Codifferential Calculus

In this paper, some exact calculus rules are obtained for calculating the coderivatives of the composition of two multivalued maps. Similar rules are displayed for sums. A crucial role is played by an intermediate set-valued map called the resolvent. We first establish inclusions for contingent, Fré...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 19; číslo 4; s. 505 - 536
Hlavní autoři: Li, Shengjie, Penot, Jean-Paul, Xue, Xiaowei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2011
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, some exact calculus rules are obtained for calculating the coderivatives of the composition of two multivalued maps. Similar rules are displayed for sums. A crucial role is played by an intermediate set-valued map called the resolvent. We first establish inclusions for contingent, Fréchet and limiting coderivatives. Combining them, we get equality rules. The qualification conditions we present are natural and less exacting than classical conditions.
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-010-0171-7