, D’arcy P.
Pokhilko, Victoria
Author_xml – sequence: 1
  givenname: Victoria
  surname: Pokhilko
  fullname: Pokhilko, Victoria
  organization: Department of Statistical Sciences and Operations Research, Virginia Commonwealth University
– sequence: 2
  givenname: Qiong
  surname: Zhang
  fullname: Zhang, Qiong
  organization: School of Mathematical and Statistical Sciences, Clemson University
– sequence: 3
  givenname: Lulu
  orcidid: 0000-0002-6000-3436
  surname: Kang
  fullname: Kang, Lulu
  email: lkang2@iit.edu
  organization: Department of Applied Mathematics, Illinois Institute of Technology
– sequence: 4
  givenname: D’arcy P.
  surname: Mays
  fullname: Mays, D’arcy P.
  organization: Department of Statistical Sciences and Operations Research, Virginia Commonwealth University
BookMark eNp9j7FOwzAURS1UJNrCB7BlZDF9z44TZywtBaSKLmW2nMSOUoJT2UaIvydREQNDh6t3h3eudGZk4npnCLlFuEeAfBFSJrCgMAaEpPyCTFGIgsoMs8lfB3lFZiEcADIEzqfkbk13x9h-6C5Zm9A2LrG9T15N_Or9e7JcPCR7E2LrmmtyaXUXzM3vnZO3zeN-9Uy3u6eX1XJLKyZlpGWVYoZaMC4kz1FkWOepZdICK7jFuiykyPJSCEAGqTTa1Gmpq5rVpTEsL_mc5KfdyvcheGNV1UYd295Fr9tOIahRWJ2EFYwZhBUfSPxHHv0g5r_PMuzEhOHXNcarQ__p3SB4BvoBFV5n3Q
CitedBy_id crossref_primary_10_1287_opre_2022_2337
crossref_primary_10_1080_00401706_2019_1701556
crossref_primary_10_1080_00401706_2025_2505438
crossref_primary_10_1080_00401706_2022_2046169
crossref_primary_10_1080_00031305_2023_2257237
Cites_doi 10.1145/2783258.2788602
10.1145/2736277.2741081
10.1214/aoms/1177706252
10.1080/01621459.2013.806268
10.1093/oso/9780199296590.001.0001
10.1037/h0037350
10.1515/jci-2015-0021
10.1214/aoms/1177697374
10.2307/2528399
10.1287/opre.2015.1361
10.1214/12-AOS1008
10.1002/wics.100
10.1002/9781118627372.ch1
10.1016/j.jspi.2014.06.002
10.1145/3097983.3098192
10.1093/biomet/51.3-4.481
10.1093/biomet/asy036
10.1111/j.2517-6161.1974.tb00999.x
10.1111/j.2517-6161.1959.tb00338.x
10.1177/0081175018782569
10.1016/S0378-3758(03)00111-3
10.1007/s11129-018-9199-z
ContentType Journal Article
Copyright Grace Scientific Publishing 2019
Copyright_xml – notice: Grace Scientific Publishing 2019
DBID AAYXX
CITATION
DOI 10.1007/s42519-019-0058-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1559-8616
ExternalDocumentID 10_1007_s42519_019_0058_3
GrantInformation_xml – fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: 1435902
  funderid: http://dx.doi.org/10.13039/100000147
– fundername: Division of Mathematical Sciences
  grantid: 1916467
  funderid: http://dx.doi.org/10.13039/100000121
GroupedDBID -EM
.7F
0R~
4.4
406
8UJ
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFIM
ABFTV
ABJNI
ABKCH
ABMQK
ABPEM
ABTAI
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACTIO
ACZOJ
ADCVX
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AIGIU
AIJEM
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AQRUH
AVBZW
AXYYD
BGNMA
CCCUG
CSCUP
DKSSO
DPUIP
EBLON
EBS
EJD
E~A
E~B
F5P
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GTTXZ
H13
HZ~
H~P
IKXTQ
IWAJR
J9A
JZLTJ
J~4
KOV
LLZTM
M4Y
M4Z
NPVJJ
NQJWS
NU0
O9-
P2P
PT4
ROL
RSV
S-T
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TDBHL
TFL
TFT
TFW
TSG
UOJIU
UT5
UTJUX
UU3
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
PHGZM
PHGZT
ID FETCH-LOGICAL-c288t-bc4161a52358371561d74f28f0293f1db98567b55012048eaed4bacd2dbee27b3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1559-8608
IngestDate Tue Nov 18 22:29:38 EST 2025
Sat Nov 29 01:41:36 EST 2025
Fri Feb 21 02:31:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords D-optimal design
Conditional auto-regressive model
Mixed integer programming
Social network
A/B testing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-bc4161a52358371561d74f28f0293f1db98567b55012048eaed4bacd2dbee27b3
ORCID 0000-0002-6000-3436
ParticipantIDs crossref_citationtrail_10_1007_s42519_019_0058_3
crossref_primary_10_1007_s42519_019_0058_3
springer_journals_10_1007_s42519_019_0058_3
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of statistical theory and practice
PublicationTitleAbbrev J Stat Theory Pract
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Atkinson AC, Woods DC (2015) Designs for generalized linear models, Chapter 13. In: Handbook of design and analysis of experiments. Chapman & Hall/CRC, Boca Raton, FL, pp 471–514
BasseGWAiroldiEMModel-assisted design of experiments in the presence of network-correlated outcomesBiometrika2018105849858387786910.1093/biomet/asy03606994539
NemhauserGLSavelsberghMWPSigismondiGSConstraint classification for mixed integer programming formulationsCOAL Bull199220812
AtkinsonADonevATobiasROptimum experimental designs, with SAS2007OxfordOxford University Press1183.62129
WuCJHamadaMSExperiments: planning, analysis, and optimization2011HobokenWiley1229.62100
BhatNFariasVFMoallemiCCSinhaDNear optimal AB testing2017New YorkColumbia Business School
Eckles D, Karrer B, Ugander J (2017) Design and analysis of experiments in networks: reducing bias from interference. J Causal Infer. https://doi.org/10.1515/jci-2015-0021
KieferJWolfowitzJOptimum designs in regression problemsAnn Math Stat195930227129410432410.1214/aoms/11777062520090.11404
BertsimasDJohnsonMKallusNThe power of optimization over randomization in designing experiments involving small samplesOper Res201563868876337868110.1287/opre.2015.13611329.90078
Schmidt AM, Nobre WS (2014) Conditional autoregressive (CAR) model. Statistics reference online, Wiley StatsRef, pp 1–11
ChenYQiYLiuQChienPSequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networksQuant Market Econ20181640944010.1007/s11129-018-9199-z
FedorovVOptimal experimental designWiley Interdiscip Rev Comput Stat2010258158910.1002/wics.100
HoreSDewanjiAChatterjeeADesign issues related to allocation of experimental units with known covariates into two treatment groupsJ Stat Plan Inference2014155117126326445910.1016/j.jspi.2014.06.0021307.62220
Ogburn EL, Sofrygin O, Diaz I, van der Laan MJ (2017) Causal inference for social network data. ArXiv preprint arXiv:1705.08527
Wolsey LA, Nemhauser GL (2014) Integer and combinatorial optimization. John Wiley & Sons
RubinDBEstimating causal effects of treatments in randomized and nonrandomized studiesJ Educ Psychol19746668810.1037/h0037350
Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems, pp 539–547
BasseGWAiroldiEMLimitations of design-based causal inference and A/B testing under arbitrary and network interferenceSociol Methodol20184813615110.1177/0081175018782569
Nandy P, Basu K, Chatterjee S, Tu Y (2019) A/B testing in dense large-scale networks: design and inference. ArXiv preprint arXiv:1901.10505
Gui H, Xu Y, Bhasin A, Han J (2015) Network a/b testing: from sampling to estimation. In: Proceedings of the 24th international conference on world wide web, international world wide web conferences steering committee, pp 399–409
Xu Y, Chen N, Fernandez A, Sinno O, Bhasin A (2015) From infrastructure to culture: A/b testing challenges in large scale social networks. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2227–2236
Saveski M, Pouget-Abadie J, Saint-Jacques G, Duan W, Ghosh S, Xu Y, Airoldi EM (2017) Detecting network effects: randomizing over randomized experiments. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1027–1035
AtwoodCLOptimal and efficient designs of experimentsAnn Math Stat1969401570160226011910.1214/aoms/11776973740182.51905
Pouget-Abadie J, Saveski M, Saint-Jacques G, Duan W, Xu Y, Ghosh S, Airoldi EM (2017) Testing for arbitrary interference on experimentation platforms. ArXiv preprint arXiv:1704.01190
BrookDOn the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systemsBiometrika19645148148320531510.1093/biomet/51.3-4.4810129.10703
WoodsDDesigning experiments under random contamination with application to polynomial spline regressionStat Sin20051561922339021086.62080
YangMBiedermannSTangEOn optimal designs for nonlinear models: a general and efficient algorithmJ Am Stat Assoc201310814111420317471710.1080/01621459.2013.8062681283.62161
YatesFSir Ronald fisher and the design of experimentsBiometrics19642030732110.2307/2528399
Basse GW, Airoldi EM (2015) Optimal model-assisted design of experiments for network correlated outcomes suggests new notions of network balance. ArXiv preprint arXiv:1507.00803
BesagJSpatial interaction and the statistical analysis of lattice systemsJ R Stat Soc Ser B (Methodol)19743621922253732080327.60067
DraperNSmithHApplied regression analysis1966New YorkWiley108116
MorganKLRubinDBRerandomization to improve covariate balance in experimentsAnn Stat20124012631282298595010.1214/12-AOS10081274.62509
PukelsheimFOptimal design of experiments1993New DelhiSIAM0834.62068
Bivand R, Bernat A, Carvalho M, Chun Y, Dormann C, Dray S, Halbersma R, Lewin-Koh N, Ma J, Millo G et al (2005) The spdep package. Comprehensive R Archive Network, Version 05–83
KieferJOptimum experimental designsJ R Stat Soc Ser B (Methodol)1959212723041132630108.15303
WallMMA close look at the spatial structure implied by the CAR and SAR modelsJ Stat Plan inference2004121311324203882410.1016/S0378-3758(03)00111-31036.62097
J Kiefer (58_CR19) 1959; 30
KL Morgan (58_CR21) 2012; 40
D Brook (58_CR11) 1964; 51
58_CR29
J Kiefer (58_CR18) 1959; 21
GW Basse (58_CR6) 2018; 105
J Besag (58_CR8) 1974; 36
S Hore (58_CR17) 2014; 155
58_CR23
DB Rubin (58_CR28) 1974; 66
58_CR25
58_CR26
58_CR20
CL Atwood (58_CR3) 1969; 40
58_CR22
GW Basse (58_CR5) 2018; 48
58_CR16
MM Wall (58_CR31) 2004; 121
V Fedorov (58_CR15) 2010; 2
A Atkinson (58_CR1) 2007
Y Chen (58_CR12) 2018; 16
GL Nemhauser (58_CR24) 1992; 20
D Woods (58_CR32) 2005; 15
58_CR2
N Bhat (58_CR9) 2017
N Draper (58_CR13) 1966
M Yang (58_CR35) 2013; 108
58_CR34
58_CR14
CJ Wu (58_CR33) 2011
58_CR4
58_CR30
58_CR10
D Bertsimas (58_CR7) 2015; 63
F Pukelsheim (58_CR27) 1993
F Yates (58_CR36) 1964; 20
References_xml – reference: WoodsDDesigning experiments under random contamination with application to polynomial spline regressionStat Sin20051561922339021086.62080
– reference: YatesFSir Ronald fisher and the design of experimentsBiometrics19642030732110.2307/2528399
– reference: BrookDOn the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systemsBiometrika19645148148320531510.1093/biomet/51.3-4.4810129.10703
– reference: Schmidt AM, Nobre WS (2014) Conditional autoregressive (CAR) model. Statistics reference online, Wiley StatsRef, pp 1–11
– reference: BesagJSpatial interaction and the statistical analysis of lattice systemsJ R Stat Soc Ser B (Methodol)19743621922253732080327.60067
– reference: Pouget-Abadie J, Saveski M, Saint-Jacques G, Duan W, Xu Y, Ghosh S, Airoldi EM (2017) Testing for arbitrary interference on experimentation platforms. ArXiv preprint arXiv:1704.01190
– reference: AtwoodCLOptimal and efficient designs of experimentsAnn Math Stat1969401570160226011910.1214/aoms/11776973740182.51905
– reference: YangMBiedermannSTangEOn optimal designs for nonlinear models: a general and efficient algorithmJ Am Stat Assoc201310814111420317471710.1080/01621459.2013.8062681283.62161
– reference: BasseGWAiroldiEMModel-assisted design of experiments in the presence of network-correlated outcomesBiometrika2018105849858387786910.1093/biomet/asy03606994539
– reference: NemhauserGLSavelsberghMWPSigismondiGSConstraint classification for mixed integer programming formulationsCOAL Bull199220812
– reference: Basse GW, Airoldi EM (2015) Optimal model-assisted design of experiments for network correlated outcomes suggests new notions of network balance. ArXiv preprint arXiv:1507.00803
– reference: Wolsey LA, Nemhauser GL (2014) Integer and combinatorial optimization. John Wiley & Sons
– reference: DraperNSmithHApplied regression analysis1966New YorkWiley108116
– reference: Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems, pp 539–547
– reference: RubinDBEstimating causal effects of treatments in randomized and nonrandomized studiesJ Educ Psychol19746668810.1037/h0037350
– reference: FedorovVOptimal experimental designWiley Interdiscip Rev Comput Stat2010258158910.1002/wics.100
– reference: Bivand R, Bernat A, Carvalho M, Chun Y, Dormann C, Dray S, Halbersma R, Lewin-Koh N, Ma J, Millo G et al (2005) The spdep package. Comprehensive R Archive Network, Version 05–83
– reference: KieferJWolfowitzJOptimum designs in regression problemsAnn Math Stat195930227129410432410.1214/aoms/11777062520090.11404
– reference: Eckles D, Karrer B, Ugander J (2017) Design and analysis of experiments in networks: reducing bias from interference. J Causal Infer. https://doi.org/10.1515/jci-2015-0021
– reference: WallMMA close look at the spatial structure implied by the CAR and SAR modelsJ Stat Plan inference2004121311324203882410.1016/S0378-3758(03)00111-31036.62097
– reference: WuCJHamadaMSExperiments: planning, analysis, and optimization2011HobokenWiley1229.62100
– reference: Xu Y, Chen N, Fernandez A, Sinno O, Bhasin A (2015) From infrastructure to culture: A/b testing challenges in large scale social networks. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2227–2236
– reference: PukelsheimFOptimal design of experiments1993New DelhiSIAM0834.62068
– reference: Ogburn EL, Sofrygin O, Diaz I, van der Laan MJ (2017) Causal inference for social network data. ArXiv preprint arXiv:1705.08527
– reference: Gui H, Xu Y, Bhasin A, Han J (2015) Network a/b testing: from sampling to estimation. In: Proceedings of the 24th international conference on world wide web, international world wide web conferences steering committee, pp 399–409
– reference: AtkinsonADonevATobiasROptimum experimental designs, with SAS2007OxfordOxford University Press1183.62129
– reference: BhatNFariasVFMoallemiCCSinhaDNear optimal AB testing2017New YorkColumbia Business School
– reference: Saveski M, Pouget-Abadie J, Saint-Jacques G, Duan W, Ghosh S, Xu Y, Airoldi EM (2017) Detecting network effects: randomizing over randomized experiments. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1027–1035
– reference: Atkinson AC, Woods DC (2015) Designs for generalized linear models, Chapter 13. In: Handbook of design and analysis of experiments. Chapman & Hall/CRC, Boca Raton, FL, pp 471–514
– reference: BasseGWAiroldiEMLimitations of design-based causal inference and A/B testing under arbitrary and network interferenceSociol Methodol20184813615110.1177/0081175018782569
– reference: HoreSDewanjiAChatterjeeADesign issues related to allocation of experimental units with known covariates into two treatment groupsJ Stat Plan Inference2014155117126326445910.1016/j.jspi.2014.06.0021307.62220
– reference: ChenYQiYLiuQChienPSequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networksQuant Market Econ20181640944010.1007/s11129-018-9199-z
– reference: BertsimasDJohnsonMKallusNThe power of optimization over randomization in designing experiments involving small samplesOper Res201563868876337868110.1287/opre.2015.13611329.90078
– reference: Nandy P, Basu K, Chatterjee S, Tu Y (2019) A/B testing in dense large-scale networks: design and inference. ArXiv preprint arXiv:1901.10505
– reference: MorganKLRubinDBRerandomization to improve covariate balance in experimentsAnn Stat20124012631282298595010.1214/12-AOS10081274.62509
– reference: KieferJOptimum experimental designsJ R Stat Soc Ser B (Methodol)1959212723041132630108.15303
– ident: 58_CR4
– ident: 58_CR34
  doi: 10.1145/2783258.2788602
– ident: 58_CR2
– volume-title: Optimal design of experiments
  year: 1993
  ident: 58_CR27
– ident: 58_CR16
  doi: 10.1145/2736277.2741081
– volume: 30
  start-page: 271
  issue: 2
  year: 1959
  ident: 58_CR19
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177706252
– volume: 108
  start-page: 1411
  year: 2013
  ident: 58_CR35
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.806268
– volume-title: Optimum experimental designs, with SAS
  year: 2007
  ident: 58_CR1
  doi: 10.1093/oso/9780199296590.001.0001
– ident: 58_CR25
– ident: 58_CR10
– volume: 15
  start-page: 619
  year: 2005
  ident: 58_CR32
  publication-title: Stat Sin
– volume: 66
  start-page: 688
  year: 1974
  ident: 58_CR28
  publication-title: J Educ Psychol
  doi: 10.1037/h0037350
– ident: 58_CR14
  doi: 10.1515/jci-2015-0021
– volume: 40
  start-page: 1570
  year: 1969
  ident: 58_CR3
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177697374
– volume-title: Experiments: planning, analysis, and optimization
  year: 2011
  ident: 58_CR33
– volume: 20
  start-page: 307
  year: 1964
  ident: 58_CR36
  publication-title: Biometrics
  doi: 10.2307/2528399
– volume: 63
  start-page: 868
  year: 2015
  ident: 58_CR7
  publication-title: Oper Res
  doi: 10.1287/opre.2015.1361
– ident: 58_CR22
– start-page: 108
  volume-title: Applied regression analysis
  year: 1966
  ident: 58_CR13
– volume: 40
  start-page: 1263
  year: 2012
  ident: 58_CR21
  publication-title: Ann Stat
  doi: 10.1214/12-AOS1008
– volume: 2
  start-page: 581
  year: 2010
  ident: 58_CR15
  publication-title: Wiley Interdiscip Rev Comput Stat
  doi: 10.1002/wics.100
– ident: 58_CR23
  doi: 10.1002/9781118627372.ch1
– volume: 155
  start-page: 117
  year: 2014
  ident: 58_CR17
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2014.06.002
– volume: 20
  start-page: 8
  year: 1992
  ident: 58_CR24
  publication-title: COAL Bull
– ident: 58_CR29
  doi: 10.1145/3097983.3098192
– ident: 58_CR20
– ident: 58_CR26
– volume: 51
  start-page: 481
  year: 1964
  ident: 58_CR11
  publication-title: Biometrika
  doi: 10.1093/biomet/51.3-4.481
– volume: 105
  start-page: 849
  year: 2018
  ident: 58_CR6
  publication-title: Biometrika
  doi: 10.1093/biomet/asy036
– volume: 36
  start-page: 192
  issue: 2
  year: 1974
  ident: 58_CR8
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– volume: 21
  start-page: 272
  year: 1959
  ident: 58_CR18
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1959.tb00338.x
– volume: 48
  start-page: 136
  year: 2018
  ident: 58_CR5
  publication-title: Sociol Methodol
  doi: 10.1177/0081175018782569
– ident: 58_CR30
– volume-title: Near optimal AB testing
  year: 2017
  ident: 58_CR9
– volume: 121
  start-page: 311
  year: 2004
  ident: 58_CR31
  publication-title: J Stat Plan inference
  doi: 10.1016/S0378-3758(03)00111-3
– volume: 16
  start-page: 409
  year: 2018
  ident: 58_CR12
  publication-title: Quant Market Econ
  doi: 10.1007/s11129-018-9199-z
SSID ssj0061033
Score 2.1609588
Snippet A/B testing refers to the statistical procedure of experimental design and analysis to compare two treatments, A and B, applied to different testing subjects....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analysis and Advanced Methodologies in the Design of Experiments
Mathematics and Statistics
Original Article
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Statistics
Title D-Optimal Design for Network A/B Testing
URI https://link.springer.com/article/10.1007/s42519-019-0058-3
Volume 13
WOSCitedRecordID wos000488853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1559-8616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061033
  issn: 1559-8608
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1559-8616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061033
  issn: 1559-8608
  databaseCode: TFW
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBRwFRXsrAgEAWrhM3zlgoFQMUBKXqFvkVFgioLfx-zs5DqgRIMHg7R9HZvofuvu8AjjHnMQmPQ5IIGRI325ZIpiIirWWGJ2HGPW5tdBMPBmI8Tu5LHPe06navSpLeUtdgt8iBLDH1xUW5IOEiLKG3E25ew8PjqDK_GA74-fGu3EZEh4qqlPndJ-ad0Xwl1DuY_vq_fm0D1sp4MugWF2ATFmzehNXbmox12oQVF1AWfMxbcNIjd2glXnFPzzdvBBi1BoOiGTzonl8EQ8e7kT9vw1P_anh5TcppCUQzIWZEaZerSO6wr2GMaVnbxFHGREbRo2dtoxLBO7HCjKTtyHqttCZSUhtmFJ5LrMIdaORvud2FwBiaGY2pDOUqimQkmHHAqkQyzZmhtAW0UluqSypxN9HiJa1JkL1GUuoWaiQNW3Bab3kveDR-Ez6r9JyWT2r6s_Ten6T3YYW5g_IdKQfQmE0-7CEs6088iMmRv0pfrFe-nw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BQaIMPAqI8szAgEAWjmM3zlgoVRFtQFCqbpEdJywQUFv4_djOQ6oESDB4O0fR2b6H7r7vAE50zqMC5nso4MJDZrYtEkRSJJKEKBZ4KbO4tVHfD0M-Hgf3BY57Wna7lyVJa6krsBs1IEud-uqFGUfeIixR7bAMYf7D46g0vzocsPPjTbkN8RbmZSnzu0_MO6P5Sqh1MN31f_3aBqwV8aTTzi_AJiwkWQNWBxUZ67QBdRNQ5nzMW3DaQXfaSrzqPR3bvOHoqNUJ82Zwp31x6QwN70b2vA1P3evhVQ8V0xJQTDifIRmbXEUwg331fJ2WucqnKeEp1h49dZUMOGv5UmckriHrTUSiqBSxIkrqc_GltwO17C1LdsFRCqcq1qkMZpJSQTlRBlgVCBIzojBuAi7VFsUFlbiZaPESVSTIViMRNktrJPKacFZtec95NH4TPi_1HBVPavqz9N6fpI9hpTcc9KP-TXi7D3ViDs12pxxAbTb5SA5hOf7UhzI5stfqC6ZFwYM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60itSDj6pYn3vwIEpomk262WO1FsVaC9bS25Jsdr3oWtrq7zezLyioIB5ymyzLTJKZj5n5BuDMYh7jC88lvlQuwdm2RDHNiYoiZoTvxiLtWxv1vH5fjsf-IJ9zOiuq3YuUZNbTgCxNybwxMXGjbHzj2HBpYbBdVEjiLsMKxzp6hOtPo-IptqFBOkseU29Etqgs0prffWLRMS1mRVNn0938929uwUYeZzrt7GBsw1KU1GD9oSRpndWgioFmxtO8A-cd8mhfjze7p5MWdTg2mnX6WZG4025cOUPk40heduG5ezO8viX5FAUSMinnRIeIYZTAnljXs3CtaTweMxlT6-njptG-FC1PW6TSRBLfSEWGaxUaZrS1l6fdPagk70m0D44xNDahhThUaM4Vl8xgw5WvWCiYobQOtFBhEOYU4zjp4jUoyZFTjQQUl9VI4Nbhotwyyfg1fhO-LHQe5Fdt9rP0wZ-kT2Ft0OkGvbv-_SFUGdosLVo5gsp8-hEdw2r4aW0yPUlP2BdCCMpn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-Optimal+Design+for+Network+A%2FB+Testing&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Pokhilko%2C+Victoria&rft.au=Zhang%2C+Qiong&rft.au=Kang%2C+Lulu&rft.au=Mays%2C+D%E2%80%99arcy+P.&rft.date=2019-12-01&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1007%2Fs42519-019-0058-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42519_019_0058_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon