DNA codes for additive stem similarity

We study two new concepts of combinatorial coding theory: additive stem similarity and additive stem distance between q -ary sequences. For q = 4, the additive stem similarity is applied to describe a mathematical model of thermodynamic similarity, which reflects the “hybridization potential” of two...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Problems of information transmission Ročník 45; číslo 2; s. 124 - 144
Hlavní autoři: D’yachkov, A. G., Voronina, A. N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.06.2009
Témata:
ISSN:0032-9460, 1608-3253
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study two new concepts of combinatorial coding theory: additive stem similarity and additive stem distance between q -ary sequences. For q = 4, the additive stem similarity is applied to describe a mathematical model of thermodynamic similarity, which reflects the “hybridization potential” of two DNA sequences. Codes based on the additive stem distance are called DNA codes. We develop methods to prove upper and lower bounds on the rate of DNA codes analogous to the well-known Plotkin upper bound and random coding lower bound (the Gilbert-Varshamov bound). These methods take into account both the “Markovian” character of the additive stem distance and the structure of a DNA code specified by its invariance under the Watson-Crick transformation. In particular, our lower bound is established with the help of an ensemble of random codes where distribution of independent codewords is defined by a stationary Markov chain.
ISSN:0032-9460
1608-3253
DOI:10.1134/S0032946009020045